首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hallmark of Alzheimer's disease is the deposition of plaques of amyloid beta peptide (Abeta) in the brain. Abeta is thought to be formed from the amyloid precursor protein (APP) in cholesterol-enriched membrane rafts, and cellular cholesterol depletion decreases Abeta formation. The liver X receptors (LXR) play a key role in regulating genes that control cellular cholesterol efflux and membrane composition and are widely expressed in cells of the central nervous system. We show that treatment of APP-expressing cells with LXR activators reduces the formation of Abeta. LXR activation resulted in increased levels of the ATP-binding cassette transporter A1 (ABCA1) and stearoyl CoA desaturase, and expression of these genes individually decreased formation of Abeta. Expression of ABCA1 led to both decreased beta-cleavage product of APPSw (i.e. C99 peptide) and reduced gamma-secretase-cleavage of C99 peptide. Remarkably, these effects of ABCA1 on APP processing were independent of cellular lipid efflux. LXR and ABCA1-induced changes in membrane lipid organization had favorable effects on processing of APP, suggesting a new approach to the treatment of Alzheimer's disease.  相似文献   

2.
The expression, function, and regulation of the cholesterol efflux molecule, ABCA1, has been extensively examined in peripheral tissues but only poorly studied in the brain. Brain cholesterol metabolism is of interest because several lines of evidence suggest that elevated cholesterol increases the risk of Alzheimer's disease. We found a largely neuronal expression of ABCA1 in normal rat brain by in situ hybridization. ABCA1 message was dramatically up-regulated in neurons and glia in areas of damage by hippocampal AMPA lesion after 3-7 days. Immunoblot analysis demonstrated ABCA1 protein in cultured neuronal and glial cells, and expression was induced by ligands of the nuclear hormone receptors of the retinoid X receptor and liver X receptor family. ABCA1 was induced by treatment with retinoic acid and several oxysterols, including 22(R)-hydroxycholesterol and 24-hydroxycholesterol. Expression of an ABCA1-green fluorescent protein construct in neuroblastoma cells demonstrated fluorescence in perinuclear compartments and on the plasma membrane. Because the Abeta peptide is important in Alzheimer's disease pathogenesis, we examined whether ABCA1 induction altered Abeta levels. Treatment of neuroblastoma cells with retinoic acid and 22(R)-hydroxycholesterol caused significant increases in secreted Abeta40 (29%) and Abeta42 (65%). Treatment with a nonsteroidal liver X receptor ligand, TO-901317, similarly increased levels of secreted Abeta40 (25%) and Abeta42 (126%). The increase in secreted Abeta levels was reduced by RNAi blocking of ABCA1 expression. These data suggest that the cholesterol efflux molecule ABCA1 may also be involved in the secretion of the membrane-associated molecule, Abeta.  相似文献   

3.
Maintenance of an adequate supply of cholesterol is important for neuronal function, whereas excess cholesterol promotes amyloid precursor protein (APP) cleavage generating toxic amyloid-beta (Abeta) peptides. To gain insights into the pathways that regulate neuronal cholesterol level, we investigated the potential for reconstituted apolipoprotein E (apoE) discs, resembling nascent lipoprotein complexes in the central nervous system, to stimulate neuronal [3H]cholesterol efflux. ApoE discs potently accelerated cholesterol efflux from primary human neurons and cell lines. The process was saturable (17.5 microg of apoE/ml) and was not influenced by APOE genotype. High performance liquid chromatography analysis of cholesterol and cholesterol metabolites effluxed from neurons indicated that <25% of the released cholesterol was modified to polar products (e.g. 24-hydroxycholesterol) that diffuse from neuronal membranes. Thus, most cholesterol (approximately 75%) appeared to be effluxed from neurons in a native state via a transporter pathway. ATP-binding cassette transporters ABCA1, ABCA2, and ABCG1 were detected in neurons and neuroblastoma cell lines and expression of these cDNAs revealed that ABCA1 and ABCG1 stimulated cholesterol efflux to apoE discs. In addition, ABCA1 and ABCG1 expression in Chinese hamster ovary cells that stably express human APP significantly reduced Abeta generation, whereas ABCA2 did not modulate either cholesterol efflux or Abeta generation. These data indicate that ABCA1 and ABCG1 play a significant role in the regulation of neuronal cholesterol efflux to apoE discs and in suppression of APP processing to generate Abeta peptides.  相似文献   

4.
ATP-binding cassette transporter 1 (ABCA1), the defective transporter in Tangier disease, binds and promotes cellular cholesterol and phospholipid efflux to apolipoprotein I (apoA-I). Based on a high degree of sequence homology between ABCA1 and ABCA7, a transporter of unknown function, we investigated the possibility that ABCA7 might be involved in apolipoprotein binding and lipid efflux. Similarly to cells expressing ABCA1, HEK293 cells overexpressing ABCA7 showed specific binding and cross-linking of lipid-poor apoA-I. ABCA7 expression increased cellular phosphatidylcholine and sphingomyelin efflux to apoA-I in a manner similar to ABCA1 but had no effect on cholesterol efflux. Western analysis showed a high protein level of ABCA7 in mouse spleen, lung, adrenal, and brain but low expression in liver. In contrast to ABCA1, ABCA7 showed moderate basal mRNA and protein levels in macrophages and lymphocytes but no induction by liver X receptor activation. These studies show that ABCA7 has the ability to bind apolipoproteins and promote efflux of cellular phospholipids without cholesterol, and they suggest a possible role of ABCA7 in cellular phospholipid metabolism in peripheral tissues.  相似文献   

5.
Cholesterol is required for chondrocyte differentiation and bone formation. Apolipoprotein A1 (apoA-1) plays a major role in lipoprotein clearance and cholesterol redistribution. We report here that apoA-1 is expressed during chondrocyte differentiation in vitro and in vivo. In differentiating chondrocytes, the expression of the liver X receptor (LXR) is modulated and its expression correlates to the expression of apoA-1. The expression of other LXR target genes related to cholesterol homeostasis such as ABCA1 cholesterol transporter and sterol regulatory element-binding protein 1 (SREBP1) is similarly regulated. Small molecule ligands activating either LXR or retinoid X receptor (RXR) lead to a dramatic increase in apoA-1 mRNA and protein expression in cultured chondrocytes. These ligands strongly induce ABCA1 cholesterol transporter expression and effectively mediate cholesterol efflux from hypertrophic chondrocytes. In addition, we report that, in the same cells, the ligands down modulate Serum Amyloid A expression induced by bacterial lipopolysaccharide. Our studies provide evidence that LXR/RXR mediate a fine regulation of cholesterol homeostasis in differentiating chondrocytes.  相似文献   

6.
ATP-binding cassette transporter-1 (ABCA1) gene is mutated in patients with familial high-density lipoprotein deficiency (FHD). In order to know the molecular basis for FHD, we characterized three different ABCA1 mutations associated with FHD (G1158A/A255T, C5946T/R1851X, and A5226G/N1611D) with respect to their expression in the passaged fibroblasts from the patients and in the cells transfected with the mutated cDNAs. Fibroblasts from the all patients showed markedly decreased cholesterol efflux to apolipoprotein (apo)-Al. In the fibroblasts homozygous for G1158A/A255T, the immunoreactive mass of ABCA1 could not be detected, even when stimulated by 9-cis-retinoic acid and 22-R-hydroxycholesterol. In the fibroblasts homozygous for C5946T/R1851X, ABCA1 mRNA was comparable. Because the mutant ABCA1 protein (R1851X) was predicted to lack the epitope for the antibody used, we transfected FLAG-tagged truncated mutant (R1851X/ABCA1-FLAG) cDNA into Cos-7 cells, showing that the mutant protein expression was markedly reduced. The expression of N1611D ABCA1 protein was comparable in both fibroblasts and overexpressing cells, although cholesterol efflux from the cells was markedly reduced. These data indicated that, in the three patients investigated, the abnormalities and dysfunction of ABCA1 occurred at the different levels, providing important information about the expression, regulation, and function of ABCA1.  相似文献   

7.
ATP-binding cassette transporter A7 (ABCA7) is expressed in the brain and, like its closest homolog ABCA1, belongs to the ABCA subfamily of full-length ABC transporters. ABCA1 promotes cellular cholesterol efflux to lipid-free apolipoprotein acceptors and also inhibits the production of neurotoxic β-amyloid (Aβ) peptides in vitro . The potential functions of ABCA7 in the brain are unknown. This study investigated the ability of ABCA7 to regulate cholesterol efflux to extracellular apolipoprotein acceptors and to modulate Aβ production. The transient expression of ABCA7 in human embryonic kidney cells significantly stimulated cholesterol efflux (fourfold) to apolipoprotein E (apoE) discoidal lipid complexes but not to lipid-free apoE or apoA-I. ABCA7 also significantly inhibited Aβ secretion from Chinese hamster ovary cells stably expressing human amyloid precursor protein (APP) or APP containing the Swedish K670M671→N670L671 mutations when compared with mock-transfected cells. Studies with fluorogenic substrates indicated that ABCA7 had no impact on α-, β-, or γ-secretase activities. Live cell imaging of Chinese hamster ovary cells expressing APP-GFP indicated an apparent retention of APP in a perinuclear location in ABCA7 co-transfected cells. These studies indicate that ABCA7 has the capacity to stimulate cellular cholesterol efflux to apoE discs and regulate APP processing resulting in an inhibition of Aβ production.  相似文献   

8.
Differential expression of cholesterol hydroxylases in Alzheimer's disease   总被引:7,自引:0,他引:7  
Cholesterol is eliminated from neurons by oxidization, which generates oxysterols. Cholesterol oxidation is mediated by the enzymes cholesterol 24-hydroxylase (CYP46A1) and cholesterol 27-hydroxylase (CYP27A1). Immunocytochemical studies show that CYP46A1 and CYP27A1 are expressed in neurons and some astrocytes in the normal brain, and CYP27A1 is present in oligodendrocytes. In Alzheimer's disease (AD), CYP46A1 shows prominent expression in astrocytes and around amyloid plaques, whereas CYP27A1 expression decreases in neurons and is not apparent around amyloid plaques but increases in oligodendrocytes. Although previous studies have examined the effects of synthetic oxysterols on the processing of amyloid precursor protein (APP), the actions of the naturally occurring oxysterols have yet to be examined. To understand the role of cholesterol oxidation in AD, we compared the effects of 24(S)- and 27-hydroxycholesterol on the processing of APP and analyzed the cell-specific expression patterns of the two cholesterol hydroxylases in the human brain. Both oxysterols inhibited production of Abeta in neurons, but 24(S)-hydroxycholesterol was approximately 1000-fold more potent than 27-hydroxycholesterol. The IC(50) of 24(S)-hydroxycholesterol for inhibiting Abeta secretion was approximately 1 nm. Both oxysterols induced ABCA1 expression with IC(50) values similar to that for inhibition of A beta secretion, suggesting the involvement of liver X receptor. Oxysterols also inhibited protein kinase C activity and APP secretion following stimulation of protein kinase C. The selective expression of CYP46A1 around neuritic plaques and the potent inhibition of APP processing in neurons by 24(S)-hydroxycholesterol suggests that CYP46A1 affects the pathophysiology of AD and provides insight into how polymorphisms in the CYP46A1 gene might influence the pathophysiology of this prevalent disease.  相似文献   

9.
Regulation of gene expression of ATP-binding cassette transporter (ABC)A1 and ABCG1 by liver X receptor/retinoid X receptor (LXR/RXR) ligands was investigated in the human intestinal cell line CaCo-2. Neither the RXR ligand, 9-cis retinoic acid, nor the natural LXR ligand 22-hydroxycholesterol alone altered ABCA1 mRNA levels. When added together, ABCA1 and ABCG1 mRNA levels were increased 3- and 7-fold, respectively. T0901317, a synthetic non-sterol LXR agonist, increased ABCA1 and ABCG1 gene expression 11- and 6-fold, respectively. ABCA1 mass was increased by LXR/RXR activation. T0901317 or 9-cis retinoic acid and 22-hydroxycholesterol increased cholesterol efflux from basolateral but not apical membranes. Cholesterol efflux was increased by the LXR/RXR ligands to apolipoprotein (apo)A-I or HDL but not to taurocholate/phosphatidylcholine micelles. Actinomycin D prevented the increase in ABCA1 and ABCG1 mRNA levels and the increase in cholesterol efflux induced by the ligands. Glyburide, an inhibitor of ABCA1 activity, attenuated the increase in basolateral cholesterol efflux induced by T0901317. LXR/RXR activation decreased the esterification and secretion of cholesterol esters derived from plasma membranes. Thus, in CaCo-2 cells, LXR/RXR activation increases gene expression of ABCA1 and ABCG1 and the basolateral efflux of cholesterol, suggesting that ABCA1 plays an important role in intestinal HDL production and cholesterol absorption.  相似文献   

10.
11.
Low density lipoprotein receptor (LDLR) mutations cause familial hypercholesterolemia and early atherosclerosis. ABCA1 facilitates free cholesterol efflux from peripheral tissues. We investigated the effects of LDLR deletion (LDLR(-/-)) on ABCA1 expression. LDLR(-/-) macrophages had reduced basal levels of ABCA1, ABCG1, and cholesterol efflux. A high fat diet increased cholesterol in LDLR(-/-) macrophages but not wild type cells. A liver X receptor (LXR) agonist induced expression of ABCA1, ABCG1, and cholesterol efflux in both LDLR(-/-) and wild type macrophages, whereas expression of LXRalpha or LXRbeta was similar. Interestingly, oxidized LDL induced more ABCA1 in wild type macrophages than LDLR(-/-) cells. LDL induced ABCA1 expression in wild type cells but inhibited it in LDLR(-/-) macrophages in a concentration-dependent manner. However, lipoproteins regulated ABCG1 expression similarly in LDLR(-/-) and wild type macrophages. Cholesterol or oxysterols induced ABCA1 expression in wild type macrophages but had little or inhibitory effects on ABCA1 expression in LDLR(-/-) macrophages. Active sterol regulatory element-binding protein 1a (SREBP1a) inhibited ABCA1 promoter activity in an LXRE-dependent manner and decreased both macrophage ABCA1 expression and cholesterol efflux. Expression of ABCA1 in animal tissues was inversely correlated to active SREBP1. Oxysterols inactivated SREBP1 in wild type macrophages but not in LDLR(-/-) cells. Oxysterol synergized with nonsteroid LXR ligand induced ABCA1 expression in wild type macrophages but blocked induction in LDLR(-/-) cells. Taken together, our studies suggest that LDLR is critical in the regulation of cholesterol efflux and ABCA1 expression in macrophage. Lack of the LDLR impairs sterol-induced macrophage ABCA1 expression by a sterol regulatory element-binding protein 1-dependent mechanism that can result in reduced cholesterol efflux and lipid accumulation in macrophages under hypercholesterolemic conditions.  相似文献   

12.
Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood–brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS.  相似文献   

13.
14.
Gallbladder epithelial cells (GBEC) are exposed to high and fluctuating concentrations of biliary cholesterol on their apical (AP) surface. GBEC absorb and efflux cholesterol, but the mechanisms of cholesterol uptake, intracellular trafficking, and efflux in these cells are not known. We previously reported that ATP binding cassette (ABC)A1 mediates basolateral (BL) cholesterol efflux in cultured polarized GBEC. In addition, the nuclear hormone receptors liver X receptor (LXR)alpha and retinoid X receptor (RXR) mediate both AP and BL cholesterol efflux. An interesting finding from our previous study was that apolipoprotein (apo)A-I applied to the AP surfaces of cells elicited BL ABCA1-mediated cholesterol efflux. Because ABCA1-mediated cholesterol efflux requires the presence of a cholesterol acceptor, we hypothesized that GBEC synthesize and secrete endogenous apo into the BL compartment. Here, we demonstrate that cholesterol loading of cells with model bile and AP apoA-I treatment is associated with an increase in the synthesis of apoE mRNA and protein. Furthermore, apoE is secreted into the BL compartment. LXRalpha/RXR ligands stimulate the synthesis of endogenous apoA-I mRNA and protein, as well as apoE mRNA. BL secretion of apoA-I is elicited by LXRalpha/RXR ligands. Therefore, GBEC synthesize apoA-I and -E and efflux cholesterol using ABCA1- and non-ABCA1- mediated pathways. These processes may alter gallbladder biliary cholesterol concentrations and thereby influence gallstone formation.  相似文献   

15.
High cholesterol turnover catalyzed by cholesterol 24‐hydroxylase is essential for neural functions, especially learning. Because 24(S)‐hydroxycholesterol (24‐OHC), produced by 24‐hydroxylase, induces apoptosis of neuronal cells, it is vital to eliminate it rapidly from cells. Here, using differentiated SH‐SY5Y neuron‐like cells as a model, we examined whether 24‐OHC is actively eliminated via transporters induced by its accumulation. The expression of ABCA1 and ABCG1 was induced by 24‐OHC, as well as TO901317 and retinoic acid, which are ligands of the nuclear receptors liver X receptor/retinoid X receptor (LXR/RXR). When the expression of ABCA1 and ABCG1 was induced, 24‐OHC efflux was stimulated in the presence of high‐density lipoprotein (HDL), whereas apolipoprotein A‐I was not an efficient acceptor. The efflux was suppressed by the addition of siRNA against ABCA1, but not by ABCG1 siRNA. To confirm the role of each transporter, we analyzed human embryonic kidney 293 cells stably expressing human ABCA1 or ABCG1; we clearly observed 24‐OHC efflux in the presence of HDL, whereas efflux in the presence of apolipoprotein A‐I was marginal. Furthermore, the treatment of primary cerebral neurons with LXR/RXR ligands suppressed the toxicity of 24‐OHC. These results suggest that ABCA1 actively eliminates 24‐OHC in the presence of HDL as a lipid acceptor and protects neuronal cells.  相似文献   

16.
ABCA1 (ATP-binding cassette transporter A1) is a major regulator of cholesterol efflux and high density lipoprotein (HDL) metabolism. Mutations in human ABCA1 cause severe HDL deficiencies characterized by the virtual absence of apoA-I and HDL and prevalent atherosclerosis. Recently, it has been reported that the lack of ABCA1 causes a significant reduction of apoE protein level in the brain of ABCA1 knock-out (ABCA1-/-) mice. ApoE isoforms strongly affect Alzheimer disease (AD) pathology and risk. To determine further the effect of ABCA1 on amyloid deposition, we used APP23 transgenic mice in which the human familial Swedish AD mutant is expressed only in neurons. We demonstrated that the targeted disruption of ABCA1 increases amyloid deposition in APP23 mice, and the effect is manifested by an increased level of Abeta immunoreactivity, as well as thioflavine S-positive plaques in brain parenchyma. We found that the lack of ABCA1 also considerably increased the level of cerebral amyloid angiopathy and exacerbated cerebral amyloid angiopathy-related microhemorrhage in APP23/ABCA1-/- mice. Remarkably, the elevation in parenchymal and vascular amyloid in APP23/ABCA1-/- mice was accompanied by a dramatic decrease in the level of soluble brain apoE, although insoluble apoE was not changed. The elevation of insoluble Abeta fraction in old APP23/ABCA1-/- mice, accompanied by a lack of changes in APP processing and soluble beta-amyloid in young APP23/ABCA1-/- animals, supports the conclusion that the ABCA1 deficiency increases amyloid deposition. These results suggest that ABCA1 plays a role in the pathogenesis of parenchymal and cerebrovascular amyloid pathology and thus may be considered a therapeutic target in AD.  相似文献   

17.
Apolipoprotein E (apoE) is an important protein involved in lipoprotein clearance and cholesterol redistribution. ApoE is abundantly expressed in astrocytes in the brain and is closely linked to the pathogenesis of Alzheimer's disease (AD). We report here that small molecule ligands that activate either liver X receptors (LXR) or retinoid X receptor (RXR) lead to a dramatic increase in apoE mRNA and protein expression as well as secretion of apoE in a human astrocytoma cell line (CCF-STTG1 cells). Examination of primary mouse astrocytes also revealed significant induction of apoE mRNA, and protein expression and secretion following incubation with LXR/RXR agonists. Moreover, treatment of mice with a specific synthetic LXR agonist T0901317 resulted in up-regulation of apoE mRNA and protein in both hippocampus and cerebral cortex, indicating that apoE expression in brain can be up-regulated by LXR agonists in vivo. Along with a dramatic induction of ABCA1 cholesterol transporter expression, these ligands effectively mediate cholesterol efflux in both CCF-STTG1 cells and mouse astrocytes in the presence or absence of apolipoprotein AI (apoAI). Our studies provide strong evidence that small molecule LXR/RXR agonists can effectively mediate apoE synthesis and secretion as well as cholesterol homeostasis in astrocytes. LXR/RXR agonists may have significant impact on the pathogenesis of multiple neurological diseases, including AD.  相似文献   

18.
ATP-binding cassette transporter A1 (ABCA1), a molecule mediating free cholesterol efflux from peripheral tissues to apoAI and high density lipoprotein (HDL), inhibits the formation of lipid-laden macrophage/foam cells and the development of atherosclerosis. ERK1/2 are important signaling molecules regulating cellular growth and differentiation. The ERK1/2 signaling pathway is implicated in cardiac development and hypertrophy. However, the role of ERK1/2 in the development of atherosclerosis, particularly in macrophage cholesterol homeostasis, is unknown. In this study, we investigated the effects of ERK1/2 activity on macrophage ABCA1 expression and cholesterol efflux. Compared with a minor effect by inhibition of other kinases, inhibition of ERK1/2 significantly increased macrophage cholesterol efflux to apoAI and HDL. In contrast, activation of ERK1/2 reduced macrophage cholesterol efflux and ABCA1 expression. The increased cholesterol efflux by ERK1/2 inhibitors was associated with the increased ABCA1 levels and the binding of apoAI to cells. The increased ABCA1 by ERK1/2 inhibitors was due to increased ABCA1 mRNA and protein stability. The induction of ABCA1 expression and cholesterol efflux by ERK1/2 inhibitors was concentration-dependent. The mechanism study indicated that activation of liver X receptor (LXR) had little effect on ERK1/2 expression and activation. ERK1/2 inhibitors had no effect on macrophage LXRα/β expression, whereas they did not influence the activation or the inhibition of the ABCA1 promoter by LXR or sterol regulatory element-binding protein (SREBP). However, inhibition of ERK1/2 and activation of LXR synergistically induced macrophage cholesterol efflux and ABCA1 expression. Our data suggest that ERK1/2 activity can play an important role in macrophage cholesterol trafficking.  相似文献   

19.
ATP-binding cassette transporter A1 (ABCA1) promotes transfer of cholesterol and phospholipid from cells to lipid-free serum apolipoproteins. ABCA1 mRNA and protein expression in primary cultures of rodent type II cells was sensitive to upregulation with 5 microM 9-cis-retinoic acid (9cRA) and 6.2 microM 22-hydroxycholesterol (22-OH). The increase in ABCA1 protein levels was time dependent and was maximal after 16 h of exposure to 9cRA + 22-OH. Inducible ABCA1 was also found in transformed cell lines of lung origin: WI38/VA13, A549, and NIH-H441 cells. Stimulation of ABCA1 in rat type II cells by 9cRA + 22-OH resulted in a four- or fivefold enhancement of efflux of radioactive phospholipid or cholesterol, respectively, from the pneumocytes to apolipoprotein AI (apo AI), whereas cAMP (0.3 mM) had no effect. ABCA1-mediated lipid efflux to apo AI was independent of the surfactant secretion pathway, inasmuch as upregulation of ABCA1 resulted in a reduction of secretagogue-stimulated surfactant phospholipid release. These studies demonstrate the presence of functional ABCA1 in type II cells from the lung.  相似文献   

20.
Cui W  Sun Y  Wang Z  Xu C  Xu L  Wang F  Chen Z  Peng Y  Li R 《Neurochemical research》2011,36(10):1910-1921
The synthetic Liver X receptor (LXR) activator T0901317 has been reported to exert neuroprotective effect in Alzheimer’s disease, but the relationship between LXR activation and beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) remains uncertain. This study investigated the effect of T0901317 on membrane cholesterol levels, BACE1 expression and activity. We found that T0901317 decreased membrane cholesterol levels, reduced BACE1 expression and activity as well as β-secretase cleaved C-terminal fragment (β-CTF) levels in vivo and in vitro. Meanwhile, the expression of ATP-binding membrane cassette transport protein A1 (ABCA1) enhanced. Additionally, inhibition of ABCA1 abrogated the effects of T0901317 on membrane cholesterol levels and β-secretase activity. Moreover, addition of LXR antagonist reversed the effect of T0901317 on ABCA1 mRNA expression, membrane cholesterol levels and β-secretase activity. Our results suggest that activation of LXR may decrease BACE1 expression and activity through a pathway associated with ABCA1-mediated reduction in membrane cholesterol levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号