首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cerebellar deficits and hyperactivity in mice lacking Smad4   总被引:6,自引:0,他引:6  
Smad4 is a central mediator of TGF-beta signals, which are known to play essential roles in many biological processes. Using a Cre-loxP approach to overcome early embryonic lethality, we have studied functions of TGF-beta/Smad4 signals in the central nervous system (CNS). No obvious deficits were detected in mice carrying the targeted disruption of Smad4 in the CNS. The overall morphology of the hippocampus appeared normal. There was no change in the proliferation of neuronal precursor cells, nor in several forms of synaptic plasticity. In contrast, deletion of Smad4 resulted in a marked decrease in the number of cerebellar Purkinje cells and parvalbumin-positive interneurons. Accompanied by the abnormality in the cerebellum, mutant mice also exhibited significantly increased vertical activity. Thus, our study reveals an unexpected role for Smad4 in cerebellar development and in the control of motor function.  相似文献   

2.
Rett syndrome (RTT) is a regressive developmental disorder characterized by motor and breathing abnormalities, anxiety, cognitive dysfunction and seizures. Approximately 95% of RTT cases are caused by more than 200 different mutations in the X‐linked gene encoding methyl‐CpG‐binding protein 2 (MeCP2). While numerous transgenic mice have been created modeling common mutations in MeCP2, the behavioral phenotype of many of these male and, especially, female mutant mice has not been well characterized. Thorough phenotyping of additional RTT mouse models will provide valuable insight into the effects of Mecp2 mutations on behavior and aid in the selection of appropriate models, ages, sexes and outcome measures for preclinical trials. In this study, we characterize the phenotype of male and female mice containing the early truncating MeCP2 R168X nonsense point mutation, one of the most common in RTT individuals, and compare the phenotypes to Mecp2 null mutants. Mecp2R168X mutants mirror many clinical features of RTT. Mecp2R168X/y males exhibit impaired motor and cognitive function and reduced anxiety. The behavioral phenotype is less severe and with later onset in Mecp2R168X/+ females. Seizures were noted in 3.7% of Mecp2R168X mutant females. The phenotype in Mecp2R168X/y mutant males is remarkably similar to our previous characterizations of Mecp2 null males, whereas Mecp2R168X/+ females exhibit a number of phenotypic differences from females heterozygous for a null Mecp2 mutation. This study describes a number of highly robust behavioral paradigms that can be used in preclinical drug trials and underscores the importance of including Mecp2 mutant females in preclinical studies .  相似文献   

3.
The psychotomimetic effects of N-methyl-d-aspartate receptor (NMDA) antagonists such as ketamine and phencyclidine suggest a role for reduced NMDA receptor-mediated neurotransmission in schizophrenia. GluN1 'hypomorph' (GluN1(hypo) ) mice exhibit reduced NMDA receptor expression and have been suggested as a mouse model of schizophrenia. However, NMDA receptors are ubiquitous and are implicated in many physiological and pathological processes. The GluN1(hypo) mice have a global reduction of NMDA receptors and the consequences of such a global manipulation are likely to be wide-ranging. We therefore assessed GluN1(hypo) mice on a battery of behavioral tests, including tests of naturalistic behaviors, anxiety and cognition. GluN1(hypo) mice exhibited impairments on all tests of cognition that we employed, as well as reduced engagement in naturalistic behaviors, including nesting and burrowing. Behavioral deficits were present in both spatial and non-spatial domains, and included deficits on both short- and long-term memory tasks. Results from anxiety tests did not give a clear overall picture. This may be the result of confounds such as the profound hyperactivity seen in GluN1(hypo) mice, although hyperactivity cannot account for all of the results obtained. When viewed against this background of far-reaching behavioral abnormalities, the specificity of any one behavioral deficit is inevitably called into question. Indeed, the present data from GluN1(hypo) mice are indicative of a global impairment rather than any specific disease. The deficits seen go beyond what one would expect from a mouse model of schizophrenia, thus questioning their utility as a selective model of this disease.  相似文献   

4.
Previous studies indicate that light information reaches the suprachiasmatic nucleus through a subpopulation of retinal ganglion cells that contain both glutamate and pituitary adenylyl cyclase-activating peptide (PACAP). Although the role of glutamate in this pathway has been well studied, the involvement of PACAP and its receptors is only beginning to be understood. To investigate the functions of PACAP in vivo, we developed a mouse model in which the gene coding for PACAP was disrupted by targeted homologous recombination. RIA was used to confirm a lack of detectable PACAP protein in these mice. PACAP-deficient mice exhibited significant impairment in the magnitude of the response to brief light exposures with both light-induced phase delays and advances of the circadian system impacted. This mutation equally impacted phase shifts induced by bright and dim light exposure. Despite these effects on phase shifting, the loss of PACAP had only limited effects on the generation of circadian oscillations, as measured by rhythms in wheel-running activity. Unlike melanopsin-deficient mice, the mice lacking PACAP exhibited no loss of function in the direct light-induced inhibition of locomotor activity, i.e., masking. Finally, the PACAP-deficient mice exhibited normal phase shifts in response to exposure to discrete dark treatments. The results reported here show that the loss of PACAP produced selective deficits in the light response of the circadian system.  相似文献   

5.
Loss-of-function mutations in parkin are the major cause of early-onset familial Parkinson's disease. To investigate the pathogenic mechanism by which loss of parkin function causes Parkinson's disease, we generated a mouse model bearing a germline disruption in parkin. Parkin-/- mice are viable and exhibit grossly normal brain morphology. Quantitative in vivo microdialysis revealed an increase in extracellular dopamine concentration in the striatum of parkin-/- mice. Intracellular recordings of medium-sized striatal spiny neurons showed that greater currents are required to induce synaptic responses, suggesting a reduction in synaptic excitability in the absence of parkin. Furthermore, parkin-/- mice exhibit deficits in behavioral paradigms sensitive to dysfunction of the nigrostriatal pathway. The number of dopaminergic neurons in the substantia nigra of parkin-/- mice, however, is normal up to the age of 24 months, in contrast to the substantial loss of nigral neurons characteristic of Parkinson's disease. Steady-state levels of CDCrel-1, synphilin-1, and alpha-synuclein, which were identified previously as substrates of the E3 ubiquitin ligase activity of parkin, are unaltered in parkin-/- brains. Together these findings provide the first evidence for a novel role of parkin in dopamine regulation and nigrostriatal function, and a non-essential role of parkin in the survival of nigral neurons in mice.  相似文献   

6.
7.
Wei F  Qiu CS  Kim SJ  Muglia L  Maas JW  Pineda VV  Xu HM  Chen ZF  Storm DR  Muglia LJ  Zhuo M 《Neuron》2002,36(4):713-726
Adenylyl cyclase types 1 (AC1) and 8 (AC8), the two major calmodulin-stimulated adenylyl cyclases in the brain, couple NMDA receptor activation to cAMP signaling pathways. Cyclic AMP signaling pathways are important for many brain functions, such as learning and memory, drug addiction, and development. Here we show that wild-type, AC1, AC8, or AC1&8 double knockout (DKO) mice were indistinguishable in tests of acute pain, whereas behavioral responses to peripheral injection of two inflammatory stimuli, formalin and complete Freund's adjuvant, were reduced or abolished in AC1&8 DKO mice. AC1 and AC8 are highly expressed in the anterior cingulate cortex (ACC), and contribute to inflammation-induced activation of CREB. Intra-ACC administration of forskolin rescued behavioral allodynia defective in the AC1&8 DKO mice. Our studies suggest that AC1 and AC8 in the ACC selectively contribute to behavioral allodynia.  相似文献   

8.
The N-myc downstream-regulated gene (NDRG) family consists of four related proteins, NDRG1-NDRG4, in mammals. We previously generated NDRG1-deficient mice that were unable to maintain myelin sheaths in peripheral nerves. This condition was consistent with human hereditary motor and sensory neuropathy, Charcot-Marie-Tooth disease type 4D, caused by a nonsense mutation of NDRG1. In contrast, the effects of genetic defects of the other NDRG members remain unknown. In this study, we focused on NDRG4, which is specifically expressed in the brain and heart. In situ mRNA hybridization on the brain revealed that NDRG4 was expressed in neurons of various areas. We generated NDRG4-deficient mice that were born normally with the expected Mendelian frequency. Immunochemical analysis demonstrated that the cortex of the NDRG4-deficient mice contained decreased levels of brain-derived neurotrophic factor (BDNF) and normal levels of glial cell line-derived neurotrophic factor, NGF, neurotrophin-3, and TGF-β1. Consistent with BDNF reduction, NDRG4-deficient mice had impaired spatial learning and memory but normal motor function in the Morris water maze test. When temporary focal ischemia of the brain was induced, the sizes of the infarct lesions were larger, and the neurological deficits were more severe in NDRG4-deficient mice compared with the control mice. These findings indicate that NDRG4 contributes to the maintenance of intracerebral BDNF levels within the normal range, which is necessary for the preservation of spatial learning and the resistance to neuronal cell death caused by ischemic stress.  相似文献   

9.
Neurogranin (Ng), a brain‐specific calmodulin‐binding protein, is expressed highly in hippocampus, and is important for cognitive function. Deletion of the Ng gene from mice caused attenuation of signal reaction cascade in hippocampus, impairments in learning and memory and high frequency stimulation‐induced long‐term potentiation (LTP). Environmental enrichment alone failed to improve cognitive function. In this study, behavioral testing revealed that Ng knockout (NgKO) mice were both hyperactive and socially withdrawn. Methylphenidate (MPH) was given to mice while they were also kept under an enrichment condition. MPH treatment reduced the hyperactivity of NgKO mice tested in both the open field and forced swim chamber. MPH improved their social abilities such that mice recognized and interacted better with novel subjects. The cognitive memories of MPH‐treated mutants were improved in both water maze and contextual fear conditioning tests. High frequency stimulation‐induced LTP of NgKO mice was also improved by MPH. The present treatment regimen, however, did not fully reverse the deficits of the mutant mice. In contrast, MPH exerted only a minimal effect on the wild type mice. At the cellular level, MPH increased the number of glial fibrillary acidic protein‐positive cells in hippocampus, particularly within the dentate gyrus of NgKO mice. Therefore it will be of interest to determine the nature of MPH‐mediated astrocyte activation and how it may modulate behavior in future studies. Taken together these NgKO mice may be useful for the development of better drug treatment to improve cognitive and behavioral impairments.  相似文献   

10.
The purpose of the present study was to determine the rates of muscle glycogenolysis and glycogenesis during and after exercise in GLUT-1 transgenic mice and their age-matched littermates. Male transgenic mice (TG) expressing a high level of human GLUT-1 and their nontransgenic (NT) littermates underwent 3 h of swimming. Glycogen concentration was determined in gastrocnemius and extensor digitorum longus (EDL) muscles before exercise and at 0, 5, and 24 h postexercise, during which food (chow) and 10% glucose solution (as drinking water) were provided. Exercise resulted in approximately 90% reduction in muscle glycogen in both NT (from 11.2 +/- 1.4 to 2. 1 +/- 1.3 micromol/g) and TG (from 99.3 +/- 4.7 to 11.8 +/- 4.3 micromol/g) in gastrocnemius muscle. During recovery from exercise, the glycogen concentration increased to 38.2 +/- 7.3 (5 h postexercise) and 40.5 +/- 2.8 micromol/g (24 h postexercise) in NT mice. In TG mice, however, the increase in muscle glycogen concentration during recovery was greater (to 57.5 +/- 7.4 and 152.1 +/- 15.7 micromol/g at 5 and 24 h postexercise, respectively). Similar results were obtained from EDL muscle. The rate of 2-deoxyglucose uptake measured in isolated EDL muscles was 7- to 10-fold higher in TG mice at rest and at 0 and 5 h postexercise. There was no difference in muscle glycogen synthase activation measured in gastrocnemius muscles between NT and TG mice immediately after exercise. These results demonstrate that the rate of muscle glycogen accumulation postexercise exhibits two phases in TG: 1) an early phase (0-5 h), with rapid glycogen accumulation similar to that of NT mice, and 2) a progressive increase in muscle glycogen concentration, which differs from that of NT mice, during the second phase (5-24 h). Our data suggest that the high level of steady-state muscle glycogen in TG mice is due to the increase in muscle glucose transport activity.  相似文献   

11.
Inactivation of the maternally imprinted, paternally expressed gene 3 (Peg3) induces deficits in olfactory function, sexual and maternal behaviors, oxytocin neuron number, metabolic homeostasis and growth. Peg3 is expressed in a number of developing hypothalamic and basal forebrain structures and is a component of the P53 apoptosis pathway. Peg3 inactivation in neuronal cell culture lines inhibits P53 mediated apoptosis, which is important in the early postnatal development and sexual differentiation of the brain. In this study, we investigated the effect of inactivating the Peg3 gene on the incidence of caspase 3 positive cells (a marker of apoptosis) in 4‐ and 6‐day postpartum mouse brain. Inactivating the Peg3 gene resulted in an increase in the incidence of total forebrain caspase 3 positive cells at 4 and 6 days postpartum. Increases in specific neuroanatomical regions including the bed nucleus of the stria terminalis, nucleus accumbens, caudate putamen, medial pre‐optic area, arcuate nucleus, medial amygdala, anterior cortical and posteriodorsal amygdaloid nuclei, were also observed. In wild‐type mice, sex differences in the incidence of caspase 3 positive cells in the medial amygdala, bed nucleus of the stria terminalis, nucleus accumbens, arcuate nucleus and the M2 motor cortex, were also observed. This neural sex difference was ameliorated in the Peg‐3 mutant. These findings suggest that the neuronal and behavioral deficits seen in mice lacking a functional Peg3 gene are mediated by increases in the incidence of early neonatal apoptosis in neuroanatomical regions important for reproductive behavior, olfactory and pheromonal processing, thermoregulation and reward. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

12.
It has been difficult to reconcile the absence of pathology and apparently normal behavior of mice lacking prion protein (PrP), referred to as Prnp(0/0) mice, with a mechanism of prion pathogenesis involving progressive loss of PrP(C)-mediated neuroprotection. However, here we report that Prnp(0/0) mice exhibit significant age-related defects in motor coordination and balance compared with mice expressing wild type Prnp on a syngeneic background, and that the brains of behaviorally-impaired Prnp(0/0) mice display the cardinal neuropathological hallmarks of spongiform pathology and reactive astrocytic gliosis that normally accompany prion disease. Consistent with the appearance of cerebellar ataxia as an early symptom in patients with Gerstmann-Str?ussler-Scheinker syndrome (GSS), an inherited form of human prion disease, motor coordination and balance defects manifested in a transgenic (Tg) mouse model of GSS considerably earlier than the onset of end-stage neurodegenerative disease. Our results are consistent with a mechanism in which loss of normal PrP(C) function is an important pathological component of prion diseases.  相似文献   

13.
Journal of Computational Neuroscience - Prediction and time estimation are all but required for motor function in everyday life. In the context of eye movements, for instance, they allow predictive...  相似文献   

14.
Retinoic acid receptors (RARs) modulate gene expression following association with retinoic acid (RA). In transient transfection, an RAR alpha-beta-galactosidase fusion protein (RAR-LacZ) was able to transactivate expression in the absence of RA. When expressed in the ocular lens of transgenic mice, this constitutively active RAR-LacZ fusion gene resulted in founder and progeny animals that exhibited cataracts and microphthalmia, both being characteristics of retinoid-induced teratogenesis. The transgenic phenotypes indicate that retinoid teratogenesis can be mimicked by expression of a constitutively active RAR-LacZ fusion protein in retinoid-sensitive tissues.  相似文献   

15.
Mutations in NLGN4X have been identified in individuals with autism spectrum disorders and other neurodevelopmental disorders. A previous study reported that adult male mice lacking neuroligin4 (Nlgn4) displayed social approach deficits in the three‐chambered test, altered aggressive behaviors and reduced ultrasonic vocalizations. To replicate and extend these findings, independent comprehensive analyses of autism‐relevant behavioral phenotypes were conducted in later generations of the same line of Nlgn4 mutant mice at the National Institute of Mental Health in Bethesda, MD, USA and at the Institut Pasteur in Paris, France. Adult social approach was normal in all three genotypes of Nlgn4 mice tested at both sites. Reciprocal social interactions in juveniles were similarly normal across genotypes. No genotype differences were detected in ultrasonic vocalizations in pups separated from the nest or in adults during reciprocal social interactions. Anxiety‐like behaviors, self‐grooming, rotarod and open field exploration did not differ across genotypes, and measures of developmental milestones and general health were normal. Our findings indicate an absence of autism‐relevant behavioral phenotypes in subsequent generations of Nlgn4 mice tested at two locations. Testing environment and methods differed from the original study in some aspects, although the presence of normal sociability was seen in all genotypes when methods taken from Jamain et al. (2008) were used. The divergent results obtained from this study indicate that phenotypes may not be replicable across breeding generations, and highlight the significant roles of environmental, generational and/or procedural factors on behavioral phenotypes.  相似文献   

16.
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) has been proposed to be an epithelial cell receptor for Pseudomonas aeruginosa involved in bacterial internalization and clearance from the lung. We evaluated the role of CFTR in clearing P. aeruginosa from the respiratory tract using transgenic CF mice that carried either the DeltaF508 Cftr allele or an allele with a Cftr stop codon (S489X). Intranasal application achieved P. aeruginosa lung infection in inbred C57BL/6 DeltaF508 Cftr mice, whereas DeltaF508 Cftr and S489X Cftr outbred mice required tracheal application of the inoculum to establish lung infection. CF mice showed significantly less ingestion of LPS-smooth P. aeruginosa by lung cells and significantly greater bacterial lung burdens 4.5 h postinfection than C57BL/6 wild-type mice. Microscopy of infected mouse and rhesus monkey tracheas clearly demonstrated ingestion of P. aeruginosa by epithelial cells in wild-type animals, mostly around injured areas of the epithelium. Desquamating cells loaded with P. aeruginosa could also be seen in these tissues. No difference was found between CF and wild-type mice challenged with an LPS-rough mucoid isolate of P. aeruginosa lacking the CFTR ligand. Thus, transgenic CF mice exhibit decreased clearance of P. aeruginosa and increased bacterial burdens in the lung, substantiating a key role for CFTR-mediated bacterial ingestion in lung clearance of P. aeruginosa.  相似文献   

17.
In response to global declines in bee populations, several studies have focused on floral resource provisioning schemes to support bee communities and maintain their pollination services. Optimizing host-plant selection for supplemental floral provisioning requires an understanding of bee foraging behavior and preferences for host-plant species. However, fully characterizing these preferences is challenging due to multiple factors influencing foraging, including the large degree of spatiotemporal variability in floral resources. To understand bee pollen foraging patterns, we developed a highly controlled mechanistic framework to measure pollen foraging preferences of the bumble bee Bombus impatiens to nine plant species native to Pennsylvania. We recorded continuous observations of foraging behavior of the experimental bee community and individual bees, while simultaneously standardizing for the number of foragers in the environment and differences in floral display of each plant species, while controlling for flowering phenology such that bees only foraged when all plant species’ flowers were open. Our results demonstrate that B. impatiens exhibit predictable daily patterns in their pollen foraging choices, and their preferences are dominated by the host-plants they visit first. We hypothesize that these patterns at the community and individual levels are driven by the interplay between pollen abundance and quality. We recommend that daily cycles of host-plant visitation be considered in future studies to ensure precise and accurate interpretations of host-plant preference. Such precision is critical for comprehensive analyses of the proximate and ultimate mechanisms driving bee foraging behavior and the selection of host-plant species to use in habitat restoration protocols.  相似文献   

18.
19.
20.
The cyclin-dependent kinase Cdk5 has attracted a great deal of attention both because of its roles in cell migration and axon patterning, and the extensive data implicating it in adult-onset neurodegeneration in mammals. Both the kinase activity and the biological effects of Cdk5 are absolutely dependent on association with an activating subunit, called p35. We show here that Drosophila lacking the Cdk5 activator, D-p35, display a wide range of defects in embryonic axon patterning. We further show that, while viable and fertile, p35 mutant adults display progressive, age-dependent loss of motor function and have a significantly shortened lifespan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号