首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: Aim of this study is to characterize clinical isolates of Salmonella Typhimurium that occurred in Portuguese children on the basis of their virulence and antimicrobial resistance profiles and pulsed‐field gel electrophoresis typing and to analyse possible strain relatedness. Methods and Results: Different Salmonella serotypes were isolated from clinical cases of salmonellosis that had occurred in two Portuguese hospitals (a total of 259 isolates). All Salm. Typhimurium strains, with the age of the patients known, (total of 26 isolates) were selected for this study. These isolates were characterized for their virulence gene profiles (agfA, iroB, slyA, hin/H2, spv), antimicrobial resistance profiles and investigated for the occurrence of multidrug‐resistant Salm. Typhimurium DT 104 by PCR. Salmonella isolates showed high rates of resistance to four or more antibiotics, 100% resistance to sulfadiazine and a high percentage of strains with the resistance profile of Salm. Typhimurium DT 104, two of them with this phage type (determined by PCR). A relationship between some clusters and their resistance and virulence profiles was detected, each cluster having the same profile. Conclusions: This study showed high‐antibiotic resistance of the Salmonella strains investigated, and the presence of multidrug‐resistant Salm. Typhimurium DT104 in infections of Portuguese children. Significance and Impact of the Study: Study is based on regarding the increase in antibiotic resistance by Salmonella strains isolated from infections in Portuguese children and on the presence of Salm. Typhimurium DT 104 circulating in Portugal.  相似文献   

2.
Aim: This study investigated the growth potential of Salmonella serotype Typhimurium and faecal indicator organisms in compost materials and the correlation between bacterial growth potential and the physico‐chemical composition of the compost substrate and temperature. Methods and Results: Survival of Salm. Typhimurium, Enterococcus spp. and total coliforms at 14, 24 and 37°C was determined in material of different degrees of maturity collected from composting plants for household waste and manure. All three micro‐organisms showed the potential for growth in the material from active composts (Solvita index 4) but inactivation generally occurred over time in mature compost material (Solvita index 7–8). Conclusions: Salm. Typhimurium had the potential for growth in psychrophilic/mesophilic (P/M) zones of immature compost material and its growth potential correlated negatively with the maturity of the compost and the temperature within the simulated P/M zone. Significance and Impact of the Study: The risk of pathogen regrowth in P/M zones during organic waste composting further emphasizes the importance of good management practices and of avoiding P/M zones in combination with low compost maturity.  相似文献   

3.
Aims: To characterize freshwater Bdellovibrio‐and‐like organisms (BALO) isolated in China and examine their potential in controlling growth of Salmonella enterica ssp. enterica serovar Typhimurium on tilapia fillets. Methods and Results: Four BALO isolates were recovered from a pond in Yanzhou of Shandong province, China, with Salm. Typhimurium as prey using double‐layer agar method. Partial 16S rDNA sequencing analysis identified BD2GL, BD5GL and BDXGL as Bdellovibrio bacteriovorus and BD2GS as a Peredibacter sp. Lysis experiments on 32 potentially pathogenic strains revealed that BALO lysis rates are in the range of 56·3–65·6%. On the five Salmonella strains tested, only BD2GS achieved 100% lysis rate. When applied on tilapia fillets against Salm. Typhimurium, BD2GS showed its growth control potential. Cell increments of Salm. Typhimurium were significantly lower (P < 0·05) in two BD2GS‐treated groups compared to control and low‐dose group (BD2GS to prey ratio, 1 : 1) was more effective than high‐dose group (BD2GS to prey ratio, 10 : 1) in controlling Salm. Typhimurium growth. Conclusions: Results of this study indicated that BD2GS could control Salm. Typhimurium growth on tilapia fillets. Significance and Impact of the Study: BALO could be used as a live protective culture in controlling bacterial growth and ensure food safety.  相似文献   

4.
5.
Attachment of the plant pathogen Agrobacterium tumefaciens to host plant cells is an early and necessary step in plant transformation and agroinfiltration processes. However, bacterial attachment behavior is not well understood in complex plant tissues. Here we developed an imaging‐based method to observe and quantify A. tumefaciens attached to leaf tissue in situ. Fluorescent labeling of bacteria with nucleic acid, protein, and vital dyes was investigated as a rapid alternative to generating recombinant strains expressing fluorescent proteins. Syto 16 green fluorescent nucleic acid stain was found to yield the greatest signal intensity in stained bacteria without affecting viability or infectivity. Stained bacteria retained the stain and were detectable over 72 h. To demonstrate in situ detection of attached bacteria, confocal fluorescent microscopy was used to image A. tumefaciens in sections of lettuce leaf tissue following vacuum‐infiltration with labeled bacteria. Bacterial signals were associated with plant cell surfaces, suggesting detection of bacteria attached to plant cells. Bacterial attachment to specific leaf tissues was in agreement with known leaf tissue competencies for transformation with Agrobacterium. Levels of bacteria attached to leaf cells were quantified over time post‐infiltration. Signals from stained bacteria were stable over the first 24 h following infiltration but decreased in intensity as bacteria multiplied in planta. Nucleic acid staining of A. tumefaciens followed by confocal microscopy of infected leaf tissue offers a rapid, in situ method for evaluating attachment of A. tumefaciens' to plant expression hosts and a tool to facilitate management of transient expression processes via agroinfiltration. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

6.
Aims: The effects of gamma radiation on three heat shock proteins (Hsps) (GroEL, DnaK and GroES) synthesis in two Gram-negative (Escherichia coli and Salmonella serotype Typhimurium) and two Gram-positive (Staphylococcus aureus and Listeria monocytogenes) bacteria were investigated. Methods and Results: The bacterial strains were treated with three radiation doses to induce cell damage, to obtain a viable but nonculturable state, and to cause cell death. Western blot analysis and quantification of Hsps in bacteria were performed immediately after irradiation treatment. In the four foodborne pathogens, GroEL was strongly induced by gamma rays in a dose-dependent manner, confirming the involvement of this protein in the cellular response to the stress generated by ionizing radiation. In addition, it was found that E. coli exposed to gamma radiation showed a significantly induction of DnaK and GroES proteins when compared with nonirradiated bacteria, whereas a GroES slight induction and a DnaK inhibition were observed in Salm. Typhimurium. Conclusions: The gamma rays influence the synthesis of Hsps in foodborne pathogen in a way that critically depends on the radiation dose. Significance and Impact of the Study: The study of stress response to several radiation doses was undertaken to elucidate how bacteria can survive in harsh conditions and cope with gamma radiation used to control foodborne pathogens and to characterize their adaptative response to this treatment.  相似文献   

7.
Minimally processed fresh produce has been implicated as a major source of foodborne microbial pathogens globally. These pathogens must attach to the produce in order to be transmitted. Cut surfaces of produce that expose cell walls are particularly vulnerable. Little is known about the roles that different structural components (cellulose, pectin, and xyloglucan) of plant cell walls play in the attachment of foodborne bacterial pathogens. Using bacterial cellulose-derived plant cell wall models, we showed that the presence of pectin alone or xyloglucan alone affected the attachment of three Salmonella enterica strains (Salmonella enterica subsp. enterica serovar Enteritidis ATCC 13076, Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028, and Salmonella enterica subsp. indica M4) and Listeria monocytogenes ATCC 7644. In addition, we showed that this effect was modulated in the presence of both polysaccharides. Assays using pairwise combinations of S. Typhimurium ATCC 14028 and L. monocytogenes ATCC 7644 showed that bacterial attachment to all plant cell wall models was dependent on the characteristics of the individual bacterial strains and was not directly proportional to the initial concentration of the bacterial inoculum. This work showed that bacterial attachment was not determined directly by the plant cell wall model or bacterial physicochemical properties. We suggest that attachment of the Salmonella strains may be influenced by the effects of these polysaccharides on physical and structural properties of the plant cell wall model. Our findings improve the understanding of how Salmonella enterica and Listeria monocytogenes attach to plant cell walls, which may facilitate the development of better ways to prevent the attachment of these pathogens to such surfaces.  相似文献   

8.
Aims: To evaluate the outer membrane porin F gene (ompF) for the specific detection of Salmonella species by real‐time PCR assay. Methods and Results: Two hundred and eighteen isolates belonging to Salmonella enterica (subspecies I‐VI) and Salmonella bongori were examined using primers designed to detect the ompF gene. The DNA of the bacteria was extracted from pure culture. The target was present in all the 218 Salmonella isolates including all the subspecies of Salm. enterica and Salm. bongori. The ompF gene was absent in 180 non‐Salmonella strains tested. The limit of detection was determined to be three colony forming units per reaction in pure culture. In artificially contaminated food experiments with ten or less colony forming units per 25 g, the assay was successful in identifying the target in 100% of the samples after 22‐ to 24‐h incubation in enrichment broth. Conclusions: Based on this study, the ompF gene is 100% inclusive for Salmonella species and 100% exclusive for non‐Salmonella species for the strains tested. Significance and Impact of the Study: ompF gene was present in all the Salmonella strains tested and has the potential to be a good target for the rapid molecular identification of Salmonella.  相似文献   

9.
Aims: To evaluate a semi‐automated repetitive extragenic palindromic sequence‐based PCR (rep‐PCR) system for the classification of Salmonella serotypes from Australian poultry. Methods and Results: Using a DNA fingerprint library within the DiversiLab® System, four separate databases were constructed (serogroup B, C, E and Other). These databases contained 483 serologically confirmed (reference laboratory) Salmonella isolates. A blinded set of Salmonella cultures (n = 155) were typed by rep‐PCR, matched against the internal library and compared with traditional serotyping. The predicted (Kullback–Leibler) serotype of 143 (92·3%) isolates matched traditional typing (P < 0·05). Of the 12 (7·7%) remaining isolates, ten (6·5%) resulted in ‘No Match’, one (0·65%) was incorrectly matched to the library (Salm. subsp 1 ser 4,12:‐:‐), and the other (0·65%) was referenced as Salm. ser. Sofia, whereas rep‐PCR and in‐house serotyping concurred as Salmonella serovar Typhimurium. Financial analysis showed higher material cost (215%) and a lower labour component (47·5%) for rep‐PCR compared with serotyping. Conclusion: The DiversiLab® System, with serogroup databases, was successfully implemented as an adjunct for reference serotyping of Salmonella enterica. Significance and Impact of the Study: The DiversiLab® System platform is a cost‐effective and easy‐to‐use system, which can putatively determine Salmonella enterica serotypes within a few hours.  相似文献   

10.
Aims: Recent studies have suggested that Salmonella Typhimurium strains associated with mortality in UK garden birds are significantly different from strains that cause disease in humans and livestock and that wild bird strains may be host adapted. However, without further genomic characterization of these strains, it is not possible to determine whether they are host adapted. The aim of this study was to characterize a representative sample of Salm. Typhimurium strains detected in wild garden birds using multi‐locus sequence typing (MLST) to investigate evolutionary relationships between them. Methods and Results: Multi‐locus sequence typing was performed on nine Salm. Typhimurium strains isolated from wild garden birds. Two sequence types were identified, the most common of which was ST568. Examination of the public Salmonella enterica MLST database revealed that only three other ST568 isolates had been cultured from a human in Scotland. Two further isolates of Salm. Typhimurium were determined to be ST19. Conclusions: Results of MLST analysis suggest that there is a predominant strain of Salm. Typhimurium circulating among garden bird populations in the United Kingdom, which is rarely detected in other species, supporting the hypothesis that this strain is host adapted. Significance and Impact of the Study: Host–pathogen evolution is often assumed to lead to pathogens becoming less virulent to avoid the death of their host; however, infection with ST568 led to high mortality rates among the wild birds examined, which were all found dead at wild bird‐feeding stations. We hypothesize that by attracting unnaturally high densities of birds, wild bird‐feeding stations may facilitate the transmission of ST568 between wild birds, therefore reducing the evolutionary cost of this pathogen killing its host, resulting in a host‐adapted strain with increased virulence.  相似文献   

11.
Aim: To investigate the efficacy of steam pasteurization for reducing Salmonella serotype Enteritidis on raw almond surfaces. Methods and Results: Nonpareil almonds were inoculated to 107–8 CFU g?1 with a Salm. Enteritidis cocktail (Salm. Enteritidis 43353, ME‐13, ME‐14) or Salm. Enteritidis phage type 30, dried overnight and subjected to steam treatments through a pilot‐sized vertical pasteurization machine for 5, 15, 25, 35, 45, 55 and 65 s to investigate the effect of steam on a single layer of almond. Survival of Salm. Enteritidis was evaluated with tryptic soy agar and xylose lysine desoxycholate overlay for total and healthy cells, respectively. No significant differences (P > 0·05) in reduction were observed between the Salm. Enteritidis cocktail and Salm. Enteritidis PT 30 inoculum. Reduction of Salm. Enteritidis increased as a function of treatment time, with 25 s being sufficient to achieve a 5‐log reduction. Discolouration and visible formation of wrinkles were observed following steam pasteurization of more than 35 s. Conclusions: Steam pasteurization of 25 s is sufficient to achieve a 5‐log reduction of Salm. Enteritidis inoculated on raw almonds without visual quality degradation. Significance and Impact of the Study: Steam pasteurization is an effective alternative to reduce or prevent Salm. Enteritidis contamination on raw almonds.  相似文献   

12.
Aims: To study a possible effect of a synthetic brominated furanone on biofilm formation and biofilm resistance to disinfectants in Salmonella enterica. Methods and Results: The effect of a synthetic furanone on biofilm formation of Salm. enterica serovar Agona and Salm. enterica serovar Typhimurium (11 strains of different origins) was evaluated in a microtiterplate assay. A significant reduction in biofilm build‐up in microtiterplates by the furanone was observed for seven of the strains tested. Biofilms by two Salm. Agona feed factory strains and the effects on survival after exposures to disinfectants (hypochlorite and benzalkonium chloride) were assessed for both strains. Pretreatment with furanone significantly potentiated the effect of the two disinfectants for both strains. Conclusions: The effect of disinfectants on Salmonella in biofilm was significantly enhanced when the biofilm was grown in the presence of furanone. This was probably because of an effect on biofilm architecture, composition and in some cases also biofilm build‐up. Significance and Impact of the Study: The present study gives valuable new knowledge in the fight against Salmonella biofilm in the environment because of the potentiated effect of conventional disinfectants.  相似文献   

13.
Transient expression of recombinant proteins in plant tissues following Agrobacterium‐mediated gene transfer is a promising technique for rapid protein production. However, transformation rates and transient expression levels can be sub‐optimal depending on process conditions. Attachment of Agrobacterium tumefaciens to plant cells is an early, critical step in the gene transfer pathway. Bacterial attachment levels and patterns may influence transformation and, by extension, transient expression. In this study, attachment of A. tumefaciens to lettuce leaf tissue was investigated in response to varying infiltration conditions, including bacterial density, surfactant concentration, and applied vacuum level. Bacterial density was found to most influence attachment levels for the levels tested (108, 109, and 1010 CFU/mL), with the relationship between bacterial density and attachment levels following a saturation trend. Surfactant levels tested (Break‐Thru S240: 1, 10, 100, and 1,000 µL/L) also had a significant positive effect on bacterial attachment while vacuum level (5, 25, and 45 kPa) did not significantly affect attachment in areas exposed to bacteria. In planta transgene transient expression levels were measured following infiltration with 108, 109, and 1010 CFU/mL bacterial suspension. Notably, the highest attachment level tested led to a decrease in transient expression, suggesting a potential link between bacterial attachment levels and downstream phenomena that may induce gene silencing. These results illustrate that attachment can be controlled by adjusting infiltration conditions and that attachment levels can impact transgene transient expression in leaf tissue. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1137–1144, 2014  相似文献   

14.
Aims: Salmonella is a worldwide foodborne pathogen causing acute enteric infections in humans. In the recent years, the use of bacteriophages has been suggested as a possible tool to combat this zoonotic pathogen in poultry farms. This work aims to isolate and perform comparative studies of a group of phages active against a collection of specific Salmonella Enteritidis strains from Portugal and England. Also, suitable phage candidates for therapy of poultry will be selected. Methods and Results: The Salm. Enteritidis strains studied were shown to have a significantly high occurrence of defective (cryptic) prophages; however, no live phages were found in the strains. Bacteriophages isolated from different environments lysed all except one of the tested Salm. Enteritidis strains. The bacteriophages studied were divided into different groups according to their genetic homology, RFLP profiles and phenotypic features, and most of them showed no DNA homology with the bacterial hosts. The bacteriophage lytic efficacy proved to be highly dependent on the propagation host strain. Conclusions: Despite the evidences shown in this work that the Salm. Enteritidis strains used did not produce viable phages, we have confirmed that some phages, when grown on particular hosts, behaved as complexes of phages. This is most likely because of the presence of inactive phage‐related genomes (or their parts) in the bacterial strains which are capable of being reactivated or which can recombine with lytic phages. Furthermore, changes of the bacterial hosts used for maintenance of phages must be avoided as these can drastically modify the parameters of the phage preparations, including host range and lytic activity. Significance and Impact of the Study: This work shows that the optimal host and growth conditions must be carefully studied and selected for the production of each bacteriophage candidate for animal therapy.  相似文献   

15.
Agrobacterium attached to wheat embryos in vitro. This attachment was plasmid independent, and occurred on both wounded and unwounded cell surfaces. The pattern of attachment clearly demonstrated that bacterial attachment to cereal cells follows the same trends observed for dicotyledonous plants. During the inoculation period the bacterial cells attach to the plant cell walls either with lateral or polar orientation. Wounding (mechanical or enzymatic) preferentially promoted adherence of the bacteria at the wound site, however, attachment was not wound dependent.  相似文献   

16.
The stationary-phase-inducible sigma factor, σS (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella. We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the σS protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of σS, showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease.  相似文献   

17.
Transformation of vinca cells was performed by the co-cultivation of cell-wall regenerated vinca protoplasts withAgrobacterium tumefaciens. Using thisin vitro and single cell system, attachment of the bacteria to the surface of vinca cells was observed by scanning electron microscopy (SEM). Figures of the bacteria polarly binding to the plant cell wall were often observed. AsEscherichia coli does not attach to the plant cells at all, the observed attachment ofA. tumefaciens is suggested as a characteristic feature in crown gall induction. Even though no evidence of transformation was obtained by the co-cultivation methods, a similar attachment was observed in the cell-wall regenerated protoplasts of rice. The bacteria also attached to the surface of isolated mesophyll cells of asparagus and root hairs of rice. From these observation, we concluded that the attachment is not the limiting step of crown gall induction byA. tumefaciens in monocotyledonous plants. Extracellular fibrils like pili were observed with a few strains of A.tumefaciens for the first time. These fibrils were observed regardless of their ability of attachment and infectivity.  相似文献   

18.
Aim: To investigate the cell viability of Bifidobacterium longum 51A in fermented milks and to study its immunostimulating and protective capacity against Salmonella enterica ssp. enterica serovar Typhimurium infection in mice. Methods and Results: Bifidobacterium longum 51A was added to milk fermented with different yoghurt starter cultures, before or after fermentation, and viability was monitored during storage (5°C, 28 days). Resistance to simulated gastric acid digestion was assessed. Fermented milks were orally administered to mice for 10 days followed by oral infection with Salmonella Typhimurium. The number of IgA+ cells in the small and large intestine was determined before infection. Survival to infection was monitored for 20 days. Bifidobacterium longum 51A lost viability during storage, but the product containing it was effective for the induction of IgA+ cells proliferation in the gut and for the protection of mice against Salm. Typhimurium infection. Conclusions: Cell viability of Bif. longum 51A in fermented milks along storage did not condition the capacity of the strain to enhance the number of IgA+ cells in the gut and to protect mice against Salmonella infection. Significance and Impact of the Study: The uncoupling of cell viability and functionality demonstrated that, in certain cases, nonviable cells can also exert positive effects.  相似文献   

19.
As natural killers of bacteria, bacteriophages have forced bacteria to develop a variety of defence mechanisms. The alteration of host receptors is one of the most common bacterial defence strategies against phage infection, which completely blocks phage attachment but comes at a potential fitness cost to the bacteria. Here, we report the cost‐free, transient emergence of phage resistance in Salmonella enterica subspecies enterica serovar Typhimurium through a phase‐variable modification of the O‐antigen. Phage SPC35 typically requires BtuB as a host receptor but also uses the Salmonella O12‐antigen as an adsorption‐assisting apparatus for the successful infection of S. Typhimurium. The α‐1,4‐glucosylation of galactose residues in the O12‐antigen by phase variably expressed O‐antigen glucosylating genes, designated the LT 2 gtrABC1 cluster, blocks the adsorption‐assisting function of the O12‐antigen. Consequently, it confers transient SPC35 resistance to Salmonella without any mutations to the btuB gene. This temporal switch‐off of phage adsorption through phase‐variable antigenic modification may be widespread among Gram‐negative bacteria‐phage systems.  相似文献   

20.
Plant growth promotion by rhizobacteria is a widely spread phenomenon. However only a few rhizobacteria have been studied thoroughly. Rhizobium is the best-studied rhizobacterium. It forms a symbiosis with a restricted host range. Azospirillum is another plant-growth-promoting rhizobacterium which forms rhizocoenoses with a wide range of plants. In both bacteria, the interaction with the plant involves the attraction toward the host plant and the attachment to the surface of the root. Both bacteria are attracted to plant roots, but differ in specificity. Attachment to plant roots occurs in two steps for both bacteria: a quick, reversible adsorption, and a slow, irreversible anchoring to the plant root surface. However, for the two systems under study, the bacterial surface molecules involved in plant root attachment are not necessarily the same. Correspondence to: J. Vanderleyden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号