首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The spatial distribution of the chloroplast thylakoid protein complex comprised of cytochromes f and b-563, and the Rieske iron-sulfur protein (Cyt b6-f) has been controversial because of conflicting results obtained by different techniques. We have combined the following biochemical and immunochemical techniques to approach this question: (1) French press disruption of thylakoids, followed by repeated two-phase aqueous polymer partitioning to separate inside-out grana from right-side-out stroma membrane fragments; (2) electrophoretic analysis followed by the 3,3',5,5'-tetramethylbenzidine stain for cytochrome hemes; (3) electroblot analysis with anti-Cyt b6-f antibodies; (4) agglutination of membrane fragments with anti-Cyt b6-f antibodies; and (5) post-embedment thin-section immunolabeling of chemically fixed or ultrarapidly frozen chloroplasts with anti-Cyt b6-f antibodies. Our results indicate that the complex is present in both of the isolated membrane fragment populations in similar amounts, with the bulk of the immunoreactive sites exposed to the thylakoidal lumen. Direct immunolabeling of thin-sectioned chloroplasts resulted in localization of the complex throughout the thylakoids, without specialized compartmentation. These results provide both the temporal and spatial resolution necessary for accurate localization of the complex. We concur with models proposing distribution of Cyt b6-f throughout all thylakoid membranes.  相似文献   

2.
Progressive solubilization of spinach chloroplast thylakoids by Triton X-100 was employed to investigate the domain organization of the electron transport complexes in the thylakoid membrane. Triton/chlorophyll ratios of 1:1 were sufficient to disrupt fully the continuity of the thylakoid membrane network, but not sufficient to solubilize either photosystem I (PSI), photosystem II (PSII) or the cytochrome b6-f(Cyt b6-f) complex. Progressive with the Triton concentration increase (Triton/Chl greater than 1:1), a differential solubilization of the three electron transport complexes was observed. Solubilization of the Cyt b6-f complex from the thylakoid membrane preceded that of PSI and apparently occurred early in the solubilization of stroma-exposed segments of the chloroplast lamellae. The initial removal of chlorophyll (up to 40% of the total) occurred upon solubilization of PSI from the stroma-exposed lamella regions in which PSI is localized. The tightly appressed membrane of the grana partition regions was markedly resistant to solubilization by Triton X-100. Thus, solubilization of PSII from this membrane region was initiated only after all Cyt b6-f and PSI complexes were removed from the chloroplast lamellae. The results support the notion of extreme lateral heterogeneity in the organization of the electron transport complexes in higher plant chloroplasts and suggest a Cyt b6-f localization in the membrane of the narrow fret regions which serve as a continuum between the grana and stroma lamellae.  相似文献   

3.
The requirements for reconstitution of electron transfer activity with a plastoquinone (PQ)-depleted cytochrome b6-f complex from spinach have been considered. Full restoration of activity measured as plastocyanin reduction with either duroquinol in the dark or Photosystem II (PSII) in the light requires both PQ-9 and phospholipid. However, a substantial dark activity can be observed with duroquinol and phospholipid in the absence of any added PQ-9. PSII, with its associated PQ molecules, can also donate electrons in the light to the cytochrome complex which has been depleted of plastoquinone. Electron donation by duroquinol in the dark to the PQ-depleted cytochrome complex is stimulated by PSII, and this stimulation is dependent on the presence of the two PQ molecules in the PSII preparation. Measurements of proton translocation with the PQ-depleted complex indicate this quinone is not required for the observed H+/e- ratio of 2. Studies of cytochrome b6 kinetics with the free and liposome-incorporated PQ-depleted complex show this cytochrome undergoes redox reactions similar to those of a control complex which contains PQ. These results indicate the PQ that copurifies with the cytochrome complex is not essential for any of the measured activities. These findings are considered in relation to a quinone binding site(s) in the cytochrome complex which is not specific to PQ but can bind other quinones, such as duroquinol, in a lipid-dependent process.  相似文献   

4.
The orientation of specific polypeptides of the cytochrome b6-f complex with respect to the chloroplast stromal phase has been studied using trinitrobenzenesulfonate (TNBS) and pronase E as impermeant modifying reagents. Of the four polypeptides of the complex (33,23,20 and 17 kDa), only cytochrome f was labeled by 14C-TNBS in unfractionated membranes. However, to a varying degree, all of the constituent polypeptides were sensitive to pronase digestion and, in the case of cytochrome f, it was possible, by immunoblotting techniques to identify several degradation products. These results are discussed in relation to the organization of the cytochrome complex in thylakoid membranes and argue for an exposure to the stromal phase of all of the polypeptides, while functional considerations indicate that at least cytochrome f and the Rieske iron-sulfur protein have a possible transmembrane organization.  相似文献   

5.
The cytochrome b6-f complex from spinach thylakoids has been reconstituted with an oxygen-evolving Photosystem II (PSII) preparation isolated from the same source to give oxygenic plastocyanin reductase activity. We observe that (i) mixing of the two complexes in concentrated form prior to dilution with the assay medium is necessary for optimal reconstitution of activity; (ii) incubation for longer times after dilution can also give substantial reconstitution if the two complexes are added separately to the assay mixture; (iii) either monovalent or divalent cations are required for optimum activity in the reconstituted system; (iv) titration of the cytochrome complex with varying amounts of the PSII complex gave a saturation of the plastocyanin reduction activity at a cytochrome complex/PSII ratio of 3-4; (v) kinetic analysis of plastocyanin photoreduction by Photosystem II shows nonlinearity, while first-order reduction kinetics are observed with duroquinol as electron donor; and (vi) as the concentration of plastocyanin is increased, the half-time of the reduction increases. These observations are considered in terms of a functional association between PSII and the cytochrome b6-f complex in this reconstituted system, and the relevance of these observations to the situation in vivo is discussed.  相似文献   

6.
Three of the membrane-spanning polypeptides of the chloroplast cytochrome (cyt) b6f complex were sequentially released from the thylakoid membrane, in the order cyt b6, suIV and Rieske iron-sulfur protein, as the pH was increased from 10 to 12, a protocol usually employed to remove peripheral proteins from membranes. The fourth polypeptide of the cyt b6f complex, cyt f, which spans the membrane once, was apparently not released. The pH values for half-release at low ionic strength were approximately 10.7, 11.1 and 11.3 respectively. The separation of the polypeptides of the complex and the sequential release is readily seen at pH 11, where the loss from the membrane of cyt b6, suIV and Fe iron-sulfur center is approximately 90%, 50% and 20%, respectively. the release of cyt b6 from the membrane was reflected by the absence of its characteristic reduced minus oxidized absorbance signal. The pH values at which the release occurred increased as the ionic strength was raised, implying that the release of the b6f polypeptides arises from extrusion due to repulsive electrostatic interactions probably caused by deprotonation of tyrosine and lysine residues. The lipid content of the released polypeptides was very low, consistent with the observation of a non-membranous state. It is proposed that the pH-dependent extrusion requires two electrostatic effects at alkaline pH higher than approximately 10.5: (i) increased electrostatic repulsion between neighbouring polypeptides of the complex, arising from increased net negative charge in the peripheral segments of these polypeptides, which can cause separation of the polypeptides from the complex; and (ii) ionization of residues such as tyrosine in the membrane-spanning alpha-helices, and neutralization of residues such as lysine which can bind to the negative membrane surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The catalytic role of subunit IV, the Mr 17,000 protein, in the chloroplast cytochrome b6-f complex was established through trypsinolysis of the complex under controlled conditions. When purified chloroplast cytochrome b6-f complex, 1 mg/ml, in 50 mM Tris-succinate buffer (pH 7.0) containing 1% sodium cholate and 10% glycerol is treated with 80 micrograms of trypsin at room temperature for various lengths of time, the activity of the cytochrome b6-f complex decreases as the incubation time increases. A maximal inactivation of 80% is reached at 7 min of incubation. The trypsin inactivation is accompanied by the destruction of the proton translocation activity of the complex. No alteration of absorption and EPR spectral properties was observed in the trypsin-inactivated complex. Subunit IV is the only subunit in the cytochrome b6-f complex that is digested by trypsin, and the degree of digestion correlates with the decrease of electron transfer activity. The binding of azido-Q to subunit IV of the complex decreases as the extent of inactivation of the cytochrome b6-f complex by trypsin increases. The residue molecular mass of trypsin cleaved subunit IV is about 14 kDa, suggesting that the cleavage site is at lysine 119 or arginine 125 or 126. When the thylakoid membrane was assayed for cytochrome b6-f complex activity, very little activity was observed; and the activity was not sensitive to trypsinolysis. Upon sonication, activity and sensitivity to trypsinolysis was greatly increased, suggesting that subunit IV protrudes from the lumen side of the membrane.  相似文献   

8.
A ubiquinone derivative, 3-chloro-5-hydroxyl-2-methyl-6-decyl- 1,4-benzoquinone (3-CHMDB), which shows different effects on the mitochondrial cytochrome b-c1 complex and chloroplast cytochrome b6-f complex, has been synthesized and characterized. When the cytochrome b-c1 complex is treated with varying concentrations of 3-CHMDB and assayed at constant substrate (Q2H2) concentration, a 50% inhibition is observed when 2 mol of 3-CHMDB per mol of enzyme are used. The degree of inhibition is dependent on the substrate concentration. When ubiquinol-cytochrome c reductase is treated with 2 mol of 3-CHMDB per mol of enzyme, less inhibition is observed with a lower substrate concentration, suggesting the possible existence of two forms of reductases: one with a high affinity for ubiquinone and another with a low affinity. 2-Chloro-5-hydroxyl-3-methyl-6-decyl-1,4-benzoquinone (2-CHMDB), an isomer of 3-CHMDB, shows much less inhibition of the mitochondrial cytochrome b-c1 complex, suggesting that the quinone binding site in this complex is highly specific. In contrast to the inhibition observed with the cytochrome b-c1 complex, 3-CHMDB causes no inhibition of the plastoquinol-plastocyanin reductase activity of chloroplast cytochrome b6-f complex, regardless of whether plastoquinol-2 or ubiquinol-2 is used as substrate. 3-CHMDB restores the dibromothymoquinone-altered EPR spectra of iron-sulfur protein in both complexes. In the case of the cytochrome b6-f complex, 3-CHMDB also partially restores the dibromothymoquinone-inhibited activity. Reduced form 3- or 2-CHMDB is oxidizable by the cytochrome b6-f complex, but not by the cytochrome b-c1 complex. These results suggest that the quinol oxidizing sites in the cytochrome b6-f complex may differ from those in the mitochondrial cytochrome b-c1 complex.  相似文献   

9.
The chloroplast cytochrome b6-f complex, incorporated into phospholipid vesicles, shows proton translocation with an observed H+/e- ratio of approximately 2. The oxidation-reduction behavior of cytochrome b6 during electron transport from duroquinol to plastocyanin is affected by incorporation. The most obvious effect of incorporation is an increase in the duration of a steady-state level of cytochrome b6 that persists during electron transport. Reagents that decrease activity increase the duration of the steady state while reagents that stimulate activity decrease this time. Uncoupling conditions yield cytochrome kinetics similar to those in the unincorporated complex. 2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone and 5-n-undecyl-4,7-dioxobenzothiazole inhibited reduction of cytochrome b6 in the incorporated complex, but this apparent inhibition was due to a rapid oxidation of the cytochrome by these compounds.  相似文献   

10.
The domain organization of the plant thylakoid membrane   总被引:2,自引:0,他引:2  
A model of the photosynthetic membrane from higher plants is presented. The different photosystems, PSI alpha, PSI beta, PSII alpha and PSII beta, are located in separate domains. The photosystems with the largest antenna systems, the alpha systems, are in the grana and the other in the stroma lamellae. In each grana disc PSI alpha is located in a flat annulus surrounding a circular PSII alpha domain. In this the PSII alpha units with the largest antennae are found in the center. The model is consistent with results from recent membrane fractionation experiments.  相似文献   

11.
R Malkin 《FEBS letters》1986,208(2):317-320
Stigmatellin and DNP-INT are effective inhibitors of the catalytic activity of the plastoquinol-plastocyanin oxidoreductase complex (cytochrome b6-f complex). Both inhibitors alter the EPR spectrum of the Rieske iron-sulfur center but do not produce band-shifts of cytochrome b-563. The midpoint redox potential of the Rieske center is unaffected by either inhibitor, although both alter the DBMIB-induced g-value shifts of the Rieske center. The results are considered in terms of binding domains for inhibitors in the cytochrome b6-f complex.  相似文献   

12.
Antibodies directed against purified cytochrome f, isolated from the cytochrome b/f complex of spinach chloroplasts, were used in on-grid immunogold labelling studies of spinach leaf tissue. Our results show unambiguously that cytochrome f, and hence the cytochrome b/f complex, is located in both appressed and non-appressed thylakoid membranes.  相似文献   

13.
A structural analysis of the surface areas of cytochrome c(6), responsible for the transient interaction with photosystem I, was performed by NMR transverse relaxation-optimized spectroscopy. The hemeprotein was titrated by adding increasing amounts of the chlorophyllic photosystem, and the NMR spectra of the free and bound protein were analyzed in a comparative way. The NMR signals of cytochrome c(6) residues located at the hydrophobic and electrostatic patches, which both surround the heme cleft, were specifically modified by binding. The backbones of internal residues close to the hydrophobic patch of cytochrome c(6) were also affected, a fact that is ascribed to the conformational changes taking place inside the hemeprotein when interacting with photosystem I. To the best of our knowledge, this is the first structural analysis by NMR spectroscopy of a transient complex between soluble and membrane proteins.  相似文献   

14.
The electron transfer activity of purified cytochrome b6-f complex of spinach chloroplast is inhibited by dicyclohexylcarbodiimide (DCCD) in a concentration and incubation time dependent manner. The maximum inhibition of 75% is observed when 300 mole of DCCD per mole of protein (based on cytochrome f) is incubated with cytochrome b6-f complex at room temperature for 40 min. The inhibition of the complex is not due to the formation of cross links between subunits but due to the modification of carboxyls. The amount of DCCD incorporation is directly proportional to the activity loss, suggesting that some carboxyl groups in the complex are directly or indirectly involved in the catalytic function. The incorporated DCCD is located mainly at cytochrome b6 protein. The partially inhibited complex shows the same H+/e-ratio as that of the intact complex when embedded in phospholipid vesicles.  相似文献   

15.
Procedures that allow the fractionation of a native Photosystem I complex (PSI-200) into several chlorophyll-containing complexes are now available. Two complexes, each containing 50% of the total chlorophyll of the photosystem, can be isolated. One complex contains both chlorophyll a and b and serves as antenna complex for the reaction center while the reaction center complex contains 100 Chl a molecules per P700 and has 7 different polypeptides. Only two of the latter (62 and 58 kDa) contain chlorophyll a and these can be isolated as the photochemically active CPI complex. Based on these fractionation methods, a model that describes the overall organization of the chlorophyll in Photosystem is presented.Dedicated to the memory of Warren Butler, who was both a friend and a colleague.  相似文献   

16.
A large set of electron microscopy projections of photosystem II (PSII) dimers isolated from the cyanobacterium Synechococcus elongatus was characterized by single particle image analysis. In addition to previously published maps at lower resolution [Boekema, E.J., Hankamer, B., Bald, D., Kruip, J., Nield, J., Boonstra, A.F., Barber, J. & R?gner, M. (1995) Proc. Natl Acad. Sci. USA 92, 175-179], the new side-view projections show densities of all three lumenal extrinsic proteins, i.e. the 33-kDa, 12-kDa and the cytochrome c-550 subunit encoded by psbO, psbU and psbV, respectively. Analysis of the size and shape of the top-view projections revealed a small number of photosystem II particles of about double the size of the usual dimers. Size and quantity of these 'double dimers' correlates with a small fraction of 1000-kDa particles found with HPLC-size-exclusion chromatographic analysis. Because many cyanobacteria contain dimeric photosystem II complexes arranged in rows within the membrane, the double dimers can be considered as the breakdown fragments of these rows. Their analysis enabled the detection of the arrangement of photosystem II within the rows, in which the dimers interact with other dimers mostly with their tips, leaving a rather open center at the interfaces of two dimers. The dimers have a repeating distance of only 11.7 nm. As a consequence, the phycobilisomes, located on top of PSII and functioning in light-harvesting, must be closely packed or almost touch each other, in a manner similar to a recently suggested model [Bald, D., Kruip, J. & R?gner, M. (1996) Photosynthesis Res. 49, 103-118].  相似文献   

17.
Photosystem I (PSI) is a pigment-protein complex required for the light-dependent reactions of photosynthesis and participates in light-harvesting and redox-driven chloroplast metabolism. Assembly of PSI into supercomplexes with light harvesting complex (LHC) II, cytochrome b6f (Cytb6f) or NAD(P)H dehydrogenase complex (NDH) has been proposed as a means for regulating photosynthesis. However, structural details about the binding positions in plant PSI are lacking. We analyzed large data sets of electron microscopy single particle projections of supercomplexes obtained from the stroma membrane of Arabidopsis thaliana. By single particle analysis, we established the binding position of Cytb6f at the antenna side of PSI. The rectangular-shaped Cytb6f dimer binds at the side where Lhca1 is located. The complex binds with its short side rather than its long side to PSI, which may explain why these supercomplexes are difficult to purify and easily disrupted. Refined analysis of the interaction between PSI and the NDH complex indicates that in total up to 6 copies of PSI can arrange with one NDH complex. Most PSI-NDH supercomplexes appeared to have 1–3 PSI copies associated. Finally, the PSI-LHCII supercomplex was found to bind an additional LHCII trimer at two positions on the LHCI side in Arabidopsis. The organization of PSI, either in a complex with NDH or with Cytb6f, may improve regulation of electron transport by the control of binding partners and distances in small domains.  相似文献   

18.
Subunit stoichiometry of the chloroplast photosystem I complex   总被引:2,自引:0,他引:2  
A native photosystem I (PS I) complex and a PS I core complex depleted of antenna subunits has been isolated from the uniformly 14C-labeled aquatic higher plant, Lemna. These complexes have been analyzed for their subunit stoichiometry by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis methods. The results for both preparations indicate that one copy of each high molecular mass subunit is present per PS I complex and that a single copy of most low molecular mass subunits is also present. These results suggest that iron-sulfur center X, an early PS I electron acceptor proposed to bind to the high molecular mass subunits, contains a single [4Fe-4S] cluster which is bound to a dimeric structure of high molecular mass subunits, each providing 2 cysteine residues to coordinate this cluster.  相似文献   

19.
C A Buser  B A Diner  G W Brudvig 《Biochemistry》1992,31(46):11441-11448
The stoichiometry of cytochrome b559 (one or two copies) per reaction center of photosystem II (PSII) has been the subject of considerable debate. The molar ratio of cytochrome b559 has a number of significant implications on our understanding of the functional role of cytochrome b559, the mechanism of electron donation in PSII, and the stoichiometry of the other redox-active, reaction center components. We have reinvestigated the stoichiometry of cytochrome b559 in PSII-enriched and thylakoid membranes, using differential absorbance and electron paramagnetic resonance spectroscopies. The data from both quantitation procedures strongly indicate only one copy of cytochrome b559 per reaction center in PSII-enriched membranes and also suggest one copy of cytochrome b559 per reaction center in thylakoid membranes.  相似文献   

20.
An overexpression system for spinach apocytochrome b(6) as a fusion protein to a maltose-binding protein in Escherichia coli was established using the expression vector pMalp2. The fusion of the cytochrome b(6) to the periplasmic maltose-binding protein directs the cytochrome on the Sec-dependent pathway. The cytochrome b(6) has a native structure in the bacterial cytoplasmic membrane with both NH(2) and COOH termini on the same, periplasmic side of the membrane but has the opposite orientation compared to that in thylakoid. Our data also show that in the E. coli cytoplasmic membrane, apocytochrome b(6) and exogenic hemes added into a culture media spontaneously form a complex with similar spectroscopic properties to native cytochrome b(6). Reconstituted membrane-bound cytochrome b(6) contain two b hemes (alpha band, 563 nm; average E(m,7) = -61 +/- 0.84 and -171 +/- 1.27 mV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号