首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The significance of AVR1-CO39, an avirulence gene of the blast fungus corresponding to Pi-CO39(t) in rice cultivars, during the evolution and differentiation of the blast fungus was evaluated by studying its function and distribution in Pyricularia spp. When the presence or absence of AVR1-CO39 was plotted on a dendrogram constructed from ribosomal DNA sequences, a perfect parallelism was observed between its distribution and the phylogeny of Pyricularia isolates. AVR1-CO39 homologs were exclusively present in one species, Pyricularia oryzae, suggesting that AVR1-CO39 appeared during the early stage of evolution of P. oryzae. Transformation assays showed that all the cloned homologs tested are functional as an avirulence gene, indicating that selection has maintained their function. Nevertheless, Oryza isolates (isolates virulent on Oryza spp.) in P. oryzae were exceptionally noncarriers of AVR1-CO39. All Oryza isolates suffered from one of the two types of known rearrangements at the Avr1-CO39 locus (i.e., G type and J type). These types were congruous to the two major lineages of Oryza isolates from Japan determined by MGR586 and MAGGY. These results indicate that AVR1-CO39 was lost during the early stage of evolution of the Oryza-specific subgroup of P. oryzae. Interestingly, its corresponding resistance gene, Pi-CO39(t), is not widely distributed in Oryza spp.  相似文献   

2.
3.
4.
The LTR-retrotransposon MAGGY is found sporadically in isolates of Pyricularia grisea (Magnaporthe grisea). Based on a dendrogram constructed by RFLP analysis of rDNA, isolates that carry MAGGY elements were classified into a single cluster that comprised four rDNA types. However, in a few members of this cluster, exemplified by isolates from common millet (Panicum miliaceum), the MAGGY element has distinct features. Southern analysis suggested that these isolates possessed a single copy of a MAGGY-related sequence whose restriction map differed from that of MAGGY itself. Sequence analysis revealed that the MAGGY-related sequence was a degenerate form of MAGGY, characterized by numerous C:G to T:A transitions, which have often been reported to result from RIP (Repeat-induced point mutation) or RIP-like processes. However, the favored target site for C:G to T:A transitions in this fungus, determined by examining a total of 501 sites, was (A/T)pCp(A/T), which differs from that for the RIP process originally reported in Neurospora (CpA), and from that reported in Aspergillus (CpG). The fact that certain members of the cluster of MAGGY carriers retain a single copy of a degenerate MAGGY element implies that the ancestor of these isolates successfully “captured” the invading MAGGY element. Received: 1 February 1999 / Accepted: 8 April 1999  相似文献   

5.
The LTR-retrotransposon MAGGY is found sporadically in isolates of Pyricularia grisea (Magnaporthe grisea). Based on a dendrogram constructed by RFLP analysis of rDNA, isolates that carry MAGGY elements were classified into a single cluster that comprised four rDNA types. However, in a few members of this cluster, exemplified by isolates from common millet (Panicum miliaceum), the MAGGY element has distinct features. Southern analysis suggested that these isolates possessed a single copy of a MAGGY-related sequence whose restriction map differed from that of MAGGY itself. Sequence analysis revealed that the MAGGY-related sequence was a degenerate form of MAGGY, characterized by numerous C:G to T:A transitions, which have often been reported to result from RIP (Repeat-induced point mutation) or RIP-like processes. However, the favored target site for C:G to T:A transitions in this fungus, determined by examining a total of 501 sites, was (A/T)pCp(A/T), which differs from that for the RIP process originally reported in Neurospora (CpA), and from that reported in Aspergillus (CpG). The fact that certain members of the cluster of MAGGY carriers retain a single copy of a degenerate MAGGY element implies that the ancestor of these isolates successfully “captured” the invading MAGGY element.  相似文献   

6.
 A high-density genetic map of the rice blast fungus Magnaporthe grisea (Guy11×2539) was constructed by adding 87 cosmid-derived RFLP markers to previously generated maps. The new map consists of 203 markers representing 132 independently segregating loci and spans approximately 900 cM with an average resolution of 4.5 cM. Mapping of 33 cosmid probes from the genetic map generated by Sweigard et al. has allowed the integration of two M. grisea maps. The integrated map showed that the linear order of markers along all seven chromosomes in both maps is in good agreement. Thirty of eighty seven markers were derived from cosmid clones that contained the retrotransposon MAGGY (M. grisea gypsy element). Mapping of single-copy DNA sequences associated with the MAGGY cosmids indicated that MAGGY elements are scattered throughout the fungal genome. In eight cases, the probes associated with MAGGY elements showed abnormal segregation patterns. This suggests that MAGGY may be involved in genomic rearrangements. Two RFLP probes linked to MAGGY elements, and another flanking other repetitive DNA elements, identified sequences that were duplicated in the Guy11 genome. Most of the MAGGY cosmids also contained other classes of repetitive DNA suggesting that repetitive DNA sequences tend to cluster in the M. grisea genome. Received: 17 February 1997 / Accepted: 21 February 1997  相似文献   

7.
The population structure of Magnaporthe oryzae from green foxtail (Setaria viridis) in Japan was examined by DNA fingerprint analyses using the transposable elements MGR586 and MAGGY as probes. Fifteen M. oryzae isolates from green foxtail were collected from 11 Japanese prefectures so that a macrogeographic population of this pathogen is represented. All the 15 isolates were sorted into distinct haplotypes by DNA fingerprint analyses with both probes. Furthermore, similarities between the DNA fingerprint profiles of the 15 isolates were exclusively low; i.e., if lineages are arbitrarily established based on greater than 70% similarities in isolates, the 15 isolates could be categorized into 13 distinct lineages by DNA fingerprinting with both probes. We also examined the MGR586 DNA fingerprint variations of this pathogen in 9 microgeographic populations each of which contained 20 to 24 isolates collected from a 1 m2 or 50 m2 area. In all the 9 populations, more than 2 haplotypes, which shared less than 70% similarities, were identified in the DNA fingerprint profiles. These results suggested that M. oryzae isolates from the green foxtail in Japan possessed a complex lineage structure, even at the microgeographic scale.  相似文献   

8.
Full-length copies of a previously described repetitive DNA sequence (CH2-8) were isolated from the genome of theMagnaporthe grisea strain 2539. One copy of the complete element was sequenced and found to resemble agypsy-like LTR retrotransposon. We named this element MAGGY (MAGnaporthe GYpsy-like element). MAGGY contains two internal ORFs putatively encoding Gag, Pol and Env-like proteins which are similar to peptides encoded by retroelements identified in other filamentous fungi. MAGGY was found to be widely distributed amongM. grisea isolates from geographically dispersed locations and different hosts. It was present in high copy number in the genomes of all nine rice-pathogenic isolates examined. By contrast,M. grisea strains isolated from other Gramineae were found to possess varying copy numbers of MAGGY and in some cases the element was completely absent. The wide distribution of MAGGY suggests that this element invaded the genome ofM. grisea prior to the evolution of rice-specific form(s). It may since have been horizontally transmitted to other sub-specific groups. One copy of MAGGY, corresponding to the element we sequenced, was located at identical locations in the genomes of geographically dispersed strains, suggesting that this copy of the element is a relatively ancient insertion.  相似文献   

9.
Full-length copies of a previously described repetitive DNA sequence (CH2-8) were isolated from the genome of theMagnaporthe grisea strain 2539. One copy of the complete element was sequenced and found to resemble agypsy-like LTR retrotransposon. We named this element MAGGY (MAGnaporthe GYpsy-like element). MAGGY contains two internal ORFs putatively encoding Gag, Pol and Env-like proteins which are similar to peptides encoded by retroelements identified in other filamentous fungi. MAGGY was found to be widely distributed amongM. grisea isolates from geographically dispersed locations and different hosts. It was present in high copy number in the genomes of all nine rice-pathogenic isolates examined. By contrast,M. grisea strains isolated from other Gramineae were found to possess varying copy numbers of MAGGY and in some cases the element was completely absent. The wide distribution of MAGGY suggests that this element invaded the genome ofM. grisea prior to the evolution of rice-specific form(s). It may since have been horizontally transmitted to other sub-specific groups. One copy of MAGGY, corresponding to the element we sequenced, was located at identical locations in the genomes of geographically dispersed strains, suggesting that this copy of the element is a relatively ancient insertion.  相似文献   

10.
11.
Transposable elements (TEs) are viewed as major contributors to the evolution of fungal genomes. Genomic resources such as BAC libraries are an underutilized resource for studying genome-wide TE distribution. Using the BAC end sequences and physical map that are available for the rice blast fungus, Magnaporthe grisea, we describe a likelihood ratio test designed to identify clustering of TEs in the genome. A significant variation in the distribution of three TEs, MAGGY, MGL, and Pot2 was observed among the fingerprint contigs of the physical map. We utilized a draft sequence of M. grisea chromosome 7 to validate our results and found a similar pattern of clustering. By examining individual BAC end sequences, we found evidence for 11 unique integrations of MAGGY or MGL into Pot2 but no evidence for the reciprocal integration of Pot2 into another TE. This suggests that: (a) the presence of Pot2 in the genome predates that of the other TEs, (b) Pot2 was less transpositionally active than other TEs, or (c) that MAGGY and MGL have integration site preference for Pot2. High transition/transversion mutation ratios as well as bias in transition site context was observed in MAGGY and MGL elements, but not in Pot2 elements. These features are consistent with the effects of a Repeat-Induced Point (RIP) mutation-like process occurring in MAGGY and MGL elements. This study illustrates the general utility of a physical map and BAC end sequences for the study of genome-wide repetitive DNA content and organization.  相似文献   

12.
13.
Three genetically independent avirulence genes, AVR1-Irat7, AVRI-MedNoi; and AVR1-Ku86, were identified in a cross involving isolates Guy11 and 2/0/3 of the rice blast fungus, Magnaporthe grisea. Using 76 random progeny, we constructed a partial genetic map with restriction fragment length polymorphism (RFLP) markers revealed by probes such as the repeated sequences MGL/MGR583 and Pot3/MGR586, cosmids from the M. grisea genetic map, and a telomere sequence oligonucleotide. Avirulence genes AVR1-MedNoi and AVR1-Ku86 were closely linked to telomere RFLPs such as marker TelG (6 cM from AVR1-MedNoi) and TelF (4.5 cM from AVR1-Ku86). Avirulence gene AVR1-Irat7 was linked to a cosmid RFLP located on chromosome 1 and mapped at 20 cM from the avirulence gene AVR1-CO39. Using bulked segregant analysis, we identified 11 random amplified polymorphic DNA (RAPD) markers closely linked (0 to 10 cM) to the avirulence genes segregating in this cross. Most of these RAPD markers corresponded to junction fragments between known or new transposons and a single-copy sequence. Such junctions or the whole sequences of single-copy RAPD markers were frequently absent in one parental isolate. Single-copy sequences from RAPD markers tightly linked to avirulence genes will be used for positional cloning.  相似文献   

14.
PCR screens for length variation in a 5' portion of 23S ribosomal RNA and in the 3' end of the 16S rRNA-23S rRNA internal transcribed spacer (ITS) region indicated that nodule bacteria from a Mexican population of Lotus oroboides were diverse on a local scale. Three 23S rRNA length variants and five ITS length variants were detected among the 22 isolates. Sequencing of nearly full-length 16S rRNA genes in three isolates indicated that they fell into the genus Mesorhizobium, but comprised two distinct groups. Two isolates were closely related to M. loti LMG 6125T, while the other isolate clustered with an assemblage of Mesorhizobium taxa that included M. amorphae, M. plurifarium and M. huakuii. However, a phylogenetic tree based on 715 bp of the nitrogenase alpha-subunit (nifD) gene was significantly discordant with the relationships inferred from rRNA sequences. Two isolates that were nearly identical for 16S rRNA had nifD genes that varied at 2% of sites, and one of these nifD sequences was identical to that of another isolate with a strongly divergent 16S rRNA gene. A plasmid screen followed by Southern hybridization indicated that only one of these strains harbored a plasmid-borne nifD gene. These results imply that gene transfer events have altered the distribution of nifD sequences among lineages within this natural population of Mesorhizobium strains.  相似文献   

15.
Bone morphogenetic proteins (BMPs) are secreted signaling molecules that control important developmental events in many different organisms. Previous studies have shown that BMPs are expressed at the earliest stages of skeletal development, and are required for formation of specific skeletal features, strongly suggesting that they are endogenous signals used to control formation of skeletal tissue. Despite the importance of BMP signaling in normal development, very little is known about the mechanisms that control the synthesis and distribution of BMP signals in vertebrates. Here, we identify a large array of cis-acting control sequences that lay out expression of the mouse Bmp5 gene in specific skeletal structures and soft tissues. Some of these elements show striking specificity for particular anatomical features within the skeleton, rather than for cartilage and bone in general. These data suggest that the vertebrate skeleton is built from the sum of many independent domains of BMP expression, each of which may be controlled by separate regulatory elements driving expression at specific anatomical locations. Surprisingly, some of the regulatory sequences in the Bmp5 gene map over 270 kb from the Bmp5 promoter, making them among the most distant elements yet identified in studies of eukaryotic gene expression.  相似文献   

16.
Summary The SMO genetic locus in strains of the fungus Magnaporthe grisea that infect weeping lovegrass, directs the formation of correct cell shapes in asexual spores, infection structures, and asci. We have identified and characterized a Smo strain of M. grisea that infects rice. The smo mutation in this strain segregates as a single gene mutation and is allelic to previously identified smo alleles. A marked reduction in pathogenicity co-segregates with the Smo phenotype, suggesting that the SMO locus plays a role in rice pathogenicity. A family of dispersed repeated DNA sequences, called MGR, have been discovered in the nuclear DNA of M. grisea rice pathogens. Genetic crosses between Smo rice pathogens and Smo+ non-rice pathogens were used to follow the segregation of the SMO locus and individual MGR sequences. Using DNA blot analysis with cloned MGR hybridization probes, we mapped the SMO locus to a chromosomal region flanked by two closely linked MGR sequences. We demonstrated that the copy number of MGR sequences could be reduced in subsequent crosses to non-rice pathogens of M. grisea, and that new MGR sequences did not occur following meiosis indicating that these sequences are stable in the genome. We conclude that restriction fragment polymorphism mapping with cloned MGR sequences as hybridization probes is an effective way to map genes in the rice blast fungus.  相似文献   

17.
    
TheMagnaporthe grisea repeat (MGR) sequence MGR586 has been widely used for population studies of the rice blast fungus, and has enabled classification of the fungal population into hundreds of genetic lineages. While studying the distribution of MGR586 sequences in strains ofM. grisea, we discovered that the plasmid probe pCB586 contains a significant amount of single-copy DNA. To define precisely the boundary of the repetitive DNA in pCB586, this plasmid and four cosmid clones containing MGR586 were sequenced. Only 740 bp of one end of the 2.6-bp insert in the pCB586 plasmid was common to all clones. DNA sequence analysis of cosmid DNA revealed that all the cosmids contained common sequences beyond the cloning site in pCB586, indicating that the repetitive DNA in the fingerprinting clone is part of a larger element. The entire repetitive element was sequenced and found to resemble an inverted repeat transposon. This putative transposon is 1.86 kb in length and has perfect terminal repeats of 42 bp, which themselves contain direct repeats of 16 bp. The internal region of the transposon possesses one open reading frame which shows similarity at the peptide level to the Pot2 transposon fromM. grisea and Fot1 fromFusarium oxysporum. Hybridization studies using the entire element as a probe revealed that some strains ofM. grisea, whose DNA hybridized to the pCB586 probe, entirely lacked MGR586 transposon sequences.  相似文献   

18.
Resistance to levamisole resolved at the single-channel level.   总被引:4,自引:0,他引:4  
Levamisole is commonly used to treat nematode parasite infections but therapy is limited by resistance. The purpose of this study was to determine the mechanism of resistance to this selective nicotinic drug. Levamisole receptor channel currents in muscle patches from levamisole-sensitive and levamisole-resistant isolates of the parasitic nematode Oesophagostomum dentatum were compared. The number of channels present in patches of sensitive and resistant isolates was similar at 10 microM levamisole, but at 30 microM and 100 microM the resistant isolate contained fewer active patches, suggesting desensitization. Mean Po and open times were reduced in resistant isolates. The distribution of conductances of channels in the sensitive isolate revealed a heterogeneous receptor population and the presence of G25, G35, G40, and G45 subtypes. A G35 subtype was missing in the resistant isolate. Resistance to levamisole was produced by changes in the averaged properties of the levamisole receptor population, with some receptors from sensitive and resistant isolates having indistinguishable characteristics.  相似文献   

19.
We measured the stoichiometric trait distribution of cultured freshwater bacterial populations under different resource conditions and compared them to natural microbial communities sampled from three lakes. Trait distributions showed population differences among growth phases and community differences among lakes that would have been masked by only reporting the mean biomass value. The stoichiometric trait distribution of the environmental isolates changed with P availability, growth phase and genotype, with P availability having the strongest effect. The distribution of biomass ratios within each isolate growth experiment were the most constrained during the stages of rapid growth and commonly had unimodal distributions. In contrast to the population distributions, the distribution of N:P and C:P for a similar number of cells from each of the lake communities had narrower stoichiometric distributions and more commonly exhibited multiple modes. © 2019 Society for Applied Microbiology and John Wiley & Sons Ltd  相似文献   

20.
Nosema ceranae is currently one of the major pathogens of honeybees, related to the worldwide colony losses phenomenon. The genotyping of strains based on ribosomal DNA (rDNA) can be misleading if the repeated units are not identical. The analysis of cloned rDNA fragments containing the intergenic spacer (IGS) and part of the rDNA small-subunit (SSU) gene, from N. ceranae isolates from different European and Central Asia populations, revealed a high diversity of sequences. The variability involved single-nucleotide polymorphisms and insertion/deletions, resulting in 79 different haplotypes. Two sequences from the same isolate could be as different as any pair of sequences from different samples; in contrast, identical haplotypes were also found in very different geographical origins. Consequently, haplotypes cannot be organized in a consistent phylogenetic tree, clearly indicating that rDNA is not a reliable marker for the differentiation of N. ceranae strains. The results indicate that recombination between different sequences may produce new variants, which is quite surprising in microsporidia, usually considered to have an asexual mode of reproduction. The diversity of sequences and their geographical distribution indicate that haplotypes of different lineages may occasionally be present in a same cell and undergo homologue recombination, therefore suggesting a sexual haplo-diploid cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号