首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been hypothesized that continuously releasing drug molecules into the tumor over an extended period of time may significantly improve the chemotherapeutic efficacy by overcoming physical transport limitations of conventional bolus drug treatment. In this paper, we present a generalized space- and time-dependent mathematical model of drug transport and drug-cell interactions to quantitatively formulate this hypothesis. Model parameters describe: perfusion and tissue architecture (blood volume fraction and blood vessel radius); diffusion penetration distance of drug (i.e., a function of tissue compactness and drug uptake rates by tumor cells); and cell death rates (as function of history of drug uptake). We performed preliminary testing and validation of the mathematical model using in vivo experiments with different drug delivery methods on a breast cancer mouse model. Experimental data demonstrated a 3-fold increase in response using nano-vectored drug vs. free drug delivery, in excellent quantitative agreement with the model predictions. Our model results implicate that therapeutically targeting blood volume fraction, e.g., through vascular normalization, would achieve a better outcome due to enhanced drug delivery.

Author Summary

Cancer treatment efficacy can be significantly enhanced through the elution of drug from nano-carriers that can temporarily stay in the tumor vasculature. Here we present a relatively simple yet powerful mathematical model that accounts for both spatial and temporal heterogeneities of drug dosing to help explain, examine, and prove this concept. We find that the delivery of systemic chemotherapy through a certain form of nano-carriers would have enhanced tumor kill by a factor of 2 to 4 over the standard therapy that the patients actually received. We also find that targeting blood volume fraction (a parameter of the model) through vascular normalization can achieve more effective drug delivery and tumor kill. More importantly, this model only requires a limited number of parameters which can all be readily assessed from standard clinical diagnostic measurements (e.g., histopathology and CT). This addresses an important challenge in current translational research and justifies further development of the model towards clinical translation.  相似文献   

2.
Although resistance to chloroquine (CQ) has relegated it from modern chemotherapeutic strategies to treat Plasmodium falciparum malaria, new evidence suggests that higher doses of the drug may exert a different killing mechanism and offers this drug a new lease of life. Whereas the established antimalarial mechanisms of CQ are usually associated with nanomolar levels of the drug, micromolar levels of CQ trigger a distinct cell death pathway involving the permeabilization of the digestive vacuole of the parasite and a release of hydrolytic enzymes. In this paper, we propose that this pathway is a promising antimalarial strategy and suggest that revising the CQ treatment regimen may elevate blood drug levels to trigger this pathway without increasing the incidence of adverse reactions.  相似文献   

3.
Susceptibility to drug toxicity is influenced by a variety of factors, both genetic and environmental. The focus of this article is the evidence addressing the hypothesis that inflammation is both a result of and a susceptibility factor for drug toxicity, with an emphasis on liver as a target organ. Results of studies suggesting a role for inflammatory mediators in the hepatotoxicity caused by acetaminophen or ethanol are discussed. For several drugs, the evidence from animal models that concurrent inflammation increases injury is presented. In addition, the occurrence of adverse drug reactions in people with preexisting inflammatory diseases is considered. The special case of idiosyncratic drug reactions is discussed and the potential raised for development of animal models for this type of drug toxicity. The conclusion is that inflammatory factors should be considered as determinants of sensitivity to adverse drug reactions.  相似文献   

4.
Effects of cellular pharmacology on drug distribution in tissues.   总被引:2,自引:0,他引:2       下载免费PDF全文
The efficacy of targeted therapeutics such as immunotoxins is directly related to both the extent of distribution achievable and the degree of drug internalization by individual cells in the tissue of interest. The factors that influence the tissue distribution of such drugs include drug transport; receptor/drug binding; and cellular pharmacology, the processing and routing of the drug within cells. To examine the importance of cellular pharmacology, previously treated only superficially, we have developed a mathematical model for drug transport in tissues that includes drug and receptor internalization, recycling, and degradation, as well as drug diffusion in the extracellular space and binding to cell surface receptors. We have applied this "cellular pharmacology model" to a model drug/cell system, specifically, transferrin and the well-defined transferrin cycle in CHO cells. We compare simulation results to models with extracellular diffusion only or diffusion with binding to cell surface receptors and present a parameter sensitivity analysis. The comparison of models illustrates that inclusion of intracellular trafficking significantly increases the total transferrin concentration throughout much of the tissue while decreasing the penetration depth. Increasing receptor affinity or tissue receptor density reduces permeation of extracellular drug while increasing the peak value of the intracellular drug concentration, resulting in "internal trapping" of transferrin near the source; this could account for heterogeneity of drug distributions observed in experimental systems. Other results indicate that the degree of drug internalization is not predicted by the total drug profile. Hence, when intracellular drug is required for a therapeutic effect, the optimal treatment may not result from conditions that produce the maximal total drug distribution. Examination of models that include cellular pharmacology may help guide rational drug design and provide useful information for whole body pharmacokinetic studies.  相似文献   

5.
Transdermal drug delivery offers an attractive alternative to injections and oral medications. However, applications of transdermal drug delivery are limited to only a few drugs as a result of low skin permeability. Application of low-frequency ultrasound enhances skin permeability, a phenomenon referred to as low-frequency sonophoresis. In this method, a short application of ultrasound is used to permeabilize skin for a prolonged period of time. During this period, ultrasonically permeabilized skin may be utilized for drug delivery. In addition, a sample of interstitial fluid or its components may be extracted through permeabilized skin for diagnostic applications. In this paper, we report our in vivo studies that demonstrate the principles of both of these concepts. Detailed studies on drug delivery are performed using inulin and mannitol as model drugs. Studies on diagnostics are performed using glucose as a model analyte. Applications of this technology to drug delivery and diagnostics are discussed.  相似文献   

6.
Evidence is reviewed which suggests a linkage may exist between certain forms of de novo or acquired drug resistance and metastasis. This includes finding that expression of certain dominantly acting mutant oncogenes or tumor suppressor genes, e.g. genes which normally act to “drive” tumor progression and metastasis, can also affect the expression of drug resistance. Moreover, this can be accompanied by altered expression of certain cellular genes thought to be involved in expression of drug resistance. A direct linkage between acquired drug resistance and metastasis would suggest that tumor sublines selected for drug resistance should manifest more aggressive malignant properties than their drug-sensitive counterparts. While this does not appear to be true for drug resistant sublines selected in vitro, indeed such cell lines frequently manifest diminished in vivo tumorigenic and/or metastatic competence, there is some evidence to support such a correlation exists for tumor cell lines that are selected in vivo for drug resistance. Attention is also drawn to the fact that new linkages between metastasis and drug resistance may be uncovered by analyzing the ability of tumor subpopulations to acquire drug resistance after one or several previous exposures to chemotherapeutic drugs, as opposed to examining intrinsic drug resistance only. Furthermore, ability to detect induced or acquired drug resistance in vitro may be strongly influenced by the types of assay used to detect and monitor drug resistanc. In particular, three-dimensional cell culture systems may reveal acquired or induced “multicellular” drug resistance in situations where conventional two-dimensional culture systems may therefore reveal as yet undiscovered associations between the phenotypes of metastasis and drug resistance.  相似文献   

7.
Application of external electric field to cell suspension maintained at ice temperature induces pores in the cell membrane. At this stage, a drug added to the cell suspension equilibrates across the membrane. On raising the temperature to 37 degrees C, the pores appear to be sealed as the drug is retained in the cells. This method was used for encapsulation of Co-57 labelled cynocobalamin in rabbit erythrocytes. It was seen from the in vivo biokinetic study of the drug-loaded erythrocytes that the rate of elimination of the drug was considerably reduced as compared to that of the free drug, indicating that drug delivery by electroencapsulation can give a sustained release of the drug.  相似文献   

8.
Regional hyperkalemia during acute ischemia may provoke cardiac arrhythmias such as ventricular fibrillation. Despite intense research efforts over the last decades, the problem of finding an efficient anti-arrhythmic drug without dangerous side effects is still open. One approach to analyze the effect of anti-arrhythmic drugs is to do simulations based on mathematical models of collections of cardiomyocytes. Such simulations have recently illuminated the pro-arrhythmic capability of well-established anti-arrhythmic drugs.The purpose of the present note is to introduce a method intended for computing advantageous properties of an anti-arrhythmic drug. For a given model of a normal and an ischemic cell, we introduce a drug as a vector of non-negative real numbers whose components are multiplied by individual terms representing specific ionic currents. The drug vector is computed such that the action potentials of the resulting drugged cells are as close as possible to the action potential of a normal (not drugged) cell. Numerical simulations based on the Luo-Rudy I model and the Hund-Rudy model show that the classical shortened action potential obtained due to hyperkalemia is prolonged by using the drug computed by this method. Furthermore, for both models a 2D collection of spatially coupled ischemic cells give arrhythmogenic solutions before the drug is applied, and stable solutions after the drug is applied. It is emphasized that we do not address the possibility of realizing a drug with the properties computed in this note.  相似文献   

9.
Tumor cells exhibit drug resistant phenotypes that decrease the efficacy of chemotherapeutic treatments. The drug resistance has a genetic basis that is caused by an abnormal gene expression. There are several types of drug resistance: efflux pumps reducing the cellular concentration of the drug, alterations in membrane lipids that reduce cellular uptake, increased or altered drug targets, metabolic alteration of the drug, inhibition of apoptosis, repair of the damaged DNA, and alteration of the cell cycle checkpoints ( and ). siRNA is used to silence the drug resistant phenotype and prevent this drug resistance response. Of the listed types of drug resistance, pump-type resistance (e.g., high expression of ATP-binding cassette transporter proteins such as P-glycoproteins (Pgp; also known as multi-drug resistance protein 1 or MDR1, encoded by the ATP-Binding Cassette Sub-Family B Member 1 (ABCB1) gene)) and apoptosis inhibition (e.g., expression of anti-apoptotic proteins such as Bcl-2) are the most frequently targeted for gene silencing. The co-delivery of siRNA and chemotherapeutic drugs has a synergistic effect, but many of the current projects do not control the drug release from the nanocarrier. This means that the drug payload is released before the drug resistance proteins have degraded and the drug resistance phenotype has been silenced. Current research focuses on cross-linking the carrier's polymers to prevent premature drug release, but these carriers still rely on environmental cues to release the drug payload, and the drug may be released too early. In this review, we studied the release kinetics of siRNA and chemotherapeutic drugs from a broad range of carriers. We also give examples of carriers used to co-deliver siRNA and drugs to drug-resistant tumor cells, and we examine how modifications to the carrier affect the delivery. Lastly, we give our recommendations for the future directions of the co-delivery of siRNA and chemotherapeutic drug treatments.  相似文献   

10.
Inferring potential drug indications, for either novel or approved drugs, is a key step in drug development. Previous computational methods in this domain have focused on either drug repositioning or matching drug and disease gene expression profiles. Here, we present a novel method for the large‐scale prediction of drug indications (PREDICT) that can handle both approved drugs and novel molecules. Our method is based on the observation that similar drugs are indicated for similar diseases, and utilizes multiple drug–drug and disease–disease similarity measures for the prediction task. On cross‐validation, it obtains high specificity and sensitivity (AUC=0.9) in predicting drug indications, surpassing existing methods. We validate our predictions by their overlap with drug indications that are currently under clinical trials, and by their agreement with tissue‐specific expression information on the drug targets. We further show that disease‐specific genetic signatures can be used to accurately predict drug indications for new diseases (AUC=0.92). This lays the computational foundation for future personalized drug treatments, where gene expression signatures from individual patients would replace the disease‐specific signatures.  相似文献   

11.
Although methotrexate (MTX) is an effective drug for several types of cancer, it is not active against melanoma. Experiments following methotrexate treatment indicated a reduced accumulation of the drug in the cytosolic compartment in melanoma cells, suggesting that the mechanisms that control the transport and retention of this drug could be altered in melanoma. For this reason, we analyzed the presence and function of folate receptor‐α (FRα) in melanoma cells. In this study, we have identified the presence of FRα in normal and pathological melanocytes and demonstrated that MTX is preferentially transported through this receptor in melanoma cells. FRα‐induced endocytic transport of MTX, together with drug melanosomal sequestration and cellular exportation, ensures reduced accumulation of this cytotoxic compound in intracellular compartments. The critical role of FRα in this mechanism of resistance and the therapeutic consequences of these findings are also discussed.  相似文献   

12.
The architecture and composition of stratum corneum act as barriers and limit the diffusion of most drug molecules and ions. Much effort has been made to overcome this barrier and it can be seen that iontophoresis has shown a good effect. Iontophoresis represents the application of low electrical potential to increase the transport of drugs into and across the skin or tissue. Iontophoresis is a noninvasive drug delivery system, and therefore, it is a useful alternative to drug transportation by injection. In this study, we present a numerical model and effects of electrical potential on the drug diffusion in the buccal tissue and the stratum corneum. The initial numerical results are in good comparison with experimental observation. We demonstrate that the application of an applied voltage can greatly improve the efficacy of localized drug delivery as compared to diffusion alone.  相似文献   

13.
Idiosyncratic drug toxicity is generally believed to be a phenomenon that cannot be readily evaluated experimentally. Reasons for this difficulty include the following: 1. It is a rare event (<1/5,000) and therefore impossible to be studied in clinical trials; 2. It is a human-specific event not detectable in experimental animals. To aid the understanding of idiosyncratic toxicity and to develop an experimental strategy for this phenomenon, a hypothesis is proposed. The hypothesis states that the low frequency of idiosyncratic drug toxicity is due to the requirements for the occurrence of multiple critical and discrete events, with the probability for the occurrence of idiosyncratic drug toxicity as a product of the probabilities of each event. The key determinants of these critical events are proposed to be: 1. Chemical properties; 2. exposure; 3. environmental factors; and 4. genetic factors. Based on this hypothesis, idiosyncratic drug toxicity can be evaluated experimentally via studying these key determinants. The chemical properties critical to idiosyncratic drug toxicity are identified via a review of the common properties of drugs that cause idiosyncratic liver toxicity. These properties include: 1. Formation of reactive metabolites. 2. Metabolism by P450 isoforms. 3. Preponderance of P450 inducers, and 4. Occurrence of clinically significant pharmacokinetic interactions with co-administered drugs. Based on this review, it is proposed that these common properties may be useful experimental endpoints for the prediction and therefore avoidance of the selection of drug candidates with idiosyncratic drug toxicity for further development.  相似文献   

14.
Cancer therapy using chemotherapeutic drugs frequently involves injection of the drug into the body through some intravenous mode of administration, viz, continuous (drip) infusion or single/multiple bolus injection(s). An understanding of the effect of the various modes of administration upon tumor penetration of drug is essential to rational design of drug therapy. This paper investigates drug penetration into a model tumor of slab geometry (between two capillaries) in which the overall transport rate of drug is limited by intra-tumor transport characterized by an effective diffusion coefficient. Employing the method of Finite Fourier Transforms (FFT), analytical solutions have been obtained for transient drug distribution in both the plasma and the tumor following three modes of administration, viz, continuous infusion, single bolus injection and equally-spaced equal-dose multiple bolus injections, of a given amount of drug. The qualitative trends exhibited by the plasma drug distribution profiles are consistent with reported experimental studies. Two concepts, viz, the dimensionless decay constant and the plasma/tumor drug concentration trajectories, are found to be particularly useful in the rational design of drug therapy. The dimensionless decay constant provides a measure of the rate of drug decay in the plasma relative to the rate of drug diffusion into the tumor and is thus characteristic of the tumor/drug system. The magnitude of this parameter dictates the choice of drug administration mode for minimizing drug decay in the plasma while simultaneously maximizing drug transport into the tumor. The concentration trajectories provide a measure of the plasma drug concentration relative to the tumor drug concentration at various times following injection. When the tumor drug concentration exceeds the plasma drug concentration, the drug will begin to diffuse out of the tumor. Knowledge of the time at which this diffusion reversal occurs is especially useful for optimum scheduling of subsequent bolus injections in a multiple bolus dosing regimen. There are no reported applications of the FFT method to solve repeated input functions in either the chemical engineering or pharmaceutical science literature. Thus, the application of FFT method to solve multiple bolus injections is a unique one. Use of this FFT based analysis as a predictor tool can limit the number of costly experiments which are being done now to achieve this purpose. Even though the model in its present form is simplified, the analysis thereof has nevertheless led to a better understanding of the various factors that must be taken into account for rational design of drug therapy.  相似文献   

15.
Chibale K 《IUBMB life》2002,53(4-5):249-252
Genetic and biochemical approaches to studies of drug resistance mechanisms in Plasmodium falciparum have raised controversies and contradictions over the past several years. A different and novel chemical approach to this important problem is desirable at this point in time. Recently, the molecular basis of drug resistance in P. falciparum has been associated with mutations in the resistance genes, Chloroquine Resistance Transporter (PfCRT) and the P-glycoprotein homologue (Pgh1). Although not the determinant of chloroquine resistance in P. falciparum, mutations in Pgh1 have important implications for resistance to other antimalarial drugs. Because it is mutations in the aforementioned resistance genes rather than overexpression that has been associated with drug resistance in malaria, studies on mechanisms of drug resistance and its reversal by chemosensitisers should benefit from a chemical approach. Target-oriented organic synthesis of chemosensitisers against proteins implicated in drug resistance in malaria should shed light on mechanism of drug resistance and its reversal in this area. The effect of structurally diverse chemosensitisers should be examined on several putative resistance genes in P. falciparum to deal with antimalarial drug resistance in the broadest sense. Therefore, generating random mutations of these resistance proteins and subsequent screening in search of a specific phenotype followed by a search for mutations and/or chemosensitisers that affect a specific drug resistance pathway might be a viable strategy. This diversity-oriented organic synthesis approach should offer the means to simultaneously identify resistance proteins that can serve as targets for therapeutic intervention (therapeutic target validation) and chemosensitisers that modulate the functions of these proteins (chemical target validation).  相似文献   

16.
Metronidazole and drug resistance   总被引:10,自引:0,他引:10  
In recent years, the basis of metronidozole resistance has been examined in anaerobic protozoa, such as Trichomonas and Giardia, as well as anaerobic bacteria, such as Bacteroides and Clostridium. In this review, Patricia Johnson looks at a variety of mechanisms that lead to reduced susceptibility of these pathogens to the drug. The frequent correlation between metronidozole resistance and inefficient drug activation suggests that this is the level at which drug resistance operates.  相似文献   

17.
Class III β-tubulin (TUBB3) is a prominent mechanism of drug resistance expressed in a variety of solid tumors and particularly in lung and ovarian cancer. In the classical view, TUBB3 expression and drug resistance have been linked, and together they have been associated with a perturbation in microtubule dynamics. In keeping with this observation, TUBB3 was associated with drug resistance only when chemotherapy included a taxane in its chemical composition. In this review, we demonstrate that the classical supposition about TUBB3 is not correct, and that instead TUBB3 expression is linked to drug resistance as a complex survival mechanism activated by microenvironmental conditions such as poor nutrient supply and hypoxia.  相似文献   

18.
The purpose of this study was to prepare and evaluate layered matrix tablets of propranolol HCl containing HPMC and phytowax as matrix component using direct compression technique. Layering with this polymeric matrix could prolong the release of drug and shift the release pattern approach to zero order as described from the least square curve fitting. Increasing the amount of coating layer could apparently prolong the drug release. The longer lag time of drug release from one planar apparently when the amount of coating layer was increased. HPMC concentration and compression force did not affect the drug release from this three-layer tablet. The drug release from this three-layer tablet was influenced by hydrodynamic force. An increase in stirring rate was a corresponding increasing in the release rate. From photoimage and SEM, gel mass of HPMC was increased with time during dissolution and covered the core surface, therefore dissolved drug molecules were allowed to diffuse out from the core through the polymer network of gel layer containing the porous structure. This suggested that HPMC and phytowax could be fabricated into the layered matrix tablet exhibiting sustained drug release.  相似文献   

19.
BackgroundDrug resistance is a serious challenge in cancer treatment that can render chemotherapy a failure. Understanding the mechanisms behind drug resistance and developing novel therapeutic approaches are cardinal steps in overcoming this issue. Clustered regularly interspaced short palindrome repeats (CRISPR) gene-editing technology has proven to be a useful tool to study cancer drug resistance mechanisms and target the responsible genes. In this review, we evaluated original research studies that used the CRISPR tool in three areas related to drug resistance, namely screening resistance-related genes, generating modified models of resistant cells and animals, and removing resistance by genetic manipulation. We reported the targeted genes, study models, and drug groups in these studies. In addition to discussing different applications of CRISPR technology in cancer drug resistance, we analyzed drug resistance mechanisms and provided examples of CRISPR’s role in studying them. Although CRISPR is a powerful tool for examining drug resistance and sensitizing resistant cells to chemotherapy, more studies are required to overcome its disadvantages, such as off-target effects, immunotoxicity, and inefficient delivery of CRISPR/cas9 into the cells.  相似文献   

20.
African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号