首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emerging aspects of membrane traffic in neuronal dendrite growth   总被引:2,自引:0,他引:2  
Polarized growth of the neuron would logically require some form of membrane traffic to the tip of the growth cone, regulated in conjunction with other trafficking processes that are common to both neuronal and non-neuronal cells. Unlike axons, dendrites are endowed with membranous organelles of the exocytic pathway extending from the cell soma, including both rough and smooth endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Dendrites also have satellite Golgi-like cisternal stacks known as Golgi outposts that have no membranous connections with the somatic Golgi. Golgi outposts presumably serve both general and specific local trafficking needs, and could mediate membrane traffic required for polarized dendritic growth during neuronal differentiation. Recent findings suggest that dendritic growth, but apparently not axonal growth, relies very much on classical exocytic traffic, and is affected by defects in components of both the early and late secretory pathways. Within dendrites, localized processes of recycling endosome-based exocytosis regulate the growth of dendritic spines and postsynaptic compartments. Emerging membrane traffic processes and components that contribute specifically to dendritic growth are discussed.  相似文献   

2.
Ye B  Zhang Y  Song W  Younger SH  Jan LY  Jan YN 《Cell》2007,130(4):717-729
Little is known about how the distinct architectures of dendrites and axons are established. From a genetic screen, we isolated dendritic arbor reduction (dar) mutants with reduced dendritic arbors but normal axons of Drosophila neurons. We identified dar2, dar3, and dar6 genes as the homologs of Sec23, Sar1, and Rab1 of the secretory pathway. In both Drosophila and rodent neurons, defects in Sar1 expression preferentially affected dendritic growth, revealing evolutionarily conserved difference between dendritic and axonal development in the sensitivity to limiting membrane supply from the secretory pathway. Whereas limiting ER-to-Golgi transport resulted in decreased membrane supply from soma to dendrites, membrane supply to axons remained sustained. We also show that dendritic growth is contributed by Golgi outposts, which are found predominantly in dendrites. The distinct dependence between dendritic and axonal growth on the secretory pathway helps to establish different morphology of dendrites and axons.  相似文献   

3.
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses and are major sites of information processing and storage in the brain. Changes in the shape and size of dendritic spines are correlated with the strength of excitatory synaptic connections and heavily depend on remodeling of its underlying actin cytoskeleton. Emerging evidence suggests that most signaling pathways linking synaptic activity to spine morphology influence local actin dynamics. Therefore, specific mechanisms of actin regulation are integral to the formation, maturation, and plasticity of dendritic spines and to learning and memory.  相似文献   

4.
The posttranslational processing enzyme peptidylglycine alpha-amidating monooxygenase (PAM) occurs naturally in integral membrane and soluble forms. With the goal of understanding the targeting of these proteins to secretory granules, we have compared the maturation, processing, secretion, and storage of PAM proteins in stably transfected AtT-20 cells. Integral membrane and soluble PAM proteins exit the ER and reach the Golgi apparatus with similar kinetics. Biosynthetic labeling experiments demonstrated that soluble PAM proteins were endoproteolytically processed to a greater extent than integral membrane PAM; this processing occurred in the regulated secretory pathway and was blocked by incubation of cells at 20 degrees C. 16 h after a biosynthetic pulse, a larger proportion of soluble PAM proteins remained cell-associated compared with integral membrane PAM, suggesting that soluble PAM proteins were more efficiently targeted to storage granules. The nonstimulated secretion of soluble PAM proteins peaked 1-2 h after a biosynthetic pulse, suggesting that release was from vesicles which bud from immature granules during the maturation process. In contrast, soluble PAM proteins derived through endoproteolytic cleavage of integral membrane PAM were secreted in highest amount during later times of chase. Furthermore, immunoprecipitation of cell surface-associated integral membrane PAM demonstrated that very little integral membrane PAM reached the cell surface during early times of chase. However, when a truncated PAM protein lacking the cytoplasmic tail was expressed in AtT-20 cells, > 50% of the truncated PAM-1 protein reached the cell surface within 3 h. We conclude that the trafficking of integral membrane and soluble secretory granule-associated enzymes differs, and that integral membrane PAM proteins are less efficiently retained in maturing secretory granules.  相似文献   

5.
Intracellular transport of newly synthesized and mature proteins via vesicles is controlled by a large group of proteins. Here we describe a ubiquitous rat protein-endoplasmic reticulum (ER) and Golgi 30-kD protein (ERG30)-which shares structural characteristics with VAP-33, a 33-kD protein from Aplysia californica which was shown to interact with the synaptic protein VAMP. The transmembrane topology of the 30-kD ERG30 corresponds to a type II integral membrane protein, whose cytoplasmic NH(2) terminus contains a predicted coiled-coil motif. We localized ERG30 to the ER and to pre-Golgi intermediates by biochemical and immunocytochemical methods. Consistent with a role in vesicular transport, anti-ERG30 antibodies specifically inhibit intra-Golgi transport in vitro, leading to significant accumulation of COPI-coated vesicles. It appears that ERG30 functions early in the secretory pathway, probably within the Golgi and between the Golgi and the ER.  相似文献   

6.
Low temperature blocks transport and sorting of cathepsin D in fibroblasts   总被引:2,自引:0,他引:2  
The transport of newly synthesized cathepsin D in fibroblasts at 16-28 degrees C was compared to that at 37 degrees C. At 37 degrees C newly synthesized cathepsin D passes the trans Golgi within 30-60 min, becomes segregated from the secretory route into prelysosomal organelles within 1-2 h and processed to mature forms in dense lysosomes within 1.5-3 h after synthesis. The small fraction of cathepsin D that escapes transport into lysosomes is secreted within less than 2 h. At 16-28 degrees C the transport of cathepsin D to lysosomes is inhibited in a temperature-dependent manner. At 16-28 degrees C cathepsin D precursors are slowly transported to the trans Golgi. The cathepsin D precursors accumulate at a site that is in continuity with the secretory pathway and located within or distal of the trans Golgi and proximal to the site where cathepsin D precursors leave the secretory pathway as complexes with mannose 6-phosphate receptors. The arrest at this site is not complete. The receptor-dependent segregation of the cathepsin D precursors released from the block is impaired at less than or equal to 26 degrees C. The inhibition of segregation results in an increased, albeit retarded secretion of cathepsin D. The fraction of cathepsin D precursors that is segregated from the secretory pathway encounters a further low temperature block in prelysosomal organelles. There cathepsin D precursors are proteolytically processed to an intermediate form, which accumulates transiently.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The endoplasmic reticulum and Golgi apparatus play key roles in regulating the folding, assembly, and transport of newly synthesized proteins along the secretory pathway. We find that the divalent cation manganese disrupts the Golgi apparatus and endoplasmic reticulum (ER). The Golgi apparatus is fragmented into smaller dispersed structures upon manganese treatment. Golgi residents, such as TGN46, beta1,4-galactosyltransferase, giantin, and GM130, are still segregated and partitioned correctly into smaller stacked fragments in manganese-treated cells. The mesh-like ER network is substantially affected and peripheral ER elements are collapsed. These effects are consistent with manganese-mediated inhibition of motor proteins that link membrane organelles along the secretory pathway to the cytoskeleton. This divalent cation thus represents a new tool for studying protein secretion and membrane dynamics along the secretory pathway.  相似文献   

8.
Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth.  相似文献   

9.
Functional compartmentalization of dendrites is thought to underlie afferent-specific integration of neural activity in laminar brain structures. Here we show that in the lateral nucleus of the amygdala (LA), an area lacking apparent laminar organization, thalamic and cortical afferents converge on the same dendrites, contacting neighboring but morphologically and functionally distinct spine types. Large spines contacted by thalamic afferents exhibited larger Ca(2+) transients during action potential backpropagation than did small spines contacted by cortical afferents. Accordingly, induction of Hebbian plasticity, dependent on postsynaptic spikes, was restricted to thalamic afferents. This synapse-specific effect involved activation of R-type voltage-dependent Ca(2+) channels preferentially located at thalamic inputs. These results indicate that afferent-specific mechanisms of postsynaptic, associative Hebbian plasticity in LA projection neurons depend on local, spine-specific morphological and molecular properties, rather than global differences between dendritic compartments.  相似文献   

10.
Brock SC  Heck JM  McGraw PA  Crowe JE 《Journal of virology》2005,79(19):12528-12535
The processes that facilitate transport of integral membrane proteins though the secretory pathway and subsequently target them to particular cellular membranes are relevant to almost every field of biology. These transport processes involve integration of proteins into the membrane of the endoplasmic reticulum (ER), passage from the ER to the Golgi, and post-Golgi trafficking. The respiratory syncytial virus (RSV) fusion (F) protein is a type I integral membrane protein that is uniformly distributed on the surface of infected nonpolarized cells and localizes to the apical plasma membrane of polarized epithelial cells. We expressed wild-type or altered RSV F proteins to gain a better understanding of secretory transport and plasma membrane targeting of type I membrane proteins in polarized and nonpolarized epithelial cells. Our findings reveal a novel, orientation-independent apical plasma membrane targeting function for the transmembrane domain of the RSV F protein in polarized epithelial cells. This work provides a basis for a more complete understanding of the role of the transmembrane domain and cytoplasmic tail of viral type I integral membrane proteins in secretory transport and plasma membrane targeting in polarized and nonpolarized cells.  相似文献   

11.
Protein myristoylation was investigated in the yeast secretory pathway. Conditional secretory mutations were used to accumulate inteRmediaries in the pathway between the endoplasmic reticulum and Golgi (sec 18, 20), within the Golgi (sec 7), and between the Golgi and plasma membrane (sec 1, 3, 4, 5, 6, 8, 9). The accumulation of vesicles was paralleled by the enrichment of a defined subset of proteins modified either via ester or amide linkages to myristic acid: Myristoylated proteins of 21, 32, 49, 56, 75, and 136 kDa were enriched between the endoplasmic reticulum and Golgi; proteins of 21, 32, 45, 56, 75, 136 kDa were enriched by blocks within the Golgi; and proteins of 18, 21, 32, 36, 49, 68, and 136 kDa were trapped in a myristoylated form by blocks between the Golgi and plasma membrane. This enrichment of myristoylated proteins was reversed upon returning the cells to the permissive temperature for secretion. The fatty acid was linked to the 21-kDa protein via a hydroxylamine-resistant amide linkage (N-myristoylation) and to the proteins of 24, 32, 49, 56, 68, 136 kDa via hydroxylamine-labile ester linkage (E-myristoylation). In addition, myristoylated proteins of 21, 56, and 136 kDa were glycosylated via amino linkages to asparagine. This suggests they are exposed to the lumen of the secretory pathway. Three proteins (24, 32, and 56) were E-myristoylated in the presence of protein synthesis inhibitors, indicating this modification can occur posttranslationally. After using cycloheximide to clear protein passengers from the secretory pathway the 21-, 32-, and 56-kDa proteins continued to accumulate in a myristoylated form when vesicular transport was blocked between the Golgi and plasma membrane. These data suggest that myristoylation occurs on a component of the secretory machinery rather than on a passenger protein.  相似文献   

12.
Protein transport in plant cells: in and out of the Golgi   总被引:7,自引:0,他引:7  
In plant cells, the Golgi apparatus is the key organelle for polysaccharide and glycolipid synthesis, protein glycosylation and protein sorting towards various cellular compartments. Protein import from the endoplasmic reticulum (ER) is a highly dynamic process, and new data suggest that transport, at least of soluble proteins, occurs via bulk flow. In this Botanical Briefing, we review the latest data on ER/Golgi inter-relations and the models for transport between the two organelles. Whether vesicles are involved in this transport event or if direct ER-Golgi connections exist are questions that are open to discussion. Whereas the majority of proteins pass through the Golgi on their way to other cell destinations, either by vesicular shuttles or through maturation of cisternae from the cis- to the trans-face, a number of membrane proteins reside in the different Golgi cisternae. Experimental evidence suggests that the length of the transmembrane domain is of crucial importance for the retention of proteins within the Golgi. In non-dividing cells, protein transport out of the Golgi is either directed towards the plasma membrane/cell wall (secretion) or to the vacuolar system. The latter comprises the lytic vacuole and protein storage vacuoles. In general, transport to either of these from the Golgi depends on different sorting signals and receptors and is mediated by clathrin-coated and dense vesicles, respectively. Being at the heart of the secretory pathway, the Golgi (transiently) accommodates regulatory proteins of secretion (e.g. SNAREs and small GTPases), of which many have been cloned in plants over the last decade. In this context, we present a list of regulatory proteins, along with structural and processing proteins, that have been located to the Golgi and the 'trans-Golgi network' by microscopy.  相似文献   

13.
Fusion of membrane vesicles has been implicated in many intracellular processes including the transport of proteins destined for secretion or storage. Vesicular transport coupled with membrane fusion has been demonstrated for rough endoplasmic reticulum to Golgi and Golgi to plasma membrane transport as well as receptor mediated endocytosis and receptor recycling. Recent studies with inhibitors suggest that metalloendoproteases may mediate a wide variety of intracellular fusion events. Thus, in order to examine the potential role of metalloendoproteases in both transport/secretion and endocytosis/recycling we have used selected dipeptide substrates to probe these processes in human HepG2 cells. Using pulse-chase labeling, immunoprecipitation, and polyacrylamide gel electrophoresis we show that transport and secretion of newly synthesized proteins along the exocytotic route were completely inhibited by substrate dipeptides (e.g. Cbz-Gly-Phe-amide, where Cbz is benzyloxycarbonyl) but not by irrelevant dipeptides (e.g. Cbz-Gly-Gly-amide). The effect was rapid, reversible, and specific. The secretory pathway was blocked between the rough endoplasmic reticulum and Golgi as well as Golgi and plasma membrane as judged by the status of N-glycosylation intermediates. In addition, these inhibitors specifically inhibited protein synthesis without alterations in cellular ATP concentrations. However, cell-free amino acid incorporation was not inhibited. Receptor-mediated uptake of asialoglycoproteins was specifically and reversibly inhibited by dipeptide substrates. This effect appears to be secondary to inhibition of recycling as neither ligand binding nor internalization were affected. Thus the present observations suggest that metalloendoprotease activity may be involved in the regulation of multiple intracellular pathways perhaps at the level of vesicular fusion events.  相似文献   

14.
高尔基体既是蛋白质修饰、分选、水解加工的场所,又是分泌物质的转运站,每时每刻都有大量的蛋白进出高尔基体。在这种情况下,高尔基体仍能保持完整且高度有序的结构,表明高尔基体驻留蛋白有精确的定位信号,以保证它们定位于正确的区隔,而不会沿着分泌途径被运输出去。高尔基体内有几种不同类别的膜蛋白,包括糖基转移酶、周缘膜蛋白、病毒蛋白和受体等。研究显示,有多种定位信号和定位机制参与了蛋白的高尔基体定位。  相似文献   

15.
Axons and dendrites differ in both microtubule organization and in the organelles and proteins they contain. Here we show that the microtubule motor dynein has a crucial role in polarized transport and in controlling the orientation of axonal microtubules in Drosophila melanogaster dendritic arborization (da) neurons. Changes in organelle distribution within the dendritic arbors of dynein mutant neurons correlate with a proximal shift in dendritic branch position. Dynein is also necessary for the dendrite-specific localization of Golgi outposts and the ion channel Pickpocket. Axonal microtubules are normally oriented uniformly plus-end-distal; however, without dynein, axons contain both plus- and minus-end distal microtubules. These data suggest that dynein is required for the distinguishing properties of the axon and dendrites: without dynein, dendritic organelles and proteins enter the axon and the axonal microtubules are no longer uniform in polarity.  相似文献   

16.
The secretory pathway is of vital importance for eukaryotic cells and has a pivotal role in the synthesis, sorting, processing and secretion of a large variety of bioactive molecules involved in intercellular communication. One of the key processes in the secretory pathway concerns the transport of cargo proteins from the ER (endoplasmic reticulum) to the Golgi. Type‐I transmembrane proteins of ~24 kDa are abundantly present in the membranes of the early secretory pathway, and bind the COPI and COPII coat complexes that cover vesicles travelling between the membranes. These p24 proteins are thought to play an important role in the selective transport processes at the ER—Golgi interface, although their exact functioning is still obscure. One model proposes that p24 proteins couple cargo selection in the lumen with vesicle coat recruitment in the cytosol. Alternatively, p24 proteins may furnish subcompartments of the secretory pathway with the correct subsets of machinery proteins. Here we review the current knowledge of the p24 proteins and the various roles proposed for the p24 family members.  相似文献   

17.
Classically, endoplasmic reticulum (ER) retention signals in secreted integral membrane proteins impose the requirement to assemble with other cognate subunits to form functional assemblies before they can exit the ER. We report that GluK5 has two ER retention signals in its cytoplasmic C-terminus: an arginine-based signal and a di-leucine motif previously thought to be an endocytic motif. GluK5 assembles with GluK2, but surprisingly GluK2 association does little to block the ER retention signals. We find instead that the ER retention signals are blocked by two proteins involved in intracellular trafficking, SAP97 and CASK. We show that SAP97, in the presence of CASK and the receptor complex, assumes an extended conformation. In the extended conformation, SAP97 makes its SH3 and GuK domains available to bind and sterically mask the ER retention signals in the GluK5 C-terminus. SAP97 and CASK are also necessary for sorting receptor cargoes into the local dendritic secretory pathway in neurons. We show that the ER retention signals of GluK5 play a vital role in sorting the receptor complex in the local dendritic secretory pathway in neurons. These data suggest a new role for ER retention signals in trafficking integral membrane proteins in neurons.SignificanceWe present evidence that the ER retention signals in the kainate receptors containing GluK5 impose a requirement for sorting into local dendritic secretory pathways in neurons, as opposed to traversing the somatic Golgi apparatus. There are two ER retention signals in the C-terminus of GluK5. We show that both are blocked by physical association with SAP97 and CASK. The SH3 and GuK domains of SAP97, in the presence of CASK, bind directly to each ER retention signal and form a complex. These results support an entirely new function for ER retention signals in the C-termini of neuronal receptors, such as NMDA and kainate receptors, and define a mechanism for selective entry of receptors into local secretory pathways.  相似文献   

18.
Y Goda  S R Pfeffer 《FASEB journal》1989,3(13):2488-2495
Proteins bound for the cell surface, lysosomes, and secretory storage granules share a common pathway of intracellular transport. After their synthesis and translocation into the endoplasmic reticulum, these proteins traverse the secretory pathway by a series of vesicular transfers. Similarly, nutrient and signaling molecules enter cells by endocytosis, and move through the endocytic pathway by passage from one membrane-bound compartment to another. Little is known about the mechanisms by which proteins are collected into transport vesicles, or how these vesicles form, identify their targets, and subsequently fuse with their target membranes. An important advance toward our understanding these processes has come from the establishment of cell-free systems that reconstitute vesicular transfers in vitro. It is now possible to measure, in vitro, the transport of proteins from the endoplasmic reticulum to the Golgi, between Golgi cisternae, and the formation of transport vesicles en route from the trans Golgi network to the cell surface. Along the endocytic pathway, cell-free systems are available to study clathrin-coated vesicle formation, early endosome fusion, and the fusion of late endosomes with lysosomes. Moreover, the selective movement of receptors between late endosomes and the trans Golgi network has also been reconstituted. The molecular mechanisms of vesicular transport are now amenable to elucidation.  相似文献   

19.
The molecular basis for glutamate receptor trafficking to the plasma membrane is not understood. In the present study, we demonstrate that Homer 1b (H1b), a constitutively expressed splice form of the immediate early gene product Homer (now termed Homer 1a) regulates the trafficking and surface expression of group I metabotropic glutamate receptors. H1b inhibits surface expression of the metabotropic glutamate receptor mGluR5 in heterologous cells, causing mGluR5 to be retained in the endoplasmic reticulum (ER). In contrast, mGluR5 alone or mGluR5 coexpressed with Homer 1a successfully travels through the secretory pathway to the plasma membrane. In addition, point mutations that disrupt mGluR5 binding to H1b eliminate ER retention of mGluR5, demonstrating that H1b affects metabotropic receptor localization via a direct protein-protein interaction. Electron microscopic analysis reveals that the group I metabotropic receptor mGluR1alpha is significantly enriched in the ER of Purkinje cells, suggesting that a similar mechanism may exist in vivo. Because H1b is found in dendritic spines of neurons, local retention of metabotropic receptors within dendritic ER provides a potential mechanism for regulating synapse-specific expression of group I metabotropic glutamate receptors.  相似文献   

20.
mRNA localization has an essential role in localizing cytoplasmic determinants, controlling the direction of protein secretion, and allowing the local control of protein synthesis in neurons. In neuronal dendrites, the localization and translocation of mRNA is considered as one of the molecular bases of synaptic plasticity. Recent imaging and functional studies revealed that several RNA-binding proteins form a large messenger ribonucleoprotein (mRNP) complex that is involved in transport and translation of mRNA in dendrites. However, the mechanism of mRNA translocation into dendritic spines is unknown. Here, we show that an actin-based motor, myosin-Va, plays a significant role in mRNP transport in neuronal dendrites and spines. Myosin-Va was Ca2+-dependently associated with TLS, an RNA-binding protein, and its target RNA Nd1-L, an actin stabilizer. A dominant-negative mutant or RNAi of myosin-Va in neurons suppressed TLS accumulation in spines and further impaired TLS dynamics upon activation of mGluRs. The TLS translocation into spines was impeded also in neurons prepared from myosin-Va-null dilute-lethal (dl) mice, which exhibit neurological defects. Our results demonstrate that myosin-Va facilitates the transport of TLS-containing mRNP complexes in spines and may function in synaptic plasticity through Ca2+ signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号