首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 27-mer sequence was synthesised as DNA duplex (DD), RNA duplex (RR), and RNA-DNA (RD) hybrid in order to characterise their structural and dynamic features. The hydrodynamic radius (Rh) and the rise (b) values of the three samples were consistent with the conformations predicted by CD analysis. The value of the torsional constant (alpha) of the samples containing RNA was approximately twice that of the DD sample and followed the order: DD < RD < RR. The same order was observed in the thermodynamic stability and in the reduction of the electrophoretic mobility. gamma-Ray footprinting analysis was carried out to resolve the individual strand conformation in the hybrid. The RNA strand preserved its conformation, while the DNA strand showed local deformations mainly at TA and TG steps.  相似文献   

2.
3.
The technique of DNAase I footprinting has been used to investigate preferred binding sites for actinomycin D and distamycin on a 160-base-pair DNA fragment from E. coli containing the tyr T promoter sequence. Only sites containing the dinucleotide step GpC are protected by binding of actinomycin, and all such sites are protected. Distamycin recognizes four major regions rich in A + T residues. Both antibiotics induce enhanced rates of cleavage at certain regions flanking their binding sites. These effects are not restricted to any particular base sequence since they are produced in runs of A and T by actinomycin and in GC-rich sequences by distamycin. The observed increases in susceptibility to nuclease attack are attributed to DNA structural variations induced in the vicinity of the ligand binding site, most probably involving changes in the width of the helical minor groove.  相似文献   

4.
A synthetic DNA triple helix sequence was formed by annealing a pyrimidinic 21 mer single strand sequence onto the complementary purinic sequence centred on a 27 mer duplex DNA. Melting of the third strand was monitored by UV spectrophotometry in the temperature range 10-90 degrees C. The T(m) of the triplex, 37 degrees C, was well separated from the onset of duplex melting. When the same triple helix was formed on the duplex bearing one nick in the center of the pyrimidinic sequence the T(m) of the triplex was shifted to approximately 32 degrees C and overlapped the melting of the duplex. We have used fluorescence polarization anisotropy (FPA) measurements of ethidium bromide (EB) intercalated in duplex and triplex samples to determine the hydrodynamic parameters in the temperature range 10-40 degrees C. The fluorescence lifetime of EB in the samples of double and triple stranded DNA is the same (21.3 +/- 0.5 ns) at 20 degrees C, indicating that the geometries of the intercalation sites are similar. The values for the hydration radii of the duplex, normal triplex, and nicked triplex samples were 10.7 +/- 0.2, 12.2 +/- 0.2, and 12.0 +/- 0.2 A. FPA measurements on normal triplex DNA as a function of temperature gave a melting profile very similar to that derived by UV absorption spectroscopy. For the triplex carrying a nick, the melting curve obtained using FPA showed a clear shift compared with that obtained for the normal triplex sample. The torsional rigidity of the triplex forms was found to be higher than that of the duplex form.  相似文献   

5.
We have studied the torsional elastic constant (alpha) of short DNA (27mer) oligomers of various sequence by fluorescence polarization anysotropy (FPA) measurements. The lowest alpha values were found in samples with sequence rich in AA dinucleotides or containing the alternating d(A-T) x d(A-T) motif. The torsional rigidity of our DNA samples was compared to that calculated according to the current values of twist angle fluctuations derived for ten dinucleotide steps by recent analyses of DNA crystal structure database. The values of torsional rigidity derived from crystals are higher than our experimental ones, obtained by FPA analysis, suggesting that packing force in crystals may notably hinder the dinucleotide twist angle fluctuations that occur in solution. This behaviour is more evident for samples containing AA, TA and AT steps. In all the samples there is about a twofold change of the alpha value in the 10-40 degrees C range. An activation enthalpy (Delta H (#)) of about 17.4 kJ mol(-1), on average, was obtained for the temperature dependence of eight of the ten samples studied. A correlation with the stacking energy is discussed.  相似文献   

6.
Site and sequence specificity of the daunomycin-DNA interaction   总被引:8,自引:0,他引:8  
The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site.  相似文献   

7.
The nucleoprotein structure of telomeres from Euplotes crassus was studied by using nuclease and chemical footprinting. The macronuclear telomeres were found to exist as DNA-protein complexes that are resistant to micrococcal nuclease digestion. Each complex encompassed 85 to 130 base pairs of macronuclear DNA and appeared to consist of two structural domains that are characterized by dissimilar DNA-protein interactions. Dimethyl sulfate footprinting demonstrated that very sequence-specific and salt-stable interactions occur in the most terminal region of each complex. DNase I footprinting indicated that DNA in the region 30 to 120 base-pairs from the 5' end lies on a protein surface; the interactions in this region of the complex are unlikely to be sequence specific. A 50-kilodalton telomere-binding protein was isolated. Binding of this protein protected telomeric DNA from BAL 31 digestion and gave rise to many of the sequence-specific DNA-protein interactions that were observed in vivo. The telomeric complexes from E. crassus were very similar in overall structure to the complexes found at Oxytricha telomeres. However, telomeric complexes from the two ciliates showed significant differences in internal organization. The telomeric DNA, the telomere-binding proteins, and the resultant DNA-protein interactions were all somewhat different. The telomere-binding proteins from the two ciliates were found to be less closely conserved than might have been expected. It appears that the proteins are tailored to match their cognate telomeric DNA.  相似文献   

8.
We recently identified and enriched a protein (CBP) from HeLa cells with binding specificity for cruciform-containing DNA. We have now studied the interaction of CBP with stable cruciform DNA molecules containing the 27 bp palindrome of SV40 on one strand and an unrelated 26 bp palindrome on the other strand by hydroxyl radical footprinting. The CBP-DNA interaction is localized to the four-way junction at the base of the cruciforms. CBP appears to interact with the elbows of the junctions in an asymmetric fashion. Upon CBP binding, structural distortions were observed in the cruciform stems and in a DNA region adjacent to the junction. These features distinguish CBP from other cruciform binding proteins, which bind symmetrically and display exclusively either contacts with the DNA backbone or structural alterations in the DNA.  相似文献   

9.
E A Winzeler  E W Small 《Biochemistry》1991,30(21):5304-5313
The effects of pH on the torsional flexibility of DNA bound to nucleosome core particles were investigated by using time-resolved fluorescence anisotropy decays of intercalated ethidium. The decays were collected by using time-resolved single-photon counting and were fit to a model developed by J. M. Schurr [(1984) Chem. Phys. 84, 71-96] with a nonlinear least-squares-fitting algorithm developed for this purpose. As the torsional flexibility of DNA is affected by the presence of an intercalating dye, the decays were studied at different ethidium bromide to core particle binding ratios. Because we see large increases in DNA flexibility and in the rotational diffusion coefficient at binding ratios of 0.6 ethidium/core particle and above, we conclude that, under these conditions, the DNA begins to detach from the protein. At lower binding ratios, we observe only small changes in the anisotropy decay. The torsional parameters obtained are a function of N, the number of base pairs of DNA between points of attachment to the histone core. Only if N is greater than 30 base pairs is the torsional rigidity of DNA on a nucleosome core particle higher than that for DNA free in solution. Also, for reasonable values of N (less than 30), the friction felt by the DNA on a core particle is much higher than that felt by free DNA. This indicates that the region of the DNA to which the ethidium binds is highly constrained in its motions. pH changes nearly neutrality at moderate ionic strengths (100 mM) have a substantial effect on the fluorescence anisotropy decays, particularly at early times. These analyses indicated that the observed change on increasing pH can be attributed either to a loosening of the contacts between the DNA and the histone core (increasing N) or to a substantial relaxing of the torsional rigidity of the DNA.  相似文献   

10.
The 5' d-TpG 3' element is a part of DNA sequences involved in regulation of gene expression and is also a site for intercalation of several anticancer drugs. Solution conformation of DNA duplex d-TGATCA containing this element has been investigated by two-dimensional NMR spectroscopy. Using a total of 12 torsional angles and 121 distance constraints, structural refinement has been carried out by restrained molecular dynamics (rMDs) in vacuum up to 100 ps. The structure is characterized by a large positive roll at TpG/CpA base pair step and large negative propeller twist for AT and TA base pairs. The backbone torsional angle, gamma(O5'-C5'-C4'-C3'), of T1 residue adopts a trans-conformation which is corroborated by short intra nucleotide T1H6-T1H5' (3.7A) distance in nuclear overhauser effect spectroscopy (NOESY) spectra while the backbone torsional angle, beta(P-O5'-C5'-C4'), exists in trans as well as gauche state for T1 and C5 residues. There is evidence of significant flexibility of the sugar-phosphate backbone with rapid inter-conversion between two different conformers at TpG/CpA base pair step. The base sequence dependent variations and local structural heterogeneity have important implications in specific recognition of DNA by ligands.  相似文献   

11.
Comparative studies of long bone biomechanics in primates frequently use the polar moment of inertia (J ) as a variable reflecting overall mechanical rigidity, average bending rigidity, or resistance to torsional shear stresses. While the use of this variable for characterizing the first two properties is appropriate, it is potentially a highly misleading measure of torsional resistance. Errors result from violations of assumptions required for the use of the polar moment of inertia; in particular, the predictive utility of J diminishes with departures from axial symmetry (i.e., a cylindrical cross-sectional shape). The magnitude of these errors is estimated both theoretically and experimentally. It is argued that the use of the polar moment of inertia for estimating long bone torsional rigidity should be restricted to samples of relatively invariant and/or cylindrical geometry. Alternative measures for torsional resistance are evaluated and reviewed.  相似文献   

12.
Using fluorescence polarization anisotropy (FPA), we measured the torsional constant of various DNA oligomers in different sequences and calculated the value for each of the 136 unique tetranucleotides. From these values, we obtained a "rigidity profile" for every double-stranded DNA sequence. We tested the code in the analysis of DNA sequences able to form nucleosomes. More than 50% of the sequences studied showed a common 20 and/or 30 bp modulation of the torsional constant. Many other profiles of rigidity were observed in the remaining sequences and this variety in torsional constant modulation may be related to functional differences between nucleosomes.  相似文献   

13.
D P Millar  K M Ho  M J Aroney 《Biochemistry》1988,27(23):8599-8606
The interaction of calf thymus DNA with the antitumor drug cis-diamminedichloroplatinum(II), and with the clinically ineffective trans isomer, is studied by time-dependent fluorescence depolarization spectroscopy of intercalated ethidium. The effect of the platinum compounds on the rapid torsional motions of DNA in solution is observed via depolarization of the ethidium fluorescence. The depolarization data are successfully analyzed with an elastic model of DNA dynamics and yield a value for the product of the torsional rigidity of the DNA and the friction factor for DNA twisting. The dependence of this quantity on the degree of platination of the DNA is determined for each isomer. At low levels of platination, the cis isomer increases the solute-solvent friction acting on the DNA torsional motions, which we attribute to local kinking of the helix axis at the sites of platination. At high levels of platination, the cis isomer decreases the torsional rigidity of the DNA, indicating that disruption of DNA duplex structure occurs under these conditions. The binding of the trans isomer to DNA has no effect on the torsional rigidity or the friction. The present results are compared with other findings on the interaction of these platinum compounds with DNA.  相似文献   

14.
D E Gilbert  J Feigon 《Biochemistry》1991,30(9):2483-2494
The complexes formed between the cyclic octadepsipeptide antibiotic echinomycin and the two DNA octamers [d(ACGTACGT)]2 and [d(TCGATCGA)]2 have been investigated by using one- and two-dimensional proton NMR spectroscopy techniques. The results obtained for the two complexes are compared to each other, to the crystal structures of related DNA-echinomycin complexes, and to enzymatic and chemical footprinting results. In the saturated complexes, two echinomycin molecules bind to each octamer by bisintercalation of the quinoxaline moieties on either side of each CpG step. Binding of echinomycin to the octamer [d(ACGTACGT)]2 is cooperative so that only the two-drug complex is observed at lower drug-DNA ratios, but binding to [d(TCGATCGA)]2 is not cooperative. At low temperatures, both the internal and terminal A.T base pairs adjacent to the binding site in the [d(ACGTACGT)]2-2 echinomycin complex are Hoogsteen base paired (Gilbert et al., 1989) as observed in related crystal structures. However, as the temperature is raised, the internal A.T Hoogsteen base pairs are destabilized and are observed to be exchanging between the Hoogsteen base-paired and an open (or Watson-Crick base-paired) state. In contrast, in the [d(TCGATCGA)]2-2 echinomycin complex, no A.T Hoogsteen base pairs are observed, the internal A.T base pairs appear to be stabilized by drug binding, and the structure of the complex does not change significantly from 0 to 45 degrees C. Thus, the structure and stability of the DNA in echinomycin-DNA complexes depends on the sequence at and adjacent to the binding site. While we conclude that no single structural change in the DNA can explain all of the footprinting results, unwinding of the DNA helix in the drug-DNA complexes appears to be an important factor while Hoogsteen base pair formation does not.  相似文献   

15.
Mechanism of damage recognition by Escherichia coli DNA photolyase   总被引:11,自引:0,他引:11  
Escherichia coli DNA photolyase binds to DNA containing pyrimidine dimers with high affinity and then breaks the cyclobutane ring joining the two pyrimidines of the dimer in a light- (300-500 nm) dependent reaction. In order to determine the structural features important for this level of specificity, we have constructed a 43 base pair (bp) long DNA substrate that contains a thymine dimer at a unique location and studied its interaction with photolyase. We find that the enzyme protects a 12-16-bp region around the dimer from DNase I digestion and only a 6-bp region from methidium propyl-EDTA-Fe (II) digestion. Chemical footprinting experiments reveal that photolyase contacts the phosphodiester bond immediately 5' and the 3 phosphodiester bonds immediately 3' to the dimer but not the phosphodiester bond between the two thymines that make up the dimer. Methylation protection and interference experiments indicate that the enzyme makes major groove contacts with the first base 5' and the second base 3' to the dimer. These data are consistent with photolyase binding in the major groove over a 4-6-bp region. However, major groove contacts cannot be of major significance in substrate recognition as the enzyme binds equally well to a thymine dimer in a 44-base long single strand DNA and protects a 10-nucleotide long region around the dimer from DNase I digestion. It is therefore concluded that the unique configuration of the phosphodiester backbone in the strand containing the pyrimidine dimer, as well as the cyclobutane ring of the dimer itself are the important structural determinants of the substrate for recognition by photolyase.  相似文献   

16.
Beta-D-Glucosyl-hydroxymethyluracil, also called base J, is an unusually modified DNA base conserved among Kinetoplastida. Base J is found predominantly in repetitive DNA and correlates with epigenetic silencing of telomeric variant surface glycoprotein genes. We have previously identified a J-binding protein (JBP) in Trypanosoma, Leishmania, and Crithidia, and we have shown that it is a structure-specific binding protein. Here we examine the molecular interactions that contribute to recognition of the glycosylated base in synthetic DNA substrates using modification interference, modification protection, DNA footprinting, and photocross-linking techniques. We find that the two primary requirements for J-DNA recognition include contacts at base J and a base immediately 5' of J (J-1). Methylation interference analysis indicates that the requirement of the base at position J-1 is due to a major groove contact independent of the sequence. DNA footprinting of the JBP.J-DNA complex with 1,10-phenanthroline-copper demonstrates that JBP contacts the minor groove at base J. Substitution of the thymine moiety of J with cytosine reduces the affinity for JBP approximately 15-fold. These data indicate that the sole sequence dependence for JBP binding may lie in the thymine moiety of base J and that recognition requires only two specific base contacts, base J and J-1, within both the major and minor groove of the J-DNA duplex.  相似文献   

17.
A model for the structure of the complex between the helix-destabilizing protein of bacteriophage T4, GP32, and single-stranded DNA is proposed. In this model the bases are arranged in a helix, that is characterized by a relatively large distance between successive bases, a substantial base tilt, in combination with a small rotation per base. This helix is further organized into a tertiary structure, possibly a superhelix, of which the corresponding protein shell corresponds to the relatively rigid and rod-like structure that is observed in hydrodynamic experiments. It is proposed that similar structural features apply to other single-stranded DNA binding proteins in complex with polynucleotides.  相似文献   

18.
We have developed a technique of partially-restrained molecular mechanics enthalpy minimisation which enables the sequence-dependence of the DNA binding of a non-intercalating ligand to be studied for arbitrary sequences of considerable length (greater than = 60 base-pairs). The technique has been applied to analyse the binding of berenil to the minor groove of a 60 base-pair sequence derived from the tyrT promoter; the results are compared with those obtained by DNAse I and hydroxyl radical footprinting on the same sequence. The calculated and experimentally observed patterns of binding are in good agreement. Analysis of the modelling data highlights the importance of DNA flexibility in ligand binding. Further, the electrostatic component of the interaction tends to favour binding to AT-rich regions, whilst the van der Waals interaction energy term favours GC-rich ones. The results also suggest that an important contribution to the observed preference for binding in AT-rich regions arises from lower DNA perturbation energies and is not accompanied by reduced DNA structural perturbations in such sequences. It is therefore concluded that those modes of DNA distortion favourable to binding are probably more flexible in AT-rich regions. The structure of the modelled DNA sequence has also been analysed in terms of helical parameters. For the DNA energy-minimised in the absence of berenil, certain helical parameters show marked sequence-dependence. For example, purine-pyrimidine (R-Y) base pairs show a consistent positive buckle whereas this feature is consistently negative for Y-R pairs. Further, CG steps show lower than average values of slide while GC steps show lower than average values of rise. Similar analysis of the modelling data from the calculations including berenil highlights the importance of DNA flexibility in ligand binding. We observe that the binding of berenil induces characteristic responses in different helical parameters for the base-pairs around the binding site. For example, buckle and tilt tend to become more negative to the 5'-side of the binding site and more positive to the 3'-side, while the base steps at either side of the centre of the site show increased twist and decreased roll.  相似文献   

19.
Almost all nucleoprotein interactions and DNA manipulation events involve mechanical deformations of DNA. Extraordinary progresses in single-molecule, structural, and computational methods have characterized the average mechanical properties of DNA, such as bendability and torsional rigidity, in high resolution. Further, the advent of sequencing technology has permitted measuring, in high-throughput, how such mechanical properties vary with sequence and epigenetic modifications along genomes. We review these recent technological advancements, and discuss how they have contributed to the emerging idea that variations in the mechanical properties of DNA play a fundamental role in regulating, genome-wide, diverse processes involved in chromatin organization.  相似文献   

20.
A nitroxide spin-labeled analogue of thymidine (1a), in which the methyl group is replaced by an acetylene-tethered nitroxide, was evaluated as a probe for structural and dynamics studies of sequence specifically spin-labeled DNA. Residue 1a was incorporated into synthetic deoxyoligonucleotides by using automated phosphite triester methods. 1H NMR, CD, and thermal denaturation studies indicate that 1a (T*) does not significantly alter the structure of 5'-d(CGCGAATT*CGCG) from that of the native dodecamer. EPR studies on monomer, single-stranded, and duplexed DNA show that 1a readily distinguishes environments of different rigidity. Comparison of the general line-shape features of the observed EPR spectra of several small duplexes (12-mer, 24-mer) with simulated EPR spectra assuming isotropic motion suggests that probe 1a monitors global tumbling of small duplexes. Increasing the length of the DNA oligomers results in significant deviation from isotropic motion, with line-shape features similar to those of calculated spectra of objects with isotropic rotational correlation times of 20-100 ns. EPR spectra of a spin-labeled GT mismatch and a T bulge in long DNAs are distinct from those of spin-labeled Watson-Crick paired DNAs, further demonstrating the value of EPR as a tool in the evaluation of local dynamic and structural features in macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号