首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oleate Δ12-hydroxylase activity was measured in extracts of developing castor bean seeds. Most of the hydroxylase activity is associated with microsomes. However, when microsomes are washed, the activity is completely lost. Some (50%) of the activity can be restored by addition of the 100,000g supernatant to the washed microsomes. Supernatant extracts (100,000g) of developing safflower seeds are able to restore all (100%) of the hydroxylase activity to the washed castor bean microsomes. In addition, purified mammalian catalase can restore some (25%) of the activity to the microsomes but is not as effective as either castor bean or safflower 100,000g supernatants. The Km of the hydroxylase for oxygen is 4 micromolar. Inasmuch as the activity was not inhibited by high concentrations of either carbon monoxide or cyanide, neither the involvement of cytochrome P450 nor other cytochrome systems is suggested. The enzyme system was not saturated by oleoyl-CoA, even at concentrations as high as 200 micromolar. When [14C]oleoyl-CoA is supplied as a substrate, the acyl component is rapidly transferred to phosphatidylcholine (PC). Hydroxylation may occur on PC or on a lipid which receives its acyl component from PC. However, exogeneously added 2-[1-14C]oleoyl-PC was hydroxylated at a much lower rate than was [1-14C]oleoyl-CoA added as the primary substrate.  相似文献   

2.
Stearyl-CoA desaturase of bovine mammary microsomes   总被引:4,自引:0,他引:4  
Stearyl-CoA desaturase from the microsomal fraction of lactating bovine mammary tissue had a specific activity of 0.4 nmoles oleate formed min?1 mg?1 protein. NADH was required for desaturase activity. However, oxidized NAD+ and NADP+ supported measurable desaturase activity. Km values for stearyl-CoA and NADH were 25.0 μm and 3.0 μm, respectively. Desaturase was depressed by increasing concentrations of other acyl-CoA esters, i.e., palmityl-CoA and oleyl-CoA (>10 μm). Sn-1,2 diglycerides (1–2.0 μm) depressed desaturase slightly in the order 0–20%, as did l-α-glycerolphosphate (0.2–3.6 μm). 1-Acyl-sn-glycerol-3-phosphorylcholine (>0.1 μm) depressed desaturase activity markedly. Sonication of the microsomal preparation stimulated desaturase activity. The addition of ethanol depressed desaturation, and EDTA inhibited desaturation. Palmityl CoA was equally desaturated by the microsomes. The acyl-CoA desaturase was very stable when stored at ?30 °C as a freeze-dried microsomal preparation, i.e., activity was retained after 12-month storage.Labeled stearate and oleate were isolated as esters (triglycerides and phospholipids) and as free fatty acids, indicating the presence of acyl transferases and acyl-CoA hydrolase in mammary microsomes.  相似文献   

3.
Two lipolytic enzymes have been separated and partially purified from potato tubers. One enzyme of higher isoelectric value, possessed acyl hydrolase activity toward a number of p-nitrophenyl fatty acyl derivatives, the relative activity depending on the fatty acyl chain length. There was also some activity towards phosphatidyl choline. The other enzyme possessed phospholipase and galactolipase activity, but showed a low acyl hydrolase activity towards p-nitrophenyl fatty acyl derivatives. When applied to plant tissues, the enzyme with the greater acyl hydrolase activity caused rapid ion efflux from discs of potato tuber and beetroot, foflowed by reabsorption of ions by the tissues. The purified phospholipase did not produce this effect but induced acid phosphatase leakage from lysosome-enriched fractions of potato sprout tissue. No maceration of tissue or protoplast disruption was observed when either of the two enzymes were incubated with a variety of plant preparations.  相似文献   

4.
Evidence is presented that lipid plays an important role in the function of the microsomal cholesterol ester hydrolase of rat brain. The catalytic activity was almost completely lost when most of cholesterol and up to 70% of phospholipids were removed from lyophilized microsomes by extraction with chloroform at ?20 °C. The activity was completely restored when the chloroform-extracted lipid was added back to the assay mixture in the amount equal to the original concentration. Cholesterol or individual phospholipid alone was not effective in reconstituting the lost enzymatic activity. Effective restoration of the activity required addition of cholesterol and a phospholipid. Among the phospholipids tested, phosphatidylserine was the most effective, followed by ethanolamine phospholipids and phosphatidylcholine. The apparent V was dependent on the amount of the lipid added, while the Km for the substrate, cholesteryl oleate, remained relatively constant, indicating that the effect of the added lipid was primarily on the reaction rate and not on the affinity of the enzyme to the substrate. The similar lipid dependence was observed with the Triton X-100-solubilized enzyme preparation. When the lipid phase of the microsomal membrane was perturbed, the enzyme became unstable when heated at 50 °C and its activity showed a discontinuity in the Arrhenius plots. Therefore, not only the concentration of the added lipid but also the physical state of the lipid phase around the enzyme appeared to be important for the activity of the rat brain microsomal cholesterol ester hydrolase.  相似文献   

5.
The recombinant enzyme lichenase of size 30 kDa was over-expressed using E. coli cells and purified by immobilized metal ion affinity chromatography (IMAC) and size exclusion chromatography. The enzyme displayed high activity towards lichenan and β-glucan. The enzyme showed no activity towards carboxymethyl cellulose, laminarin, galactomannan or glucomannan. Surprisingly, affinity-gel electrophoresis on native-PAGE showed that the enzyme binds only glucomannan and not lichenan or β-glucan or other manno-configured substrates. The enzyme was thermally stable between the temperatures 60°C and 70°C. Presence of Cu2+ ions at a concentration of 5 mM enhanced enzyme activity by 10% but higher concentrations of Cu2+ (>25 mM) showed a sharp fall in the enzyme activity. Heavy metal ions Ni2+, Co2+ and Zn2+ did not affect the activity of the enzyme at low concentrations (0–10 mM) but at higher concentrations (>10 mM), caused a decrease in the enzyme activity. The crystals of lichenase were produced and the 3-dimensional structure of native form of enzyme was previously solved at 1.50 Å. Lichenase displayed (β/α)8-fold a common fold among many glycoside hydrolase families. A cleft was identified that represented the probable location of active site.  相似文献   

6.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a selenoprotein which inhibits peroxidation ofmicrosomes. The human enzyme, which may play an important role in protecting the cell from oxidative damage, has not been purified or characterized. PHGPx was isolated from human liver using ammonium sulphate fractionation, affinity chromatography on bromosulphophthalein-glutathione-agarose, gel filtration on Sephadex G-50, anion exchange chromatography on Mono Q resin and high resolution gel filtration on Superdex 75. The protein was purified about 112,000-fold, and 12 μg, was obtained from 140 g of human liver with a 9% yield. PHGPx was active on hydrogen peroxide, cumene hydroperoxide, linoleic acid hydroperoxide and phosphatidylcholine hydroperoxide. The molecular weight, as estimated from non-denaturing gel filtration, was 16,100. The turnover number (37°C, pH 7.6) on (β-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl)-γ-palmitoyl)-l-α-phosphatidylcholine was 91 mol mo−1 s−1. As reported for pig PHGPx, activity of the enzyme from human liver on cumene hydroperoxide and on linoleic acid hydroperoxide was inhibited by deoxycholate. In the presence of glutathione, the enzyme was a potent inhibitor of ascorbate/Fe induced lipid peroxidation in microsomes derived from human B lymphoblastic AHH-1 TK ± CHol cells but not from human liver microsomes. Human cell line microsomes contained no detectable PHGPx activity. However, microsomes prepared from human liver contained 0.009 U/mg of endogenous PHGPx activity, which is 4–5 times the activity required for maximum inhibition of lipid peroxidation when pure PHGPx was added back to human lymphoblastic cell microsomes. PHGPx from human liver exhibits similar properties to previously described enzymes with PHGPx activity isolated from pig and rat tissues, but does not inhibit peroxidation of human liver microsomes owing to a high level of PHGPx activity already present in these microsomes.  相似文献   

7.
Vitamin K-dependent carboxylation of glutamic acid residues to γ-carboxyglutamic acid was demonstrated in proteins of lung microsomes. The carboxylation was 12% of that in liver microsomes per milligram of mierosomal protein. Carboxylation was very low with microsomes of untreated rats but increased with time up to 42 h after warfarin administration. Carboxylation was highest with microsomes from rats fed a vitamin K-deficient diet. This suggests that a protein(s) accumulates which can be carboxylated in vitro/J. Lung microsomes also catalyzed the vitamin K-dependent carboxylation of the peptide Phe-Leu-Glu-Glu-Leu. The peptide carboxylase activity was 9% of that obtained with liver microsomes. Vitamin K-dependent protein carboxylation required NADH or dithioerythritol, suggesting that vitamin K had to be reduced to the hydroquinone. Accordingly, vitamin K1 hydroquinone had carboxylating activity without added reducing agents. Menaquinone-3 was considerably more active than phylloquinone. The temperature optimum for carboxylation was around 27 °C.  相似文献   

8.
From a biogas reactor metagenome an ORF (bp_cel9A) encoding a bacterial theme C glycoside hydrolase family 9 (GH9) enzyme was recombinantly produced in E. coli BL21 pQE-80L. BP_Cel9A exhibited?≤?55% identity to annotated sequences. Subsequently, the enzyme was purified to homogeneity by affinity chromatography. The endo-beta-glucanase BP_Cel9A hydrolyzed the beta-1,3–1,4-linked barley beta-glucan with 24 U/mg at 30 °C and pH 6.0. More than 62% of activity was measured between 10 and 40 °C. Lichenan and xyloglucan were hydrolyzed with 67% and 40% of activity, respectively. The activity towards different substrates varied with different temperatures. However, the enzyme activity on CMC was extremely low (>?1%). In contrast to BP_Cel9A, most GH9 glucanases act preferably on crystalline or soluble cellulose with only side activities towards related substrates. The addition of calcium or magnesium enhanced the activity of BP_Cel9A, especially at higher temperatures. EDTA inhibited the enzyme, whereas EGTA had no effect, suggesting that Mg2+ may adopt the function of Ca2+. BP_Cel9A exhibited a unique substrate spectrum when compared to other GH9 enzymes with great potential for mixed-linked glucan or xyloglucan degrading processes at moderate temperatures.  相似文献   

9.
Thylakoid membranes were treated by potato lipolytic acyl hydrolase, phospholipases A2 from pancreas and snake venom, and by phospholipase C from Bacillus cereus under various conditions. The changes in the uncoupled rates of electron transport through Photosystem I (PS I) and in lipid composition were followed during these treatments. Pancreatic phospholipase A2 which destroyed all phospholipids in thylakoid membranes stimulated the NADP+ reduction supported by reduced 2,6-dichlorophenolindophenol. This stimulation concerned only the dark but not the light reactions of this pathway. The main site of action of pancreatic phospholipase A2 may be located on the donor side of PS I; the hydrolysis of phospholipids at this site caused an increased ability of reduced 2,6-dichlorophenolindophenol and ascorbate alone to feed electrons into PS I. A second site may be located on the acceptor side of PS I, probably between the primary acceptor and the ferredoxin system. When thylakoid membranes were first preincubated with or without lipolytic acyl hydrolase at 30°C (pH 8), the NADP+ photoreduction was inhibited whilst the methyl viologen-mediated O2 uptake was stimulated. A subsequent addition of pancreatic phospholipase A2 (which had the same hydrolysis rates for phosphatidylglycerol but not for phosphatidylcholine) further stimulated the O2 uptake and restored NADP+ photoreduction. The extent of this stimulation, which depended on the presence of lipolytic acyl hydrolase, was ascribed partly to the hydrolysis of the phospholipids and partly to the generation of their lyso derivatives but not to the release of free fatty acids. On the contrary, phospholipase C which destroyed only phosphatidylcholine failed to restore this activity. It is suggested that phosphatidylglycerol is the only phospholipid associated with thylakoid membrane structures supporting PS I activities and that this lipid may play a physiological role in the regulation of these activities.  相似文献   

10.
A M Edelman  E G Krebs 《FEBS letters》1982,138(2):293-298
Phosphatidylethanolamine (PE) was isolated from membranes of Bacillus megaterium. The organism was grown at 20°C and 55°C. The phase equilibria in PE/water systems were studied by 2H and 31P nuclear magnetic resonance, and by polarized light microscopy. PE isolated from B. megaterium grown at 20°C forms a lamellar liquid crystalline phase at the growth temperature, and at low water contents a cubic liquid crystalline phase at 58°C. The ratio iso/ante-iso acyl chains was 0.3 in this lipid. PE isolated from this organism grown at 55°C forms only a lamellar liquid crystalline phase up to at least 65°C. In this lipid the ratio iso/ante-iso acyl chains was 3.2.  相似文献   

11.
The characteristics of acyl CoA:cholesterol acyltransferase (ACAT; EC 2.3.1.26) in microsomes prepared from human term placenta were studied and the rate of incorporation of [1-14C] oleoyl CoA into cholesteryl esters was measured. The apparent Km of the enzyme for [1-14C] oleoyl CoA was 38 ± 9 μm and the V for the reaction was 15 ± 6 pmol × mg? protein × min?1. The Hill coefficient for the reaction was 1.2, indicative of some degree of positive cooperativity. Cholesterol, added to the incubation mixture, did not influence ACAT activity, indicating that endogenous microsomal cholesterol served as an effective substrate for the placental ACAT enzyme. However, [1,2-3H]cholesterol in the presence of oleoyl CoA was incorporated into cholesteryl esters by placental microsomes. When progesterone was present in the incubation mixture at a concentration of 20 μm, ACAT activity was inhibited 50%. Pregnenolone, 5α-dihydroprogesterone, 17α-hydroxyprogesterone, deoxycorticosterone, dehydroisoandrosterone, androstenedione, testosterone, and estradiol-17β also inhibited ACAT activity, whereas corticosterone, cortisol, and estriol had little effect. These results are supportive of the view that ACAT activity in human placenta may be regulated by endogenously synthesized steroid hormones.  相似文献   

12.
A novel amidase gene (bami) was cloned from Brevibacterium epidermidis ZJB-07021 by combination of degenerate PCR and high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). The deduced amino acid sequence showed low identity (≤55 %) with other reported amidases. The bami gene was overexpressed in Escherichia coli, and the resultant inclusion bodies were refolded and purified to homogeneity with a recovery of 22.6 %. Bami exhibited a broad substrate spectrum towards aliphatic, aromatic and heterocyclic amides, and showed the highest acyl transfer activity towards butyramide with specific activity of 1331.0 ± 24.0 U mg?1. Kinetic analysis demonstrated that purified Bami exhibited high catalytic efficiency (414.9 mM?1 s?1) for acyl transfer of butyramide, with turnover number (K cat) of 3569.0 s?1. Key parameters including pH, substrate/co-substrate concentration, reaction temperature and catalyst loading were investigated and the Bami showed maximum acyl transfer activity at 50 °C, pH 7.5. Enzymatic catalysis of 200 mM butyramide with 15 μg mL?1 purified Bami was completed in 15 min with a BHA yield of 88.1 % under optimized conditions. The results demonstrated the great potential of Bami for the production of a variety of hydroxamic acids.  相似文献   

13.
The effects of hypothyroidism and one injection of l-thyroxine on oxidative phosphorylation and the composition of proteins and phospholipids were examined in vesicles prepared from rat liver mitochondria by digitonin extractions. At 30 °C, the rates of ADP phosphorylation in sites I and II were below normal, and Mg2+-ATPase activity was greater than normal in vesicles from hypothyroid rats. At temperatures below 20 °C and above 30 °C, the Mg2+-ATPase was not accelerated above normal rates, a feature of temperature dependence shared by ADP phosphorylation (Chen, Y.-D. I., and Hoch, F. L., 1976, Arch. Biochem. Biophys.172, 741–744). Respiration at 30 °C was undiminished in hypothyroid vesicles, as were the flavin and cytochrome contents, and thyroxine administration corrected the phosphorylation rate at 30 °C in 3 days without changing either respiration or electron-carrier contents. The 30 °C phosphorylation defect comprised a decreased V and Km for ADP and a decrease in the number of phosphorylating sites (measured with oligomycin) that accounted for most of the decreased phosphorylation rates, either dependent on or independent of the adenine nucleotide carrier. Vesicles from hypothyroid rats were not detectably depleted in major protein subunits, but were abnormal in phospholipid fatty acid contents. Thyroxine injection corrected the low unsaturation index of the fatty acids and the membrane contents of linoleic acid and its fatty acyl metabolites. Hypothyroidism appears to affect oxidative phosphorylation through the altered inner membrane lipid environment, which implies that previously reported direct, reversible effects of thyroxine may mimic repletion of the membranes with unsaturated fatty acyl groups.  相似文献   

14.
A putative endo-1,4-β-d-xylanohydrolase gene xyl10 from Aspergillus niger, encoding a 308-residue mature xylanase belonging to glycosyl hydrolase family 10, was constitutively expressed in Pichia pastoris. The recombinant Xyl10 exhibited optimal activity at pH 5.0 and 60 °C with more than 50 % of the maximum activity from 40 to 70 °C. It retained more than 90 % of the original activity after incubation at 60 °C (pH 5.0) for 30 min and more than 74 % after incubation at pH 3.0–13.0 for 2 h (25 °C). The specific activity, K m and V max values for purified Xyl10 were, respectively, 3.2 × 103 U mg?1, 3.6 mg ml?1 and 5.4 × 103 μmol min?1 mg?1 towards beechwood xylan. The enzyme degraded xylan to a series of xylooligosaccharides and xylose. The recombinant enzyme with these properties has the potential for various industrial applications.  相似文献   

15.
Solubilized NADPH-cytochrome P-450 reductase has been purified from liver microsomes of phenobarbital-treated rats. When added to microsomes, the reductase enhances the monoxygenase, such as aryl hydrocarbon hydroxylase, ethoxycoumarin O-dealkylase, and benzphetamine N-demethylase, activities. The enhancement can be observed with microsomes prepared from phenobarbital- or 3-methylcholanthrene-treated, or non-treated rats. The added reductase is believed to be incorporated into the microsomal membrane, and the rate of the incorporation can be assayed by measuring the enhancement in ethoxycoumarin dealkylase activity. It requires a 30 min incubation at 37°C for maximal incorporation and the process is much slower at lower temperatures. The temperature affects the rate but not the extent of the incorporation. After the incorporation, the enriched microsomes can be separated from the unbound reductase by gel filtration with a Sepharose 4B column. The relationship among the reductase added, reductase bound and the enhancement in hydroxylase activity has been examined. The relationship between the reductase level and the aryl hydrocarbon hydroxylase activity has also been studied with trypsin-treated microsomes. The trypsin treatment removes the reductase from the microsomes, and the decrease in reductase activity is accompanied by a parallel decrease in aryl hydrocarbon hydroxylase activity. When purified reductase is added, the treated microsomes are able to gain aryl hydrocarbon hydroxylase activity to a level comparable to that which can be obtained with normal microsomes. The present study demonstrates that purified NADPH-cytochrome P-450 reductase can be incorporated into the microsomal membrane and the incorporated reductase can interact with the cytochrome P-450 molecules in the membrane, possibly in the same mode as the endogenous reductase molecules. The result is consistent with a non-rigid model for the organization of cytochrome P-450 and NADPH-cytochrome P-450 reductase in the microsomal membrane.  相似文献   

16.
An enzyme which will deacylate sulphoquinovosyl diacylglycerol (SQDG) has been partially purified from the leaves of runner bean (Phaseolus multiflorus). No monoacyl intermediate was observed and the acyl hydrolase was more active towards unsaturated molecular species of SQDG than towards saturated species. The major peak of activity of SQDG acyl hydrolase, separated on both DEAE-cellulose and Sephadex columns, also contained galactolipid acyl hydrolase activity. The distribution of these activities together with substrate competition and inhibitor experiments indicated that at least part of the SQDG acyl hydrolase activity was due to an enzyme that also hydrolysed galactolipids.  相似文献   

17.
A mannosylglycerate synthase (MgS) gene detected in the genome of Selaginella moellendorffii was expressed in E. coli and the recombinant enzyme was purified and characterized. A remarkable and unprecedented feature of this enzyme was the ability to efficiently synthesize mannosylglycerate (MG) and glucosylglycerate (GG) alike, with maximal activity at 50 °C, pH 8.0 and with Mg2+ as reaction enhancer. We have also identified a novel glycoside hydrolase gene in this plant’s genome, which was functionally confirmed to be highly specific for the hydrolysis of MG and GG and named MG hydrolase (MgH), due to its homology with bacterial MgHs. The recombinant enzyme was maximally active at 40 °C and at pH 6.0–6.5. The activity was independent of cations, but Mn2+ was a strong stimulator. Regardless of these efficient enzymatic resources we could not detect MG or GG in S. moellendorffii or in the extracts of five additional Selaginella species. Herein, we describe the properties of the first eukaryotic enzymes for the synthesis and hydrolysis of the compatible solutes, MG and GG.  相似文献   

18.
Two novel glycoside hydrolase (GH) family 12 xyloglucanase genes (designated RmXEG12A and RmXEG12B) were cloned from the thermophilic fungus Rhizomucor miehei. Both genes contained open reading frames of 729 bp encoding 242 amino acids. Their deduced amino acid sequences shared 68 % identity with each other and less than 60 % with other xyloglucanases. The two genes, without the sequences for the signal peptides, were cloned and successfully expressed in Escherichia coli as active xyloglucanases, designated RmXEG12A and RmXEG12B, with similar molecular masses—25.6 and 25.9 kDa, respectively. RmXEG12A showed optimal activity at pH?6.5 and 65 °C, RmXEG12B at pH?5.0 and 60 °C. Both recombinant xyloglucanases displayed very high specific activities, 6,681.4 and 3,092.2 U?mg?1, respectively, toward tamarind xyloglucan, but no activity toward carboxymethylcellulose, Avicel, or p-nitrophenyl derivatives. The main products of tamarind xyloglucan hydrolysis by the two xyloglucanases were XXXG, XXLG/XLXG, and XLLG (where G is an unsubstituted β-d-Glc residue, X is a xylosylated β-d-Glc residue, and L is a β-d-Glc residue substituted by xylosyl-galactose).  相似文献   

19.
An acyl coenzyme A:cholesterol acyltransferase activity which directly incorporates palmitoyl coenzyme A into cholesterol esters using endogenous cholesterol as substrate was demonstrated in microsomal preparations from neonatal chick brain. The enzyme showed, at pH 7.4, about 2-fold greater activity than that observed at pH 5.6. Nearly 10-times higher esterifying activity was found in brain microsomes using palmitoyl coenzyme A than that with palmitic acid. The acyltransferase activity was clearly different from the other cholesterol-esterifying enzymes previously found in brain, which incorporated free fatty acids into cholesterol esters and did not require ATP or coenzyme A as cofactors. Chick brain microsomes also incorporated palmitoyl coenzyme A into phospholipids and triacylglycerols. However, most of the radioactivity from this substrate was found in the fatty acid fraction, due to the presence of an acyl coenzyme A hydrolase activity in the enzyme preparations. Therefore, the formation of palmitate was tested during all the experiments. The brain acyltransferase assay conditions were optimized with respect to protein concentration, incubation time and palmitoyl coenzyme A concentration. Microsomal activity was independent of the presence of dithiothreitol in the incubation medium and microsomes can be stored at −40°C for several weeks without losing activity. Addition of fatty acid-free bovine serum albumin to brain microsomal preparations produced a considerable increase in the acyltransferase activity, while acyl coenzyme A hydrolase was clearly inhibited. Results obtained show the existence in neonatal chick brain of an acyl coenzyme A:cholesterol acyltransferase activity similar to that found in a variety of tissues from different species but not previously reported in brain.  相似文献   

20.
The acyl transfer activity of the amidase of Alcaligenes sp. MTCC 10674 has been applied to the conversion of benzamide and hydroxylamine to benzohydroxamic acid. The unique features of the acyl transfer activity of this organism include its optimal activity at 50 °C and very high substrate (100 mM benzamide) and product (90 mM benzohydroxamic acid) tolerance among the hitherto reported enzymes. The bench scale production of benzohydroxamic acid was carried out in a fed-batch reaction (final volume 1 l) by adding 50 mM benzamide and 250 mM of hydroxylamine after every 20 min for 80 min in 0.1 M potassium phosphate buffer (pH 7.0) at 50 °C, using resting cells equal to 4.0 mg dcm/ml of reaction mixture. From 1 l of reaction mixture 33 g of benzohydroxamic acid was recovered with 24.6 g l?1 h?1 productivity. The acyl transfer activity of the amidase of Alcaligenes sp. MTCC 10674 and the process developed in the present study are of industrial significance for the enzyme-mediated production of benzohydroxamic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号