首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gadus macrocephalus (Pacific cod) is an economically important species on the northern coast of the Pacific. Although numerous studies on G. macrocephalus exist, there are few reports on its genomic data. Here, we used whole-genome sequencing data to elucidate the genomic characteristics and phylogenetic relationship of G. macrocephalus. From the 19-mer frequency distribution, the genome size was estimated to be 658.22 Mb. The heterozygosity, repetitive sequence content and GC content were approximately 0.62%, 27.50% and 44.73%, respectively. The draft genome sequences were initially assembled, yielding a total of 500,760 scaffolds (N50 = 3565 bp). A total of 789,860 microsatellite motifs were identified from the genomic data, and dinucleotide repeat was the most dominant simple sequence repeat motif. As a byproduct of whole-genome sequencing, the mitochondrial genome was assembled to investigate the evolutionary relationships between G. macrocephalus and its relatives. On the basis of 13 protein-coding gene sequences of the mitochondrial genome of Gadidae species, the maximum likelihood phylogenetic tree showed that complicated relationships and divergence times among Gadidae species. Demographic history analysis revealed changes in the G. macrocephalus population during the Pleistocene by using the pairwise sequentially Markovian coalescent model. These findings supplement the genomic data of G. macrocephalus, and make a valuable contribution to the whole-genome studies on G. macrocephalus.  相似文献   

2.
Sebastiscus species, marine rockfishes, are of essential economic value. However, the genomic data of this genus is lacking and incomplete. Here, whole genome sequencing of all species of Sebastiscus was conducted to provide fundamental genomic information. The genome sizes were estimated to be 802.49 Mb (S. albofasciatus), 786.79 Mb (S. tertius), and 776.00 Mb (S. marmoratus) by using k-mer analyses. The draft genome sequences were initially assembled, and genome-wide microsatellite motifs were identified. The heterozygosity, repeat ratios, and numbers of microsatellite motifs all suggested possibly that S. tertius is more closely related to S. albofasciatus than S. marmoratus at the genetic level. Moreover, the complete mitochondrial genome sequences were assembled from the whole genome data and the phylogenetic analyses genetically supported the validation of Sebastiscus species. This study provides an important genome resource for further studies of Sebastiscus species.  相似文献   

3.
《Genomics》2020,112(6):4742-4748
The flathead fish Platycephalus sp.1 is an ecologically and commercially important marine fish in the northwestern Pacific with notable sexual differences in growth and development. Yet the genomic data of this species is lacking. In the present study, whole genome sequencing of two individuals (one male and one female) of Platycephalus sp.1 were conducted to provide fundamental genomic information. The genome sizes were estimated to be 674.96 Mb (male) and 684.15 Mb (female) by using k-mer analyses. The heterozygosity and repeat ratios suggested possible male heterogamety of this species. The draft genome sequences were initially assembled and genome-wide microsatellite motifs were identified. Besides, the complete mitochondrial genome sequences were assembled and the phylogenetic analyses genetically supported the validation of Platycephalus sp.1. The reported genomic data and genetic markers in this study could be useful in future comparative genomics and evolutionary biology studies.  相似文献   

4.
5.
6.
The genus Pogonophryne is a speciose group that includes 28 species inhabiting the coastal or deep waters of the Antarctic Southern Ocean. The genus has been divided into five species groups, among which the P. albipinna group is the most deep-living group and is characterized by a lack of spots on the top of the head. Here, we carried out genome survey sequencing of P. albipinna using the Illumina HiSeq platform to estimate the genomic characteristics and identify genome-wide microsatellite motifs. The genome size was predicted to be ∼883.8 Mb by K-mer analysis (K = 25), and the heterozygosity and repeat ratio were 0.289 and 39.03%, respectively. The genome sequences were assembled into 571624 contigs, covering a total length of ∼819.3 Mb with an N50 of 2867 bp. A total of 2217422 simple sequence repeat (SSR) motifs were identified from the assembly data, and the number of repeats decreased as the length and number of repeats increased. These data will provide a useful foundation for the development of new molecular markers for the P. albipinna group as well as for further whole-genome sequencing of P. albipinna.  相似文献   

7.
Harpadon nehereus forms one of the most important commercial fisheries along the Bay of Bengal and the southeast coast of China. In this study, the genome-wide survey dataset first produced using next-generation sequencing (NGS) was used to provide general information on the genome size, heterozygosity and repeat sequence ratio of H. nehereus. About 68.74 GB of high-quality sequence data were obtained in total and the genome size was estimated to be 1315 Mb with the 17-mer frequency distribution. The sequence repeat ratio and heterozygosity were calculated to be 52.49% and 0.67%, respectively. A total of 1,027,651 microsatellite motifs were identified and dinucleotide repeat was the most dominant simple sequence repeat (SSR) motif with a frequency of 54.35%. As a by-product of whole genome sequencing, the mitochondrial genome is a powerful tool to investigate the evolutionary relationships between H. nehereus and its relatives. The maximum likelihood (ML) phylogenetic tree was constructed according to the concatenated matrix of amino acids translated from the 13 protein-coding genes (PCGs). Monophyly of two species of the genus Harpadon was revealed in the present study and they formed a monophyletic clade with Saurida with a high bootstrap value of 100%. The results would help to push back the frontiers of genomics and open the doors of molecular diversity as well as conservation genetics studies on this species.  相似文献   

8.
9.
Artemia is an industrially important genus used in aquaculture as a nutritious diet for fish and as an aquatic model organism for toxicity tests. However, despite the significance of Artemia, genomic research remains incomplete and knowledge on its genomic characteristics is insufficient. In particular, Artemia franciscana of North America has been widely used in fisheries of other continents, resulting in invasion of native species. Therefore, studies on population genetics and molecular marker development as well as morphological analyses are required to investigate its population structure and to discriminate closely related species. Here, we used the Illumina Hi-Seq platform to estimate the genomic characteristics of A. franciscana through genome survey sequencing (GSS). Further, simple sequence repeat (SSR) loci were identified for microsatellite marker development. The predicted genome size was ∼867 Mb using K-mer (a sequence of k characters in a string) analysis (K = 17), and heterozygosity and duplication rates were 0.655 and 0.809%, respectively. A total of 421467 SSRs were identified from the genome survey assembly, most of which were dinucleotide motifs with a frequency of 77.22%. The present study will be a useful basis in genomic and genetic research for A. franciscana.  相似文献   

10.
11.

Background

Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution.

Results

A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed.

Conclusions

The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models.  相似文献   

12.
13.
14.
Rosa roxburghii Tratt is an important commercial horticultural crop in China that is recognized for its nutritional and medicinal values. In spite of the economic significance, genomic information on this rose species is currently unavailable. In the present research, a genome survey of R. roxburghii was carried out using next-generation sequencing (NGS) technologies. Total 30.29 Gb sequence data was obtained by HiSeq 2500 sequencing and an estimated genome size of R. roxburghii was 480.97 Mb, in which the guanine plus cytosine (GC) content was calculated to be 38.63%. All of these reads were technically assembled and a total of 627,554 contigs with a N50 length of 1.484 kb and furthermore 335,902 scaffolds with a total length of 409.36 Mb were obtained. Transposable elements (TE) sequence of 90.84 Mb which comprised 29.20% of the genome, and 167,859 simple sequence repeats (SSRs) were identified from the scaffolds. Among these, the mono-(66.30%), di-(25.67%), and tri-(6.64%) nucleotide repeats contributed to nearly 99% of the SSRs, and sequence motifs AG/CT (28.81%) and GAA/TTC (14.76%) were the most abundant among the dinucleotide and trinucleotide repeat motifs, respectively. Genome analysis predicted a total of 22,721 genes which have an average length of 2311.52 bp, an average exon length of 228.15 bp, and average intron length of 401.18 bp. Eleven genes putatively involved in ascorbate metabolism were identified and its expression in R. roxburghii leaves was validated by quantitative real-time PCR (qRT-PCR). This is the first report of genome-wide characterization of this rose species.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号