首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Polyene macrolide antibiotics, including nystatin and amphotericin B, possess fungicidal activity and are being used as antifungal agents to treat both superficial and invasive fungal infections. Due to their toxicity, however, their clinical applications are relatively limited, and new-generation polyene macrolides with an improved therapeutic index are highly desirable. We subjected the polyol region of the heptaene nystatin analogue S44HP to biosynthetic engineering designed to remove and introduce hydroxyl groups in the C-9-C-10 region. This modification strategy involved inactivation of the P450 monooxygenase NysL and the dehydratase domain in module 15 (DH15) of the nystatin polyketide synthase. Subsequently, these modifications were combined with replacement of the exocyclic C-16 carboxyl with the methyl group through inactivation of the P450 monooxygenase NysN. Four new polyene macrolides with up to three chemical modifications were generated, produced at relatively high yields (up to 0.51 g/liter), purified, structurally characterized, and subjected to in vitro assays for antifungal and hemolytic activities. Introduction of a C-9 hydroxyl by DH15 inactivation also blocked NysL-catalyzed C-10 hydroxylation, and these modifications caused a drastic decrease in both antifungal and hemolytic activities of the resulting analogues. In contrast, single removal of the C-10 hydroxyl group by NysL inactivation had only a marginal effect on these activities. Results from the extended antifungal assays strongly suggested that the 9-hydroxy-10-deoxy S44HP analogues became fungistatic rather than fungicidal antibiotics.  相似文献   

2.
The polyene macrolide antibiotic nystatin, produced commercially by the bacterium Streptomyces noursei, is an important antifungal agent used in human therapy for treatment of certain types of mycoses. Early studies on nystatin biosynthesis in S. noursei provided important information regarding the precursors utilised in nystatin biosynthesis and factors affecting antibiotic yield. New insights into the enzymology of nystatin synthesis became available after the gene cluster governing nystatin biosynthesis in S. noursei was cloned and analysed. Six large polyketide synthase proteins were implicated in the formation of the nystatin macrolactone ring, while other enzymes, such as P450 monooxygenases and glycosyltransferase, were assumed responsible for ring decoration. The latter data, supported by analysis of the polyene mixture synthesised by the nystatin producer, helped elucidate the complete nystatin biosynthetic pathway. This information has proved useful for engineered biosynthesis of novel nystatin analogues, suggesting a plausible route for the generation of potentially safer and more efficient antifungal drugs.  相似文献   

3.
NPP A1 produced by Pseudonocardia autotrophica is a unique disaccharide-containing polyene macrolide. NPP A1 was reported to have higher water solubility and lower hemolytic toxicity than nystatin A1 while retaining its antifungal activity. An engineered NPP A1 analogue, NPP A2, was generated by inactivation of the nppL gene, encoding a P450 monooxygenase in P. autotrophica. The resulting compound exhibited the corresponding chemical structure of NPP A1 but lacked a C10 hydroxyl group. In this study, newly developed crystallization recovery methods for NPP A2 purification, followed by an evaluation of in vitro antifungal activity and hemolytic activity, were performed. The crystallization methods were designed to eliminate the undesired viscous impurities encountered during the NPP A2 purification process, resulting in improved purity from 5.3 to 83.5% w/w. NPP A2 isolated from the improved purification process also exhibited two times higher antifungal activity and 1.8 times higher hemolytic toxicity than those of NPP A1. These results suggest that the minor structural modification of disaccharide-containing polyene macrolides, such as removing a C10 hydroxyl group, might require an alternative recovery process, such as crystallization, to confirm its improved biological activity.  相似文献   

4.
A Streptomyces strain UK10 was isolated from Ukrainian soil and identified by taxonomical studies as Streptomyces arenae var ukrainiana. HA-2-91 was isolated from the biomass of S. arenae var ukrainiana and is supposedly a polyene macrolide antibiotic belonging to the tetraene group. HA-2-91 showed promising antifungal activity (in vitro) against yeasts and filamentous fungi, including plant pathogens and dermatophytes and was found to be less toxic in mice than nystatin and rimocidin.  相似文献   

5.
P B Fisher  V Bryson 《In vitro》1977,13(9):548-556
Nystatin methyl ester (NME), the methyl ester derivative of the polyene macrolide antibiotic nystatin, is known to be effective against fungi and is now found to be relatively less toxic than the parent antibiotic nystatin (NYS) to animal cells in culture as measured by 51Cr release, cell survival at different posttreatment periods and cell growth. NYS and NME were tested on TK- mouse (B82) and hamster (B1) cells, HGPRT- mouse (RAG) cells, and on lysolecithin-fused cells selected in HAT medium and confirmed as B82-RAG and B1-RAG hybrids by chromosomal analysis plus polyacrylamide gel electrophoresis of lactate dehydrogenase. NME was less toxic and caused less immediate membrane damage than NYS when tested in all five cell systems. However, differences in innate polyene sensitivity were evident between the three parental cell types. B82 and B1 cells were more resistant than RAG cells to NYS and NME. B82-RAG hybrids reflected the higher level resistance of B82 parental cells, and B1-RAG hybrids reflected the higher level resistance of B1 cells. Where one parental cell type is relatively more polyene sensitive, the use of polyenes in the future may be applicable as selective agents in cell hybridization.  相似文献   

6.
Nystatin (NYS), a polyene antifungal antibiotic, has been investigated in Langmuir monolayers alone and in mixtures with mammalian and fungi membrane sterols (cholesterol and ergosterol, respectively) as well as with a model phospholipid (DPPC). The interactions between film molecules have been examined both in a qualitative and quantitative way with the excess area per molecule (AExc), excess free energy of mixing (DeltaGExc) and the interaction parameter (alpha). The obtained results have been compared with those previously reported for another polyene antimycotic: amphotericin B (AmB) mixed with lipids. Higher affinity of NYS has been observed for ergosterol vs. cholesterol, however, the strongest attractions were found for its mixtures with DPPC. The obtained results have been verified with biological studies reported previously for both antibiotics (NYS and AmB). A thorough analysis of the Langmuir experiment results performed for both polyenes enabled us to conclude that the presence of DPPC can be considered as a key factor affecting their antifungal activity as well as their toxicity towards host cells.  相似文献   

7.
Summary Nystatin methyl ester (NME), the methyl ester derivative of the polyene macrolide antibiotic nystatin, is known to be effective against fungi and is now found to be relatively less toxic than the parent antibiotic nystatin (NYS) to animal cells in culture as measured by51Cr release, cell survival at different posttreatment periods and cell growth. NYS and NME were tested on TK mouse (B82) and hamster (B1) cells, HGPRT mouse (RAG) cells, and on lysolecithin-fused cells selected in HAT medium and confirmed as B82-RAG an B1-RAG hybrids by chromosomal analysis plus polyacrylamide gel electrophoresis of lactate dehydrogenase. NME was less toxic and caused less immediate membrane damage than NYS when tested in all five cell systems. However, differences in innate polyene sensitivity were evident between the three parental cell types. B82 and B1 cells were more resistant than RAG cells to NYS and NME. B82-RAG hybrids reflected the higher level resistance of B82 parental cells, and B1-RAG hybrids reflected the higher level resistance of B1 cells. Where one parental cell type is relatively more polyene sensitive, the use of polyenes in the future may be applicable as selective agents in cell hybridization. This investigation was supported by NIH Training Grant No. GM 507 from the National Institute of General Medical Sciences.  相似文献   

8.
In the 1970's great strides were made in understanding the mechanism of action of amphotericin B and nystatin: the formation of transmembrane pores was clearly demonstrated in planar lipid monolayers, in multilamellar phospholipid vesicles and in Acholeplasma laidlawii cells and the importance of the presence and of the nature of the membrane sterol was analyzed. For polyene antibiotics with shorter chains, a mechanism of membrane disruption was proposed. However, recently obtained data on unilamellar vesicles have complicated the situation. It has been shown that: membranes in the gel state (which is not common in cells), even if they do not contain sterols may be made permeable by polyene antibiotics, several mechanisms may operate, simultaneously or sequentially, depending on the antibiotic/lipid ratio, the time elapsed after mixing and the mode of addition of the antibiotic, there is a rapid exchange of the antibiotic molecules between the vesicles. Although pore formation is apparently involved in the toxicity of amphotericin B and nystatin, it is not the sole factor which contributes to cell death, since K+ leakage induced by these antibiotics is separate from their lethal action. The peroxidation of membrane lipids, which has been demonstrated for erythrocytes and Candida albicans cells in the presence of amphotericin B, may play a determining role in toxicity concurrently with colloid osmotic effect. On the other hand, it has been shown that the action of polyene antibiotics on cells is not always detrimental: at sub-lethal concentrations these drugs stimulate either the activity of some membrane enzymes or cellular metabolism. In particular, some cells of the immune system are stimulated. Furthermore, polyene antibiotics may act synergistically with other drugs, such as antitumor or antifungal compounds. This may occur either by an increased incorporation of the drug, under the influence of a polyene antibiotic-induced change of membrane potential, for example, or by a direct interaction of both drugs. That fungal membranes contain ergosterol while mammalian cell membranes contain cholesterol, has generally been considered the basis for the selective toxicity of amphotericin B and nystatin for fungi. Actually, in vitro studies have not always borne out this assumption, thereby casting doubt on the use of polyene antibiotics as antifungal agents in mammalian cell culture media.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Successive reculturing of Torulopsis glabrata on media containing increasing concentration of the polyene macrolide antibiotics nystalin or lucensomycin resulted in the segregation of cultures resistant to these antibiotics. Isolates resistant to lucensomycin showed good resistance to nystatin, and vice versa. Analysis of the sterols and fatty acids of sensitive and polyene resistant T. glabrata revealed that compositional changes occurred in both classes of lipids upon acquistion of resistance. The sterol composition of nystatin and lucensomycin resistant cultures possessed reduced amounts of, or no ergosterol (the major sterol of the sensitive parent culture), and increased amounts of sterols which were biogenetically more primitive than ergosterol. Resistant cultures in which ergosterol was absent possessed a fatty acid composition that did not differ significantly from the parent sensitive culture grown under identical conditions. Resistant cultures containing significantly reduced amounts of ergosterol were found to possess altered fatty acid compositions. Generally it was observed that these latter cultures possessed fatty acids containing shorter and more saturated chains. These results are considered to indicate that alteration in both lipid and sterol composition is involved in determination of culture resistance to polyene macrolides.  相似文献   

10.
Polyene antibiotics such as nystatin are a large family of very valuable antifungal polyketide compounds typically produced by soil actinomycetes. Previously, using a polyene cytochrome P450 hydroxylase-specific genome screening strategy, Pseudonocardia autotrophica KCTC9441 was determined to contain an approximately 125.7-kb region of contiguous DNA with a total of 23 open reading frames, which are involved in the biosynthesis and regulation of a structurally unique polyene natural product named NPP. Here, we report the complete structure of NPP, which contains an aglycone identical to nystatin and harbors a unique di-sugar moiety, mycosaminyl-(α1-4)-N-acetyl-glucosamine. A mutant generated by inactivation of a sole glycosyltransferase gene (nppDI) within the npp gene cluster can be complemented in trans either by nppDI-encoded protein or by its nystatin counterpart, NysDI, suggesting that the two sugars might be attached by two different glycosyltransferases. Compared with nystatin (which bears a single sugar moiety), the di-sugar containing NPP exhibits approximately 300-fold higher water solubility and 10-fold reduced hemolytic activity, while retaining about 50% antifungal activity against Candida albicans. These characteristics reveal NPP as a promising candidate for further development into a pharmacokinetically improved, less-cytotoxic polyene antifungal antibiotic.  相似文献   

11.
Wide differences exist among the polyene antibiotics, nystatin, rimocidin, filipin, pimaricin, and amphotericin B, with reference to steroid interference with their antifungal activities against Candida albicans. Of the numerous steroids tested, ergosterol was the only one which effectively antagonized the antifungal activity of all five polyene antibiotics. The antifungal activities of nystatin and amphotericin B were the least subject to vitiation by the addition of steroids other than ergosterol, and those of filipin, rimocidin, and pimaricin were the most sensitive to interference. Attempts to delineate the structural requirements of steroids possessing polyene-neutralizing activity in growing cultures of C. albicans are discussed. The ultraviolet absorbance of certain antibiotic steroid combinations was also studied.  相似文献   

12.
The polyene macrolide antibiotic nystatin produced by Streptomyces noursei contains a deoxyaminosugar mycosamine moiety attached to the C-19 carbon of the macrolactone ring through the beta-glycosidic bond. The nystatin biosynthetic gene cluster contains three genes, nysDI, nysDII, and nysDIII, encoding enzymes with presumed roles in mycosamine biosynthesis and attachment as glycosyltransferase, aminotransferase, and GDP-mannose dehydratase, respectively. In the present study, the functions of these three genes were analyzed. The recombinant NysDIII protein was expressed in Escherichia coli and purified, and its in vitro GDP-mannose dehydratase activity was demonstrated. The nysDI and nysDII genes were inactivated individually in S. noursei, and analyses of the resulting mutants showed that both genes produced nystatinolide and 10-deoxynystatinolide as major products. Expression of the nysDI and nysDII genes in trans in the respective mutants partially restored nystatin biosynthesis in both cases, supporting the predicted roles of these two genes in mycosamine biosynthesis and attachment. Both antifungal and hemolytic activities of the purified nystatinolides were shown to be strongly reduced compared to those of nystatin, confirming the importance of the mycosamine moiety for the biological activity of nystatin.  相似文献   

13.
The polyene antibiotics, including nystatin, pimaricin, amphotericin, and candicidin, comprise a family of very valuable antifungal polyketide compounds, and they are typically produced by soil actinomycetes. Previously, using a polyene cytochrome P450 hydroxylase-specific genome screening strategy, Pseudonocardia autotrophica KCTC9441 was determined to contain genes potentially encoding polyene biosynthesis. Here, sequence information of an approximately 125.7-kb contiguous DNA region in five overlapping cosmids isolated from the P. autotrophica KCTC9441 genomic library revealed a total of 23 open reading frames, which are presumably involved in the biosynthesis of a nystatin-like compound tentatively named NPP. The deduced roles for six multi-modular polyketide synthase (PKS) catalytic domains were found to be highly homologous to those of previously identified nystatin biosynthetic genes. Low NPP productivity suggests that the functionally clustered NPP biosynthetic pathway genes are tightly regulated in P. autotrophica. Disruption of a NPP PKS gene completely abolished both NPP biosynthesis and antifungal activity against Candida albicans, suggesting that polyene-specific genome screening may constitute an efficient method for isolation of potentially valuable previously identified polyene genes and compounds from various rare actinomycetes widespread in nature.  相似文献   

14.
The cytotoxic activity of the polyene antibiotics mainly depends on the appearance of the drug species which arises from drug-sterol complexation. The unsaturation and intact macrolide ring of the polyenes are the requirements for the biological activity. All the polyene antibiotics can form the complex with the sterol having 3 beta-OH group, and planar ring and a hydrophobic side chain. Aromatic polyene antibiotics with positively charged head group have been considered as most potential antifungal agents.  相似文献   

15.
Glycosylated polyene macrolide antibiotics, as nystatins and amphotericins, are amphiphilic structures known to exert antifungal activity by disrupting the fungal cell membrane, leading to leakage of cellular materials, and cell death. This membrane disruption is strongly influenced by the presence and the exact nature of the membrane sterols. The solution structures of five representative glycosylated members, three tetraenes (pimaricin, nystatin A1 and rimocidin) and two heptaenes (candidin and vacidin A) have been calculated using geometric restraints derived from 1H-NMR data and random searches of their conformational space. Despite a different apparent structural order, the NMR solutions structure indicate that the hydroxyl groups all clustered on one side of the rod-shaped structures, and the glycosyl moieties are structurally conserved both in their conformation and their apparent order. The molecular structures afford an understanding of their selective interaction with the membrane sterols and the design of new polyene macrolides with improved activities.  相似文献   

16.
Enoyl reductase (ER) domains in module 5 of nystatin and amphotericin polyketide synthase (PKS) are responsible for reduction of the C28–C29 unsaturated bond on the nascent polyketide chain during biosynthesis of both macrolides, resulting in production of tetraenes nystatin A1 and amphotericin A, respectively. Data obtained in fermentations under glucose limitation conditions demonstrated that the efficiency of the ER5 domain can be influenced by carbon source availability in the amphotericin producer Streptomyces nodosus, but not in the nystatin producer Streptomyces noursei. Two S. noursei ER5 domain mutants were constructed, GG5073SP and S5016N, both producing the heptaene nystatin analogue S44HP with unsaturated C28–C29 bond. While the GG5073SP mutant, with altered ER5 NADPH binding site, produced S44HP exclusively, the S5016N mutant synthesized a mixture of nystatin and S44HP. Comparative studies on the S5016N S. noursei mutant and S. nodosus, both producing mixtures of tetraenes and heptaenes, revealed that the ratio between these two types of metabolites was significantly more affected by glucose limitation in S. nodosus. These data suggest that mutation S5016N in NysC “locks” the ER5 domain in a state of intermediate activity which, in contrast to the ER5 domain in the amphotericin PKS, is not significantly influenced by physiological conditions.  相似文献   

17.
The biosynthesis of the aromatic polyene macrolide antibiotic candicidin, produced by Streptomyces griseus IMRU 3570, begins with a p-aminobenzoic acid (PABA) molecule which is activated to PABA-CoA and used as starter for the head-to-tail condensation of four propionate and 14 acetate units to produce a polyketide molecule to which the deoxysugar mycosamine is attached. Using the gene coding for the PABA synthase ( pabAB) from S. griseusIMRU 3570 as the probe, a 205-kb region of continuous DNA from the S. griseus chromosome was isolated and partially sequenced. Some of the genes possibly involved in the biosynthesis of candicidin were identified including part of the modular polyketide synthase (PKS), genes for thioesterase, deoxysugar biosynthesis, modification, transport, and regulatory proteins. The regulatory mechanisms involved in the production of candicidin, such as phosphate regulation, were studied using internal probes for some of the genes involved in the biosynthesis of the three moieties of candicidin (PKS, aromatic moiety and amino sugar). mRNAs specific for these genes were detected only in the production medium (SPG) but not in the SPG medium supplemented with phosphate or in the inoculum medium, indicating that phosphate represses the expression of genes involved in candicidin biosynthesis. The modular architecture of the candicidin PKS and the availability of the PKSs involved in the biosynthesis of three polyene antibiotics (pimaricin, nystatin, and amphotericin B) shall make possible the creation of new, less toxic and more active polyene antibiotics through combinatorial biosynthesis and targeted mutagenesis.  相似文献   

18.
The polyene antibiotics, a category that includes nystatin, pimaricin, amphotericin, and candicidin, comprise a family of very promising antifungal polyketide compounds and are typically produced by soil actinomycetes. The biosynthetic gene clusters for these polyenes have been previously investigated, revealing the presence of highly similar cytochrome P450 hydroxylase (CYP) genes. Using polyene CYP-specific PCR screening with several actinomycete genomic DNAs, Pseudonocardia autotrophica was determined to contain a unique polyene-specific CYP gene. Genomic DNA library screening using the polyene-specific CYP gene probe identified a positive cosmid clone, which contained a DNA fragment of approximately 34.5 kb. The complete sequencing of this DNA fragment revealed a total of seven complete and two incomplete open reading frames, which were found to be highly similar, but still unique, when compared to previously known polyene biosynthetic genes. These results suggest that the polyene-specific screening approach may constitute an efficient method for the isolation of potentially valuable cryptic polyene biosynthetic gene clusters from various rare actinomycetes.  相似文献   

19.
The polyene macrolide antibiotic nystatin produced by Streptomyces noursei contains a deoxyaminosugar mycosamine moiety attached to the C-19 carbon of the macrolactone ring through the β-glycosidic bond. The nystatin biosynthetic gene cluster contains three genes, nysDI, nysDII, and nysDIII, encoding enzymes with presumed roles in mycosamine biosynthesis and attachment as glycosyltransferase, aminotransferase, and GDP-mannose dehydratase, respectively. In the present study, the functions of these three genes were analyzed. The recombinant NysDIII protein was expressed in Escherichia coli and purified, and its in vitro GDP-mannose dehydratase activity was demonstrated. The nysDI and nysDII genes were inactivated individually in S. noursei, and analyses of the resulting mutants showed that both genes produced nystatinolide and 10-deoxynystatinolide as major products. Expression of the nysDI and nysDII genes in trans in the respective mutants partially restored nystatin biosynthesis in both cases, supporting the predicted roles of these two genes in mycosamine biosynthesis and attachment. Both antifungal and hemolytic activities of the purified nystatinolides were shown to be strongly reduced compared to those of nystatin, confirming the importance of the mycosamine moiety for the biological activity of nystatin.  相似文献   

20.
The antifungal polyene antibiotics nystatin was tested in a clinical trial to describe pharmacokinetics and safety after repeated administration of Nystatin "Lederle" sterile powder in healthy volunteers. To monitor the nystatin concentration-time profile in plasma we developed a sensitive method in the range of 1-100ng/ml based on liquid chromatography coupled with tandem mass spectrometry. The target substance was separated from the biological matrix on C(18) solid-phase extraction cartridges with methanol. The Chromatography was performed isocratically using a reversed phase Caltrex Resorcinearene column. The mobile phase consisted of 5mM ammonium formate buffer and acetonitrile (40:60, v/v). The mass spectrometer works with electrospray ionization in its positive selected ion monitoring (SIM) mode using the respective MH(+) ions, m/z 926.6 for nystatin and m/z 924.4 for amphotericin B as internal standard. The method validation was performed according to the demands and international criteria for validation of bioanalytical methods and was successfully applied to the quantification of nystatin in human plasma in the pharmacokinetic trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号