首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkaline protease production by Bacillus licheniformis was studied in an aqueous two-phase system composed of 5% (w/w) polyethylene glycol 6000 (PEG 6000) and 5% (w/w) dextran T500. The top phase was continuous and rich in PEG while the bottom phase was dispersed and rich in dextran. The cells were retained in the bottom phase and at the interface. The two-phase system produced less enzyme in total amount than the control in the early phase, but after 50 h the enzyme produced in the control system decreased while the aqueous two-phase system continued its production and finally the total enzyme activity reached 1.3 times that of the control culture. In order to improve the productivity of protease, repeated batch cultivation were successfully carried out four times by optimizing the top phas composition of freshly added media, which resulted in 13.8, 35.9, 27.8 and 34.7 units ml−1 h−1 of protease based on the amounts of replaced top phases, respectively.  相似文献   

2.
ISOLATION OF PLASMA MEMBRANE FRAGMENTS FROM HELA CELLS   总被引:13,自引:7,他引:6       下载免费PDF全文
A method for isolating plasma membrane fragments from HeLa cells is described. The procedure starts with the preparation of cell membrane "ghosts," obtained by gentle rupture of hypotonically swollen cells, evacuation of most of the cell contents by repeated washing, and isolation of the ghosts on a discontinuous sucrose density gradient. The ghosts are then treated by minimal sonication (5 sec) at pH 8.6, which causes the ghost membranes to pinch off into small vesicles but leaves any remaining larger intracellular particulates intact and separable by differential centrifugation. The ghost membrane vesicles are then subjected to isopycnic centrifugation on a 20–50% w/w continuous sucrose gradient in tris-magnesium buffer, pH 8.6. A band of morphologically homogeneous smooth vesicles, derived principally from plasma membrane, is recovered at 30–33% (peak density = 1.137). The plasma membrane fraction contained a Na-K-activated ATPase activity of 1.5 µmole Pi/hr per mg, 3% RNA, and 13.8% of the NADH-cytochrome c reductase activity of a heavier fraction from the same gradient which contained mitochondria and rough endoplasmic vesicles. The plasma membranes of viable HeLa cells were marked with 125I-labeled horse antibody and followed through the isolation procedure. The specific antibody binding of the plasma membrane vesicle fraction was increased 49-fold over that of the original whole cells.  相似文献   

3.
New Aqueous Two Phase System Comprising Polyethylene Glycol and Xanthan   总被引:1,自引:0,他引:1  
A new aqueous two phase system comprising polyethylene glycol and xanthan is reported together with its phase diagram. The phase composition of the bottom phase did not vary (PEG 1.6–1.8% w/w; xanthan 0.24–0.28% w/w) while that of the top phase varied significantly (PEG 4–5% w/w, xanthan 0.05–1.37% w/w). Unlike conventional aqueous two phase systems, the viscosity of the top phase is also high and values are comparable to that of the bottom phase. When BSA was used as a model protein, it partitioned entirely into the bottom phase.  相似文献   

4.
A rapid method for purifying rat liver plasma membranes of high purity and yield is described. Squashed liver was homogenized in an aqueous polyethylene glycol-dextran two-phase system. After phase separation and reextraction of the bottom phase with fresh top phase, the combined polyethylene glycol-rich top phases were affinity partitioned in the presence of borate buffer with new bottom phase containing dextran-linked wheat-germ agglutinin. Under these conditions the lectin selectively pulled plasma membranes into the dextran-rich bottom phase, while other membranes preferentially distributed in the top phase. The lectin-containing bottom phase was reextracted with fresh top phase before collecting the purified plasma membranes by centrifugation. This protocol resulted in a preparation that was 30- to 40-fold enriched compared to the homogenate in plasma membrane markers for both the apical and basolateral domains and had yields of 55-70%. The contamination by other membranes was low. The entire procedure was completed within 90 min. The method should be useful for purifying plasma membranes also from other sources.  相似文献   

5.
The production of α-amylase (1,4-α-d-glucan glucanohydrolase, EC 3.2.1.1) by Bacillus subtilis has been studied in repeated batch fermentations in aqueous two-phase systems. In a phase system composed of PEG 600, 8% (w/w), PEG 3350, 5% (w/w)/Dextran T 500, 2% (w/w), 82% of the enzyme partitioned to the top phase. The enzyme concentration in the top phase reached 0.85–1.35 U ml?1 during the fermentations compared with 0.58 U ml?1 in the reference fermentation. In the phase system composed of PEG 3350, 9% (w/w)/Dextran T 500, 2% (w/w), 73% of the enzyme partitioned to the top phase. However, the enzyme concentration in this phase system reached only 0.35 U ml?1 in the top phase. The bacterial cells were microscopically observed to partition totally to the bottom phase in the aqueous two-phase system used. The results are discussed in relation to recirculation of cells by immobilizing to a solid matrix. Extraction of the product to the top phase and the effect of the phase polymers, especially PEG, on the production are also discussed.  相似文献   

6.
The conversion of benzylpenicillin (BP) to 6-aminopenicillanic acid (6-APA) using penicillin acylase (penicillin amidohydrolase, EC 3.5.1.11) has been studied in aqueous two-phase systems. In a system composed of 8.9% (w/w) PEG 20000/7.6% (w/w) potassium phosphate the enzyme was almost completely partitioned to the bottom phase (K < 0.01), which allowed repeated batch conversions, recirculating the enzyme several times. The initial specific productivities were 0.31–1.47 μmol 6-APA mg protein?1 min?1 in repeated conversions over five steps. The yield obtained from the top phase was 0.47–0.71 mol 6-APA mol BP?1. The results are discussed in relation to recirculating the enzyme by immobilizing it to a solid matrix. Despite the high phosphate concentration in the bottom phase the system needs to be titrated in order for the reaction to proceed. Titration of the top phase alone protected the enzyme from denaturation by strong alkali used for the titration.  相似文献   

7.
Shearing of ghosts in a French pressure cell produces three classes of microvesicles that differ from endocytic vacuoles, exocytic vacuoles, and inside-out vesicles. It was thought that an analysis of these vesicles might provide some clues about the assembly of proteins within the human erythrocyte membrane. The microvesicles were separated into three visible bands, labeled top, middle, and bottom, and assayed for activity of Mg++-ATPase, Na+, K+-ATPase, acetylcholinesterase, glyceraldehyde-phosphate dehydrogense, and NADH oxidoreductase. Their proteins were also characterized by polyacrylamide gel electrophoresis with both Coomassie blue staining, to assess total protein content and distribution, and PAS-staining, to characterize sialoglycopeptides. In order to minimize problems inherent in ghost preparation, Dodge or hypotonic ghosts and glycol or isotonic ghosts were used in all studies. Middle membrane vesicles most resembled intact ghosts. Top vesicles had reduced levels of NADH oxidoreductase and more PAS-2 at the expense of PAS-1. The bottom vesicle class was very much enriched with PAS-1 at the expense of PAS-2, and PAS-3 was completely absent. In addition bottom vesicles had highest NADH oxidoreductase activity but lowest activity of all the other enzymes measured. These vesicle classes could not have been produced by tangential shearing through the membrane, nor could radial shearing through a membrane in which all proteins were free to move laterally have accounted for the three discrete vesicle classes or for their different patterns of enzymes and proteins. The analysis of the microvesicles produced by shearing is most consistent with radial shearing through membranes where there may be fixed domains superimposed on the basic fluid-mosaic structure.  相似文献   

8.
Isolation, Composition, and Structure of Membrane of Listeria monocytogenes   总被引:6,自引:6,他引:0  
The plasma membrane of Listeria monocytogenes strain 42 was prepared by osmotic lysis of protoplasts with tris(hydroxymethyl)aminomethane (Tris) buffer, pH 8.2, containing MgCl2 and glucose, followed by washing with NaCl and MgCl2 in Tris buffer. Electron microscopy showed that the preparation was not contaminated with cytoplasmic material. The membrane preparation was composed of 55 to 60% protein, 1.5% ribonucleic acid, 0.1% deoxyribonucleic acid, 1.3 to 2.3% carbohydrate, 0.17 to 0.38% amino sugar, 0.2 to 0.4% rhamnose, 3.5 to 4.0% phosphorus, 10.5 to 12.0% nitrogen, and 30 to 35% lipid. Amino acid composition of the washed membrane showed some variation from that of the whole cells. Sulfur-containing amino acids were not present in the membrane hydrolysate. The membrane carbohydrate contained glucose, galactose, ribose, and arabinose. The membrane lipid was 80 to 85% phospholipid and 15 to 20% neutral lipid. The lipid contained 2.3 to 3.0% phosphorus, 2.5 to 3.0% carbohydrate, and a very small amount of nitrogen (0.2 to 0.3%). The phospholipid was of the phosphatidyl glycerol type. Electron micrographs of the washed membrane showed three layers. The outer and inner layers varied in thickness from 25 to 37 A and the middle layer from 20 to 25 A. The total thickness varied between 85 and 100 A. These preparations contained many vesicles which stained heavily with lead citrate. Some vesicles were also attached to the protoplast ghosts in the form of extrusions or intrusions, or both. Membrane preparations obtained by lysis of protoplasts in the absence of MgCl2 were fragmented and contained less lipid (20 to 22%) and ribonucleic acid (0.3 to 0.5%) than preparations prepared with MgCl2.  相似文献   

9.
A simplified method for the isolation of a plasma membrane-enriched fraction from plants utilizing an aqueous two-polymer phase system is outlined. Mainly, the plant used was Orchard grass (Dactylis glomerata L.). The two-phase system consisted of 5.6% (w/w) of dextran T500 and 5.6% (w/w) of polyethyleneglycol 4000 in 0.5 molar sorbitol-15 millimolar Tris-maleate (pH 7.3), and 30 millimolar NaCl. In this system, the plasma membranes and the other membranes were preferentially partitioned into the top phase and into the lower phase, respectively. The purity of the isolated plasma membrane was sufficiently high even after a single partition (i.e. about 85% purity) and more than 90% purity was obtained after repeating the partition in a newly prepared lower phase. The plasma membrane was identified with the aid of phosphotungstic acid-chromic acid stain and the association of vanadate-sensitive Mg2+-ATPase. The plasma membrane-associated ATPase had a pH optimum at 6.5 and showed a high specificity for Mg2+ and ATP. KCl stimulation was low (6% stimulation) at the pH optimum, but a relatively high stimulation (23%) occurred at pH 5.5. This method for plasma membrane isolation may be applicable to a wide variety of plants and plant tissue including green leaves.  相似文献   

10.
《Process Biochemistry》2010,45(5):752-756
Diosgenin is an important starting material in the steroidal hormone industry. The yield of diosgenin obtained from the fermentation of Dioscorea zingibernsis C. H. Wright (DZW) by Trichoderma harzianum is higher than that typically obtained from acid hydrolysis. In this paper, the extraction of steroids in the culture broth was studied. A novel three-liquid-phase system (TLPS) consisted of petroleum ether, ethanol, ammonium sulphate and water was used to separate diosgenin and steroidal saponins in the culture broth. The partition behaviors of various steroidal saponins, diosgenin and glucose were investigated. From this, an optimized TLPS was obtained, which composed of 30% ethanol (w/w), 17% (NH4)2SO4 (w/w) and 40% (w/w) petroleum ether. In the optimized TLPS, almost all of the diosgenin was extracted into the top phase giving a recovery of 97.24%, whereas the steroidal saponins were mainly extracted into the middle phase, with recoveries of zingibernsis newsaponin, deltonin and diosgenin-diglucoside reaching almost 100%. The recoveries of trillin and diosgenin-triglucoside were 96.03% and 98.82%, respectively. Glucose tended to remain in the bottom phase, giving a recovery of 72.01%. The three-liquid-phase extraction (TLPE) successfully resulted in the simultaneous separation of diosgenin, untransformed steroidal saponins and glucose.  相似文献   

11.
In order to develop a new strategy for β-lactoglobulin (β-lg) removal from whey protein, partitioning of α-lactalbumin (α-la), β-lg and glycomacropeptide (Gmp) was studied using aqueous two phase systems (ATPS). A system composed of 13% (w/w) polyethylene glycol (PEG, average molar mass 2000 g/mol) and 13% (w/w) potassium phosphate was used at 25°C. A central composite rotatable design (CCRD) associated to the response surface methodology (RSM) was applied to investigate the effects of NaCl concentration and pH on the partition of these proteins. It was found that α-la and Gmp partitioned to the top phase rich in PEG, whereas β-lg partitioned to the bottom phase rich in salt. According to the RSM, optimal conditions for β-lg removal where found where pH was equal to 6.7 and salt concentration was 0.35 mol/L. Under these conditions, the partition coefficient K(α) was 0.48 and K(Gmp) was 0.92. On the other hand, the partition coefficient K(β) was only 0.01. In such conditions β-lg preferentially concentrates in the bottom phase, while the top phase exclusively contains the proteins α-la and Gmp. Fractionation of the proteins from fresh whey was performed in a three stage cross-flow extraction system. The extraction yield for β-lg in the bottom phase was 97.3%, while the yields for α-la and Gmp in the top phase were 81.1% and 97.8%, respectively.  相似文献   

12.
Alcohol/salt-based aqueous two-phase systems (ATPSs) were used to recover lipase derived from Burkholderia pseudomallei (B. pseudomallei). Nine biphasic systems, comprised of an alcohol-based top phase (ethanol, 2-propanol and 1-propanol) and a salt-based bottom phase (ammonium sulfate, potassium phosphate and sodium citrate), were evaluated for their effectiveness in lipase recovery. The stability of lipase in each of the solutions was tested, and phase diagrams were constructed for each system. The optimum partition efficiency for the purification of lipase was obtained in an ATPS of 16% (w/w) 2-propanol and 16% (w/w) phosphate in the presence of 4.5% (w/v) NaCl. The purified lipase had a purification factor of 13.5 and a yield of 99%.  相似文献   

13.
Membrane ghosts were prepared from protoplasts of the greenalga Mougeotia, and the Ca2+-sensitivity of microtubules onthe ghosts was examined. Microtubules on the protoplast ghosts were not depolymerizedby 3 min treatment with 1 mM Ca2+. As the treatment was prolonged,some depolymerization of microtubules became evident, but evenafter 10 min about 50% of the ghosts showed no depolymerization.Ca2+ introduced into intact protoplasts seemed to be ineffectivein depolymerizing microtubules; abundant microtubules were presenton membrane ghosts prepared from protoplasts which had beentreated with 2x10–5M Ca2+-ionophore A23187 [GenBank] plus 1 mM Ca2+for 20 or 30 min. Neither 3 min treatment with 0.2% Triton X-100 nor with 1 mMCa2+ solution containing 5 min MgSO4 and 100 mM KCl caused depolymerisationof microtubules on protoplast ghosts. However, when given successively,these treatments caused complete depolymerization of microtubules. These results suggest that Mougeotia microtubules are stableto Ca2+ and that the stability is conferred by a microtubule-associatedfactor which can easily be removed by Triton X-100 treatment. (Received July 19, 1985; Accepted October 25, 1985)  相似文献   

14.
The effect of protein concentration in partitioning in PEG/salt aqueous two-phase systems has been investigated. PEG 4000/phosphate systems in the presence of 0% w/w and 8.8% w/w NaCl have been evaluated using amyloglucosidase, subtilisin, and trypsin inhibitor. Also, a PEG 4000/phosphate system with 3% w/w NaCl was used for alpha-amylase. The concentration of the protein in each of the phases affected its partition behavior. The pattern for the individual proteins was dependent on their physicochemical properties. In the top phase, maximum protein concentration was determined mainly by a steric exclusion effect of PEG, and hydrophobic interaction between PEG and proteins. In the bottom phase, maximum concentration was determined mainly by a salting-out effect of the salts present. As the ionic strength was increased in the systems the concentration in the top phase increased for all proteins. In the bottom phase an increase in ionic strength increased the salting-out effect. Amyloglucosidase had a very low maximum concentration in the PEG-rich top phase which was probably due to its large size (steric exclusion) and low hydrophobicity, and a high concentration in the salt-rich bottom phase due to its high hydrophilicity. In the case of subtilisin and trypsin inhibitor, their high concentrations in the top phase were due to their hydrophobic nature (hydrophobic interaction with PEG) and small size (negligible steric exclusion). The maximum concentration in the bottom phase for trypsin inhibitor was lower than that of subtilisin which was probably due to its higher hydrophobicity and, hence, a stronger salting-out effect. The protein concentration in each of the two phases was correlated with a "saturation"-type equation. The partition coefficient could be satisfactorily predicted, as a function of the overall protein concentration, by the ratio between the "saturation" equations of the two individual phases. Better correlations were obtained when an empirical sigmoidal Boltzmann equation was fitted to the data, since in virtually all cases the partition coefficient is constant at low protein concentration (true partitioning) and changes to a different constant value at a high overall protein concentration. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
Summary Partition and production of the extracellular chitinase from Serratia marcescens were studied in PEG/dextran aqueous two-phase systems. The enzyme partitions into the bottom phase and the cells segregate into the top phase. The best system is 2% (w/v) PEG 20000 and 5% (w/v) dextran T500. The cell growth and enzyme production kinetics are similar in the aqueous two-phase system and in the polymer-free reference system. However, the maximum enzyme concentration in the former system is 1.5 times that in the latter one.  相似文献   

16.
Detergent-resistant membrane raft fractions have been prepared from human, goat, and sheep erythrocyte ghosts using Triton X-100. The structure and thermotropic phase behaviour of the fractions have been examined by freeze-fracture electron microscopy and synchrotron X-ray diffraction methods. The raft fractions are found to consist of vesicles and multilamellar structures indicating considerable rearrangement of the original ghost membrane. Few membrane-associated particles typical of freeze-fracture replicas of intact erythrocyte membranes are observed in the fracture planes. Synchrotron X-ray diffraction studies during heating and cooling scans showed that multilamellar structures formed by stacks of raft membranes from all three species have d-spacings of about 6.5 nm. These structures can be distinguished from peaks corresponding to d-spacings of about 5.5 nm, which were assigned to scattering from single bilayer vesicles on the basis of the temperature dependence of their d-spacings compared with the multilamellar arrangements. The spacings obtained from multilamellar stacks and vesicular suspensions of raft membranes were, on average, more than 0.5 nm greater than corresponding arrangements of erythrocyte ghost membranes from which they were derived. The trypsinization of human erythrocyte ghosts results in a small decrease in lamellar d-spacing, but rafts prepared from trypsinized ghosts exhibit an additional lamellar repeat 0.4 nm less than a lamellar repeat coinciding with rafts prepared from untreated ghosts. The trypsinization of sheep erythrocyte ghosts results in the phase separation of two lamellar repeat structures (d = 6.00; 5.77 nm), but rafts from trypsinized ghosts produce a diffraction band almost identical to rafts from untreated ghosts. An examination of the structure and thermotropic phase behaviour of the dispersions of total polar lipid extracts of sheep detergent-resistant membrane preparations showed that a reversible phase separation of an inverted hexagonal structure from coexisting lamellar phase takes place upon heating above about 30 °C. Non-lamellar phases are not observed in erythrocytes or detergent-resistant membrane preparations heated up to 55 °C, suggesting that the lamellar arrangement is imposed on these membrane lipids by interaction with non-lipid components of rafts and/or that the topology of lipids in the erythrocyte membrane survives detergent treatment.  相似文献   

17.
Isolated rat-liver mitochondria were osmotically lysed by suspension and washing 3 times in cold, distilled water. Pellets obtained by centrifugation at 105,000 g for 30 min were resuspended, fixed with glutaraldehyde and OsO4, and embedded in Epon 812. Thin sections show the presence of two distinct membranous populations, each of which is relatively homogeneous in size and appearance. Swollen mitochondria (∼1.5 µ in diameter), which have been stripped of their outer membranes, are largely devoid of matrix and normal matrix granules and are referred to as "ghosts." The smaller (0.2 to 0.4 µ in diameter), empty appearing, vesicular elements, derived primarily from the outer mitochondrial membrane, can be differentiated from the ghosts on the basis of their smaller size and complete absence of internal structures, especially cristae. Each membranous element is enclosed by a single, continuous membrane; the "double membrane" organization typical of intact mitochondria is not observed. These findings indicate that the outer membrane of rat-liver mitochondria is spatially dissociated from the inner mitochondrial membrane by osmotic lysis of the mitochondria in distilled water. Three parameters of structural and functional significance in freshly isolated rat-liver mitochondria have been correlated with the structural alterations observed: (a) chemical composition (total protein, lipid phosphate and total phosphate), (b) specific and total activities of marker enzymes for mitochondrial matrix and membranes (malate dehydrogenase (MDH), D-β-hydroxybutyrate dehydrogenase (BDH) and cytochromes), and (c) integrated multienzyme functions (respiration, phosphorylation, and contraction). The data presented indicate that all mitochondrial membranes are completely conserved in the crude ghost preparation and that, in addition, about ⅓ of the matrix proteins (estimated by assays for MDH activity and protein) are retained. The study of integrated mitochondrial functions shows that a number of physiologically important multienzyme activities also are preserved in the water-washed preparation. The respiratory rate of ghosts per milligram of protein is 1.5 to 2.0 times that of intact mitochondria, which shows that the respiratory chain in the ghosts is functionally intact. The rate of phosphorylation is reduced, however, to about 25% of that measured in freshly isolated mitochondria and accounts for lowered P:O ratios using succinate as substrate (P:O ranges from 0.4 to 0.9). The phosphorylation of ADP to ATP is the only biochemical function, so far investigated, that is greatly affected by osmotic lysis. In addition, two lines of evidence suggest that the ghosts undergo an energy-dependent transformation resulting in contraction: (a) suspensions of the crude ghost preparation in 0.02 M Tris-0.125 M KCl medium show a marked increase in optical density upon the addition of ATP, and (b) ghost preparations incubated in ion-uptake medium in the absence of added calcium but in the presence of added ATP contain a large number of highly condensed ghosts (about 50% of the total profiles) when viewed as thin sections in the electron microscope. The correlated biochemical and morphological study presented here shows that the outer membrane of rat-liver mitochondria can be removed by controlled osmotic lysis without greatly impairing a number of integrated biochemical functions associated with the inner membrane.  相似文献   

18.
Recombinant Lactobacillus leichmannii ribonucleosidetriphosphate reductase (RTPR, E.C.1.17.4.2) constitutively expressed by E. coli HB101 pSQUIRE has been purified from sonicated cell material in a one-step procedure by PEG 4000 (16% (w/w))/phosphate (7% (w/w)) liquid-liquid extraction. A high yield of 75.1% RTPR in the top phase and a partitioning of 8.5:1 between total RTPR activity in top and bottom phase were obtained in this preparative system. The RTPR-containing top phase was used to reduce ATP in the 2'-position on a gram scale with high final conversion and yield proving the ribonucleotide reductase approach feasible for the preparative synthesis of 2'-deoxyribonucleotides. High concentrations of sodium acetate in the reaction served to substitute for allosteric effectors of RTPR. 1,4-Dithio-DL-threitol was used as an artificial reducing agent for RTPR.  相似文献   

19.
Action of polyethylene glycol on the fusion of human erythrocyte membranes   总被引:5,自引:0,他引:5  
Summary Factors affecting the polyethylene glycol (PEG)-induced membrane fusion were examined. Human erythrocyte membrane ghosts, cytoskeleton-free vesicles budded from erythrocytes, mechanically disrupted erythrocyte vesicles, and recombinant vesicles from glycophorin and egg phosphatidylcholine were used as models. Fusion was monitored by darkfield light microscopy and by freeze-fracture electron microscopy. Osmotic swelling was found necessary for fusion between membrane ghosts following PEG treatment. The sample with the highest fusion percentage was sealed ghosts incubated in hypotonic media after at least 5 min of treatment in <25% PEG. At similar osmolarity, glycerol, dextran and PEG produced progressively more pronounced intramembranous particle (IMP) patching, correlating with their increasing fusion percentages. The patching of IMP preceded cell-cell contact, and occurred without direct PEG-protein interaction. The presence of cytoskeletal elements in small vesicles had no significant effect on fusion, nor on the aggregation of intramembranous particle (IMP) upon PEG treatment. Disrupting the membrane by lysolecithin, dimethylsulfoxide, retinol or mild sonication resulted in the fragmentation of ghosts without an increase in fusion percentage. The purity of the commercial PEG used had no apparent effect on fusion. We concluded that the key steps in PEG-induced fusion of cell membrane are the creation of IMP-free zones, and the osmotic swelling of cells after the formation of bilayer contacts during the PEG treatment. Cell cytoskeleton affects PEG-induced fusion only to the extent of affecting IMP patching.  相似文献   

20.
A novel affinity separation method in an aqueous two-phase system (ATPS) is suggested, using protein conjugated IgG as a ligand. For verification of the proposed approach, horseradish peroxidase (HRP) and human IgG was used as a ligand carrier and affinity ligand, respectively. The partition of the affinity ligand, human IgG, was controlled by the conjugation of HRP. Two ATPSs, one consisting of potassium phosphate (15%, w/w) and polyethylene glycol (PEG, M.W. 1450, 10%, w/w) and the other of dextran T500 (5%, w/w) and PEG (M.W. 8000, 5%, w/w), were used. The conjugated human IgG-HRP favored a PEG-rich top phase, whereas human IgG, rabbit anti-human IgG and goat anti-mouse IgG preferred a salt or dextran-rich bottom phase. Using the conjugated human IgG-HRP, rabbit anti-human IgG was successfully separated into a PEG-rich top phase from the mixture with goat anti-mouse IgG. The appropriate molar ratio between human IgG-HRP and rabbit anti-human IgG was around 3:1 and 1:1 for the salt and dextran-based ATPS, respectively. The dextran-based ATPS showed a better recovery yield and purity than the salt-based ATPS for the range of test conditions employed in this experiment. The yield and purity of the recovered rabbit anti-human IgG were 90.8 and 87.7%, respectively, in the dextran-based ATPS, while those in the salt-based ATPS were 78.2 and 73.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号