首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The E7 oncoprotein of high-risk human papillomaviruses (HPVs) binds to and alters the action of cell cycle regulatory proteins such as members of the retinoblastoma (Rb) family of proteins as well as the histone deacetylases (HDACs). To examine the significance of the binding of E7 to HDACs in the viral life cycle, a mutational analysis of the E7 open reading frame was performed in the context of the complete HPV type 31 (HPV-31) genome. Human foreskin keratinocytes were transfected with wild-type HPV-31 genomes or HPV-31 genomes containing mutations in HDAC binding sequences as well as in the C-terminal zinc finger-like domain, and stable cell lines were isolated. All mutant genomes, except those with E7 mutations in the HDAC binding site, were found to be stably maintained extrachromosomally at an early passage following transfection. Upon further passage in culture, genomes containing mutations to the Rb binding domain as well as the zinc finger-like region quickly lost the ability to maintain episomal genomes. Genomes containing mutations abolishing E7 binding to HDACs or to Rb or mutations to the zinc finger-like motifs failed to extend the life span of transfected keratinocytes and caused cells to arrest at the same time as the untransfected keratinocytes. When induced to differentiate by suspension in methylcellulose, cells maintaining genomes with mutations in the Rb binding domain or the zinc finger-like motifs were impaired in their abilities to activate late viral functions. This study demonstrates that the interaction of E7 with HDACs and the integrity of the zinc finger-like motifs are essential for extending the life span of keratinocytes and for stable maintenance of viral genomes.  相似文献   

2.
Park RB  Androphy EJ 《Journal of virology》2002,76(22):11359-11364
Papillomaviruses possess small DNA genomes that encode five early (E) proteins. Transient DNA replication requires activities of the E1 and E2 proteins and a DNA segment containing their binding sites. The E6 and E7 proteins of cancer-associated human papillomavirus (HPV) transform cells in culture. Recent reports have shown that E6 and E7 are necessary for episomal maintenance of HPV in primary keratinocytes. The functions of E6 necessary for viral replication have not been determined, and to address this question we used a recently developed transfection system based on HPV31. To utilize a series of HPV16 E6 mutations, HPV31 E6 was replaced by its HPV16 counterpart. This chimeric genome was competent for both transient and stable replication in keratinocytes. Four HPV16 E6 mutations that do not stimulate p53 degradation were unable to support stable viral replication, suggesting this activity may be necessary for episomal maintenance. E7 has also been shown to be essential for episomal maintenance of the HPV31 genome. A point mutation in the Rb binding motif of HPV E7 has been reported to render HPV31 unable to stably replicate. Interestingly, HPV31 genomes harboring two of the three p53 degradation-defective E6 mutations combined with this E7 mutation were maintained as replicating episomes. These findings imply that the balance between E6 and E7 functions in infected cells is critical for episomal maintenance of high-risk HPV genomes. This model will be useful to dissect the activities of E6 and E7 necessary for viral DNA replication.  相似文献   

3.
4.
Lee C  Laimins LA 《Journal of virology》2004,78(22):12366-12377
A number of PDZ domain-containing proteins have been identified as binding partners for the oncoprotein E6 of the high-risk type human papillomaviruses (HPVs). These include hDlg, hScrib, MAGI-1, MAGI-2, MAGI-3, and MUPP1. The PDZ domain-binding motif (-X-T-X-V) at the carboxy terminus of E6 is essential for targeting PDZ proteins for proteasomal degradation. The presence of this motif only in the high-risk HPVs suggests its possible role in HPV-induced oncogenesis. To investigate the role of the PDZ domain-binding motif of E6 in the HPV life cycle, two mutant HPV31 genomes were constructed: E6ValDelta, with a deletion of the last amino acid residue of E6 (valine), and E6ETQVDelta, with a deletion of the entire PDZ domain-binding motif of E6 (ETQV). Three human foreskin keratinocyte (HFK) cell lines were established which maintained transfected wild-type HPV31 or either of two mutant genomes. Cells containing either of two mutant genomes were significantly retarded in their growth rates and reduced in their viral copy numbers compared to those transfected with wild-type genomes. Western analysis did not reveal any significant changes in the levels of PDZ proteins following stable transfection of any HPV31 genomes into HFKs. Although the E6ETQVDelta-transfected HFKs exhibited a pattern of morphological differentiation that appeared different from the HPV31 wild-type-transfected HFKs in organotypic raft cultures, immunohistochemical analysis failed to identify substantial changes in the differentiation-dependent membrane localization of hDlg proteins. These results suggest that binding of E6 to PDZ proteins modulates the early viral functions such as proliferation and maintenance of the viral copy number in undifferentiated cells.  相似文献   

5.
6.
7.
The productive program of human papillomaviruses (HPVs) in epithelia is tightly linked to squamous differentiation. The E7 proteins of high-risk HPV genotypes efficiently inactivate the pRB family of proteins that control the cell cycle, triggering S phase in suprabasal keratinocytes. This ability has until now not been demonstrated for the low-risk HPV-6 or HPV-11 E7 proteins. An inducible system in which HPV-16 E7 is fused to the ligand binding domain of the human estrogen receptor (ER) was described by Smith-McCune et al. (K. Smith-McCune, D. Kalman, C. Robbins, S. Shivakumar, L. Yuschenkoff, and J. M. Bishop, Proc. Natl. Acad. Sci. USA 96:6999-7004, 1999). In the absence of hormone, E7ER is cytoplasmic, and upon addition of 17beta-estradiol, it translocates to the nucleus. Using organotypic epithelial raft cultures developed from primary human keratinocytes, we show that 16E7ER promotes either S-phase reentry or p21cip1 accumulation in differentiated keratinocytes in a stochastic manner as early as 6 h postinduction with 17beta-estradiol. A vector expressing the ER moiety alone had no effect. These observations prove unequivocally that the E7 protein drives S-phase reentry in postmitotic, differentiated keratinocytes rather than preventing S-phase exit while the cells ascend through the epithelium. HPV-11 E7ER and, much less efficiently, HPV-6 E7ER also promoted S-phase reentry by differentiated cells upon exposure to 17beta-estradiol. S-phase induction required the consensus pRB binding motif. We propose that the elevated nuclear levels of the low-risk HPV E7 protein afforded by the inducible system account for the positive results. These observations are entirely consistent with the fact that low-risk HPV genotypes replicate in the differentiated strata in patient specimens, as do the high-risk HPVs.  相似文献   

8.
Due to the limited coding capacity of their small genomes, human papillomaviruses (HPV) rely extensively on host factors for the completion of their life cycles. Accordingly, most HPV proteins, including the replicative helicase E1, engage in multiple protein interactions. The fact that conserved regions of E1 have not yet been ascribed a function prompted us to use tandem affinity protein purification (TAP) coupled to mass spectrometry to identify novel targets of this helicase. This method led to the discovery of a novel interaction between the N-terminal 40 amino acids of HPV type 11 (HPV11) E1 and the cellular WD repeat protein p80 (WDR48). We found that interaction with p80 is conserved among E1 proteins from anogenital HPV but not among cutaneous or animal types. Colocalization studies showed that E1 can redistribute p80 from the cytoplasm to the nucleus in a manner that is dependent on the E1 nuclear localization signal. Three amino acid substitutions in E1 proteins from HPV11 and -31 were identified that abrogate binding to p80 and its relocalization to the nucleus. In HPV31 E1, these substitutions reduced but did not completely abolish transient viral DNA replication. HPV31 genomes encoding two of the mutant E1 proteins were not maintained as episomes in immortalized primary keratinocytes, whereas one encoding the third mutant protein was maintained at a very low copy number. These findings suggest that the interaction of E1 with p80 is required for efficient maintenance of the viral episome in undifferentiated keratinocytes.  相似文献   

9.
10.
M Conrad  V J Bubb    R Schlegel 《Journal of virology》1993,67(10):6170-6178
The human papillomavirus (HPV) E5 proteins are predicted from DNA sequence analysis to be small hydrophobic molecules, and the HPV type 6 (HPV-6) and HPV-11 E5 proteins share several structural similarities with the bovine papillomavirus type 1 (BPV-1) E5 protein. Also similar to the BPV-1 E5 protein, the HPV-6 and HPV-16 E5 proteins exhibit transforming activity when assayed on NIH 3T3 and C127 cells. In this study, we expressed epitope-tagged E5 proteins from both the "low-risk" HPV-6 and the "high-risk" HPV-16 in order to permit their immunologic identification and biochemical characterization. While the HPV-6 and HPV-16 E5 proteins fail to form disulfide-linked dimers and oligomers, they did resemble the BPV-1 E5 protein in their intracellular localization to the Golgi apparatus, endoplasmic reticulum, and nuclear membranes. In addition, the HPV E5 proteins also bound to the 16-kDa pore-forming protein component of the vacuolar ATPase, a known characteristic of the BPV-1 E5 protein. These studies reveal a common intramembrane localization and potential cellular protein target for both the BPV and HPV E5 proteins.  相似文献   

11.
It is recognized now that many functional proteins or their long segments are devoid of stable secondary and/or tertiary structure and exist instead as very dynamic ensembles of conformations. They are known by different names including natively unfolded, intrinsically disordered, intrinsically unstructured, rheomorphic, pliable, and different combinations thereof. Many important functions and activities have been associated with these intrinsically disordered proteins (IDPs), including molecular recognition, signaling, and regulation. It is also believed that disorder of these proteins allows function to be readily modified through phosphorylation, acetylation, ubiquitination, hydroxylation, and proteolysis. Bioinformatics analysis revealed that IDPs comprise a large fraction of different proteomes. Furthermore, it is established that the intrinsic disorder is relatively abundant among cancer-related and other disease-related proteins and IDPs play a number of key roles in oncogenesis. There are more than 100 different types of human papillomaviruses (HPVs), which are the causative agents of benign papillomas/warts, and cofactors in the development of carcinomas of the genital tract, head and neck, and epidermis. With respect to their association with cancer, HPVs are grouped into two classes, known as low (e.g., HPV-6 and HPV-11) and high-risk (e.g., HPV-16 and HPV-18) types. The entire proteome of HPV includes six nonstructural proteins [E1, E2, E4, E5, E6, and E7 (the latter two are known to function as oncoproteins in the high-risk HPVs)] and two structural proteins (L1 and L2). To understand whether intrinsic disorder plays a role in the oncogenic potential of different HPV types, we have performed a detailed bioinformatics analysis of proteomes of high-risk and low-risk HPVs with the major focus on E6 and E7 oncoproteins. The results of this analysis are consistent with the conclusion that high-risk HPVs are characterized by the increased amount of intrinsic disorder in transforming proteins E6 and E7.  相似文献   

12.
13.
The mucosotrophic human papillomaviruses (HPVs) are classified as high-risk (HR) or low-risk (LR) genotypes based on their neoplastic properties. We have demonstrated previously that the E7 protein destabilizes p130, a pRb-related pocket protein, thereby promoting S-phase reentry in postmitotic, differentiated keratinocytes of squamous epithelia, and that HR HPV E7 does so more efficiently than LR HPV E7. The E7 proteins of LR HPV-11 and -6b uniquely possess lysine residues following a casein kinase II phosphorylation motif which is critical for the biological function of E7. We now show that mutations of these lysine residues elevated the efficiency of S-phase reentry, independent of their charge. An 11E7 K39,42R mutation moderately increased the association with and the destabilization of p130. Unexpectedly, polyubiquitination on these lysine residues did not attenuate E7 activity, as their mutation caused elevated proteasomal degradation and decreased protein stability. In this regard, the biologically more potent HR HPV E7 proteins were also less stable than the LR HPV E7 proteins. We infer that these lysine residues impede functional protein-protein interactions. A G22D mutation of 11E7 at the pocket protein binding motif possessed augmented efficiency in promoting S-phase reentry and strongly enhanced association with p130 and pRb. The combined effects of these two classes of 11E7 mutations exhibited an efficiency of S-phase reentry comparable to that of HR HPV E7. Thus, these nonconserved residues are primarily responsible for the differential abilities of LR and HR HPV E7 proteins to promote unscheduled DNA replication in organotypic raft cultures.  相似文献   

14.
15.
Human papillomaviruses (HPV) of the high-risk type are causally involved in human tumors, in particular cervical carcinoma. Expression of the viral oncogenes E6 and E7 is maintained in HPV-positive tumors, and it was shown that E6 and E7 of HPV-16 can immortalize human keratinocytes, the natural host cells of the virus. Expression of the viral genes is also required for maintenance of the transformed phenotype. The oncogenic activity of the E6 and E7 oncoproteins is mediated by their physical and functional interaction with cellular regulatory proteins. To knock out the function of the E7 protein in living cells, we have developed peptide aptamers with high specific binding activity for the E7 protein of HPV-16. We show here that E7-binding peptide aptamers induce programmed cell death (apoptosis) in E7-expressing cells, whereas E7-negative cells are not affected. Furthermore, E7-binding peptide aptamers induce apoptosis in HPV-16-positive tumor cells derived from cervical carcinoma. The data suggest that E7-binding peptide aptamers may be useful tools to specifically eliminate HPV-positive tumors.  相似文献   

16.
The E7 proteins of human papillomaviruses (HPVs) promote S-phase reentry in differentiated keratinocytes of the squamous epithelia to support viral DNA amplification. In this study, we showed that nuclear p130 was present in the differentiated strata of several native squamous epithelia susceptible to HPV infection. In contrast, p130 was below the level of detection in HPV-infected patient specimens. In submerged and organotypic cultures of primary human keratinocytes, the E7 proteins of the high-risk mucosotrophic HPV-18, the benign cutaneous HPV-1, and, to a lesser extent, the low-risk mucosotropic HPV-11 destabilized p130. This E7 activity depends on an intact pocket protein binding domain and a casein kinase II (CKII) phosphorylation motif. Coimmunoprecipitation experiments showed that both E7 domains were important for binding to p130 in extracts of organotypic cultures. Metabolic labeling in vivo demonstrated that E7 proteins were indeed phosphorylated in a CKII motif-dependent manner. Moreover, the efficiencies of the E7 proteins of various HPV types or mutations to induce S-phase reentry in spinous cells correlated with their relative abilities to bind and to destabilize p130. Collectively, these data support the notion that p130 controls the homeostasis of the differentiated keratinocytes and is therefore targeted by E7 for degradation to establish conditions permissive for viral DNA amplification.  相似文献   

17.
In this study we investigated the translational capacities of bicistronic and spliced mRNAs originating from the E6 and E7 regions of the high-risk genital human papillomavirus type 16 (HPV-16) and the low-risk HPV-11. For HPV-16 it was found, unexpectedly, that E7 protein could be translated from full-length bicistronic E6-E7 mRNAs. E6*I and E6*II splicing events were not required for E7 synthesis, nor did splicing increase the efficiency of E7 translation significantly. In cells, E7 synthesis from all known naturally occurring mRNA structures was very inefficient compared with that from synthetic monocistronic controls, suggesting that HPV-16 employs translational mechanisms to restrict E7 protein levels. For HPV-11, only RNAs initiated at the P264 promoter, located within the E6 open reading frame, were capable of providing an efficient template for E7 synthesis. P264-initiated mRNAs were as efficient in vivo as monocistronic controls, suggesting that the low-risk HPV-11 does not limit E7 synthesis by translational mechanisms. A detailed analysis of HPV-16 templates by using site-directed mutagenesis showed that the majority of ribosomes which ultimately translate E7 have not reinitiated after translating some or all of the upstream open reading frames. The data support a model in which the failure of 40S ribosomal initiation complexes to recognize the E6 AUG renders them capable of proceeding efficiently to translate E7.  相似文献   

18.
The human papillomavirus (HPV) type 16 (HPV16) E6 protein can stimulate mechanistic target of rapamycin complex 1 (mTORC1) signaling and cap-dependent translation through activation of the PDK1 and mTORC2 kinases. Here we report that HPV18 E6 also enhances cap-dependent translation. The integrity of LXXLL and PDZ protein binding domains is important for activation of cap-dependent translation by high-risk mucosal HPV E6 proteins. Consistent with this model, low-risk mucosal HPV6b and HPV11 E6 proteins, which do not contain a PDZ protein binding motif, also activate cap-dependent translation and mTORC1, albeit at a lower efficiency than high-risk HPV E6 proteins. In contrast, cutaneous HPV5 and HPV8 E6 proteins, which lack LXXLL and PDZ motif protein binding, do not enhance cap-dependent translation. Mutagenic analyses of low-risk HPV E6 proteins revealed that association with the LXXLL motif containing ubiquitin ligase E6AP (UBE3A) correlates with activation of cap-dependent translation. Hence, activation of mTORC1 and cap-dependent translation may be important for the viral life cycle in specific epithelial tissue types and contribute to cellular transformation in cooperation with other biological activities of high-risk HPV E6-containing proteins.  相似文献   

19.
The E7 proteins encoded by the human papillomaviruses (HPVs) associated with anogenital lesions share significant amino acid sequence homology. The E7 proteins of these different HPVs were assessed for their ability to form complexes with the retinoblastoma tumor suppressor gene product (p105-RB). Similar to the E7 protein of HPV-16, the E7 proteins of HPV-18, HBV-6b and HPV-11 were found to associate with p105-RB in vitro. The E7 proteins of HPV types associated with a high risk of malignant progression (HPV-16 and HPV-18) formed complexes with p105-RB with equal affinities. The E7 proteins encoded by HPV types 6b and 11, which are associated with clinical lesions with a lower risk for progression, bound to p105-RB with lower affinities. The E7 protein of the bovine papillomavirus type 1 (BPV-1), which does not share structural similarity in the amino terminal region with the HPV E7 proteins, was unable to form a detectable complex with p105-RB. The amino acid sequences of the HPV-16 E7 protein involved in complex formation with p105-RB in vitro have been mapped. Only a portion of the sequences that are conserved between the HPV E7 proteins and AdE1A were necessary for association with p105-RB. Furthermore, the HPV-16 E7-p105-RB complex was detected in an HPV-16-transformed human keratinocyte cell line.  相似文献   

20.
The function of the E5 protein of human papillomaviruses (HPV) is not well characterized, and controversies exist about its role in the viral life cycle. To determine the function of E5 within the life cycle of HPV type 31 (HPV31) we first constructed HPV31 mutant genomes that contained an altered AUG initiation codon or stop codons in E5. Cell lines were established which harbored transfected wild-type or E5 mutant HPV31 genomes. These cell lines all maintained episomal copies of HPV31 and revealed similar phenotypes with respect to growth rate, early gene expression, and viral copy number in undifferentiated monolayer cultures. Following epithelial differentiation, genome amplification and differentiation-dependent late gene expression were observed in mutant cell lines, but at a rate significantly reduced from that observed in cells containing the wild-type genomes. Organotypic raft cultures indicated that E5 does not effect the expression of differentiation markers but does reduce expression of late viral proteins. Western analysis and immunofluorescence staining for cyclins during epithelial differentiation revealed a decreased expression of cyclin A and B in E5 mutant cells compared to HPV wild-type cells. Using a replating assay, a significant reduction in colony-forming ability was detected in the absence of E5 expression when cells containing wild-type or E5 mutant HPV genomes were allowed to proliferate following 24 h in suspension-induced differentiation. This suggests that HPV E5 modifies the differentiation-induced cell cycle exit and supports the ability of HPV31-positive keratinocytes to retain proliferative competence. In these studies, E5 was found to have little effect on the levels of the epidermal growth factor receptor (EGFR) or on its phosphorylation status. This indicates that EGFR is not a target of E5 action. Our results propose a role for high risk HPV E5 in modulation of late viral functions through activation of proliferative capacity in differentiated cells. We suspect that the primary target of E5 is a membrane protein or receptor that then acts to alter the levels or activities of cell cycle regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号