首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A photolabile nitrene precursor, 3-azido-(2,7)-naphthalene disulfonate (ANDS), has been synthesized and used as a membrane-impermeable probe. The aryl azide was nonfluorescent. When activated by light, a highly reactive nitrene was generated which was capable of nonspecific covalent modifications of hydrophilic regions of cell surfaces. The products of the photolysis were highly fluorescent and modified proteins could be identified by their characteristic fluorescence after electrophoresis on sodium dodecyl sulfate polyacrylamide gels. When intact human erythrocytes were labeled with ANDS, Protein 3, the major membrane protein, and the sialoglycoproteins were modified. No proteins of apparent molecular weight greater than Protein 3 were labeled by ANDS, suggesting that none of these membrane components was exposed to the hydrophilic external surface of the red blood cell. When open erythrocyte stroma were labeled with ANDS, virtually all protein bands detectable by Coomassie blue staining could be shown to contain some fluorescence label. The significance of these findings are discussed with relation to the use of various aryl azides as surface labels of membranes.  相似文献   

2.
To prevent sodium toxicity in plants, Na+ is excluded from the cytosol to the apoplast or the vacuole by Na+/H+ antiporters. The secondary active transport of Na+ to apoplast against its electrochemical gradient is driven by plasma membrane H+-ATPases that hydrolyze ATP and pump H+ across the plasma membrane. Current methods to determine Na+ flux rely either on the use of Na-isotopes (22Na) which require special working permission or sophisticated equipment or on indirect methods estimating changes in the H+ gradient due to H+-ATPase in the presence or absence of Na+ by pH-sensitive probes. To date, there are no methods that can directly quantify H+-ATPase-dependent Na+ transport in plasma membrane vesicles. We developed a method to measure bidirectional H+-ATPase-dependent Na+ transport in isolated membrane vesicle systems using atomic absorption spectrometry (AAS). The experiments were performed using plasma membrane-enriched vesicles isolated by aqueous two-phase partitioning from leaves of Populus tomentosa. Since most of the plasma membrane vesicles have a sealed right-side-out orientation after repeated aqueous two-phase partitioning, the ATP-binding sites of H+-ATPases are exposed towards inner side. Leaky vesicles were preloaded with Na+ sealed for the study of H+-ATPase-dependent Na+ transport. Our data implicate that Na+ movement across vesicle membranes is highly dependent on H+-ATPase activity requiring ATP and Mg2+ and displays optimum rates of 2.50 μM Na+ mg− 1 membrane protein min− 1 at pH 6.5 and 25 °C. In this study, for the first time, we establish new protocols for the preparation of sealed preloaded right-side-out vesicles for the study of H+-ATPase-dependent Na+ transport. The results demonstrate that the Na+ content of various types of plasma membrane vesicle can be directly quantified by AAS, and the results measured using AAS method were consistent with those determined by the previous established fluorescence probe method. The method is a convenient system for the study of bidirectional H+-ATPase-dependent Na+ transport with membrane vesicles.  相似文献   

3.
A pH-sensitive electrode was applied to measure activity of H+ ions in the medium surrounding excitable cells of pumpkin (Cucurbita pepo L.) seedlings during cooling-induced generation of action potential (AP). Reversible alkalization shifts were found to occur synchronously with AP, which could be due to the influx of H+ ions from external medium into excitable cells. Ethacrynic acid (an anion channel blocker) reduced the AP amplitude but had no effect on the transient alkalization of the medium. An inhibitor of plasma membrane H+-ATPase, N,N’-dicyclohexylcarbodiimide suppressed both the AP amplitude and the extent of alkalization. In experiments with plasma membrane vesicles, the hydrolytic H+-ATPase activity was subjected to inhibition by Ca2+ concentrations in the range characteristic of cytosolic changes during AP generation. The addition of a calcium channel blocker verapamil and a chelating agent EGTA to inhibit Ca2+ influx from the medium eliminated the AP spike and diminished reversible alkalization of the external solution. An inhibitor of protein kinase, H-7 alleviated the inhibitory effect of Ca2+ on hydrolytic H+-ATPase activity in plasma membrane vesicles and suppressed the reversible alkalization of the medium during AP generation. The results provide evidence that the depolarization phase of AP is associated not only with activation of chloride channels and Cl? efflux but also with temporary suppression of plasma membrane H+-ATPase manifested as H+ influx. The Ca2+-induced inhibition of the plasma membrane H+-ATPase is supposedly mediated by protein kinases.  相似文献   

4.
The influence of drought stress on the ATP and p-nitrophenyl phosphate (PNPP) hydrolysis activity by plasma membrane H+-ATPase was investigated using purified plasma membrane vesicles from wheat leaves by two-phase partitioning. Drought stress increased the ATPase activity, and the optimal pH was shifted from 6.5 to about 7.0. Drought stress also stimulated the PNPP hydrolysis rate. The Km for PNPP hydrolysis was moved from 4.49 ± 0.33 mM to 3.64 ± 0.12 mM. In addition, the PNPP hydrolysis was more sensitive to vanadate under drought compared to the control. However, the inhibitory effect of hydroxylamine on the ATPase was not changed by the present drought stress. In addtion, drought stress also decreased the trypsin activation of PNPP hydrolysis by PM H+-ATPase. These results suggested that drought stress altered the catalytic mechanism of the plasma membrane H+-ATPase, and the stimulation of its activity by drought stress was mainly due to increase of the catalytic activity of its phosphatase domain. It is also suggested that drought stress might alter the structure or property of the C-terminal end of PM H+-ATPase, therefore increasing the catalytic activity of the phosphatase domain.  相似文献   

5.
Bafilomycin A1, a specific inhibitor of H+-ATPases of the vacuolar type, was in the present study shown, at similar concentrations, to induce secretion of lysosomal enzyme and to elevate lysosomal pH in mouse macrophages. These results lend support to the previous suggestion of a triggering role for an increase in lysosomal pH and a permissive role for cytosolic pH in the exocytosis of macrophage lysosomal enzyme. Vacuolar H+-ATPases are present in the macrophage plasma membrane as well as in intracellular membranes, for example, those of the lysosomal and phagosomal compartments. Phagosomal acidification was shown to be achieved in part by a mechanism with a similar sensitivity to bafilomycin A1 as lysosomal H+ transport and in part by an early, bafilomycin A1-insensitive mechanism. We found a lesser sensitivity towards bafilomycin A1 of the lysosomal and phagosomal H+-ATPase than that localized in the plasma membrane, indicating differences among H+-ATPases at the subcellular level. Also, by attempts to mobilize lysosomal H+-ATPase to the plasma membrane, support was obtained for the notion that subcellular H+-ATPase populations differ and thus possibly could be differentially regulated. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The essential fungal cell-wall polymer (1,3)β-glucan is synthesized by the enzyme (1,3)β-glucan synthase. This enzyme, which is the target of the echinocandin and pneumocandin families of fungicidal antibiotics, is a complex composed of at least two proteins, Rho1p and Fks1p. Homologs of the yeast FKS1 gene have been discovered in numerous fungi, and existing evidence points to, but has not yet proved, Fks1p being the catalytic subunit of (1,3)β-glucan synthase. We have purified (1,3)β-glucan synthase from Neurospora crassa ∼400-fold enrichment and labeled the substrate-binding protein by using a UDP-glucose analog, 5-azido-[β-32P]-UDP-glucose. UDP-glucose-binding proteins were photo-crosslinked to the substrate analog and identified from SDS-PAGE gels by Quadrupole time-of-flight mass spectrometry by sequencing the tryptic peptides. Two plasma membrane proteins were labeled FKS and H+-ATPase. These results suggest that FKS appears to be the substrate-binding subunit of (1,3)β-glucan synthase. Received: 31 May 2002 / Accepted: 27 July 2002  相似文献   

7.
All higher plants have high-specific sites for binding fusicoccin (FCBS), a metabolite of the fungus Fusicoccum amygdaliDel. These sites are localized on the plasmalemma and produced by the association of the dimers of 14-3-3 proteins with the C-terminal autoinhibitory domain of H+-ATPase. Considering the fusicoccin binding to the plasmalemma as an index characterizing the formation of this complex, we studied the influence of osmotic stress on the interaction between 14-3-3 proteins and H+-ATPase in the suspension-cultured sugar beet cells and protoplasts obtained from them. An increase in the osmolarity of the extracellular medium up to 0.3 Osm was shown to enhance proton efflux from the cells by several times. The number of FCBS in isolated plasma membranes increased in parallel, whereas 14-3-3 proteins accumulated in this membrane to a lesser degree. The amount of H+-ATPase molecules did not change, and the ATP-hydrolase activity changed insignificantly. The data obtained indicate that osmotic stress affects H+-ATPase pumping in the plasmalemma through its influence on the coupling between H+-transport and ATP hydrolysis; 14-3-3 proteins are involved in this coupling. The interaction between the plasmalemma and the cell wall is suggested to be very important in this process.  相似文献   

8.
ATPase activity, ATP-dependent H+ transport and the amount of antigenic tomato plasma membrane H+-APTase have been analysed in membrane vesicles isolated from Glomus mosseae- or Glomus intraradices-colonized roots and from non-mycorrhizal tomato roots. Microsomal protein content was higher in mycorrhizal than in control roots. The specific activity of the plasma membrane H+-ATPase was not affected by mycorrhizal colonization, although this activity increased in membranes isolated from mycorrhizal roots when expressed on a fresh weight basis. Western blot analysis of microsomal proteins using antibodies raised against the Arabidopsis thaliana plasma membrane H+ - ATPase showed that mycorrhizal colonization did not change the relative amount of tomato plasma membrane ATPase in the microsomes. However, on a fresh weight basis, there was a greater amount of this protein in roots of mycorrhizal plants. In addition, mycorrhizal membranes showed a higher specific activity of the vanadate-sensitive ATP-dependant H+ transport than membranes isolated from control roots. These results suggest that mycorrhiza might regulate the plasma membrane ATPase by increasing the coupling efficiency between H+ transport and ATP hydrolysis. The observed effects of mycorrhizal colonization on plasma membrane H+-ATPase were independent of the AM fungal species colonizing the root system.  相似文献   

9.
A large number of plant Ca2+/H+ exchangers have been identified in endomembranes, but far fewer have been studied for Ca2+/H+ exchange in plasma membrane so far. To investigate the Ca2+/H+ exchange in plasma membrane here, inside-out plasma membrane vesicles were isolated from Arabidopsis thaliana leaves using aqueous two-phase partitioning method. Ca2+/H+ exchange in plasma membrane vesicles was measured by Ca2+-dependent dissipation of a pre-established pH gradient. The results showed that transport mediated by the Ca2+/H+ exchange was optimal at pH 7.0, and displayed transport specificity for Ca2+ with saturation kinetics at K m = 47 μM. Sulfate and vanadate inhibited pH gradient across vesicles and decreased the Ca2+-dependent transport of H+ out of vesicles significantly. When the electrical potential across plasma membrane was dissipated with valinomycin and potassium, the rate of Ca2+/H+ exchange increased comparing to control without valinomycin effect, suggesting that the Ca2+/H+ exchange generated a membrane potential (interior negative), i.e. that the stoichiometric ratio for the exchange is greater than 2H+:Ca2+. Eosin Y, a Ca2+-ATPase inhibitor, drastically inhibited Ca2+/H+ exchange in plasma membrane as it does for the purified Ca2+-ATPase in proteoliposomes, indicating that measured Ca2+/H+ exchange activity is mainly due to a plasma membrane Ca2+ pump. These suggest that calcium (Ca2+) is transported out of Arabidopsis cells mainly through a Ca2+-ATPase-mediated Ca2+/H+ exchange system that is driven by the proton-motive force from the plasma membrane H+-ATPase.  相似文献   

10.
In plant cells, the plasma membrane Na+/H+ antiporter SOS1 (salt overly sensitive 1) mediates Na+ extrusion using the proton gradient generated by plasma membrane H+-ATPases, and these two proteins are key plant halotolerance factors. In the present study, two genes from Sesuvium portulacastrum, encoding plasma membrane Na+/H+ antiporter (SpSOS1) and H+-ATPase (SpAHA1), were cloned. Localization of each protein was studied in tobacco cells, and their functions were analyzed in yeast cells. Both SpSOS1 and SpAHA1 are plasma membrane-bound proteins. Real-time polymerase chain reaction (PCR) analyses showed that SpSOS1 and SpAHA1 were induced by salinity, and their expression patterns in roots under salinity were similar. Compared with untransformed yeast cells, SpSOS1 increased the salt tolerance of transgenic yeast by decreasing the Na+ content. The Na+/H+ exchange activity at plasma membrane vesicles was higher in SpSOS1-transgenic yeast than in the untransformed strain. No change was observed in the salt tolerance of yeast cells expressing SpAHA1 alone; however, in yeast transformed with both SpSOS1 and SpAHA1, SpAHA1 generated an increased proton gradient that stimulated the Na+/H+ exchange activity of SpSOS1. In this scenario, more Na+ ions were transported out of cells, and the yeast cells co-expressing SpSOS1 and SpAHA1 grew better than the cells transformed with only SpSOS1 or SpAHA1. These findings demonstrate that the plasma membrane Na+/H+ antiporter SpSOS1 and H+-ATPase SpAHA1 can function in coordination. These results provide a reference for developing more salt-tolerant crops via co-transformation with the plasma membrane Na+/H+ antiporter and H+-ATPase.  相似文献   

11.
12.
Achim Hager  Christa Lanz 《Planta》1989,180(1):116-122
Functional properties and the localization of essential SH-groups of the tonoplast H+-ATPase fromZea mays L. were studied. In contrast to the pyrophosphate-dependent H+-translocation activity of the tonoplast, the H+-ATPase activity was inhibited by SH-blocking agents, such as N-ethylmaleimide and iodoacetic acid. In the case ofp-hydroxymercuribenzoate, HgCl2 and oxidized glutathione, the inhibition could be reversed by adding reduced glutathione or dithiothreitol. Incubation of tonoplast vesicles with oxidized glutathione or N-ethylmaleimide in the presence of Mg·ADP—a competitive inhibitor of the ATP-dependent H+ pump—avoided the inhibition of the H+-pumping activity. This effect is an indication for the occurrence of essential SH-groups at the catalytic site of the H+-ATPase. In order to characterize the active center these thiols were specifically labeled with maleimidobutyrylbiocytin. Subsequently, the membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to an immobilizing membrane. The maleimidobutyrylbiocytin-labeled active-center protein was detected by a biotin-streptavidin-peroxidase staining system and was shown to be a 70-kDa subunit of the tonoplast H+-ATPase. It is suggested that the oxidation state of the critical sulfhydryl groups within the active center of the enzyme and their reversible blocking by endogenous compounds might be of great importance for the regulation of the enzyme activity in vivo.  相似文献   

13.
In previous studies we suggested the importance of the control of plasma membrane H+-ATPase by a phosphatidylinositol-like pathway for cellular proton extrusion in Saccharomyces cerevisiae (Brandão et al. 1994; Coccetti et al. 1998). The observations that provided the model above include the inhibition of the glucose-induced activation of the plasma membrane H+-ATPase as well as the inhibition of the glucose-induced external acidification by neomycin, a known inhibitor of the phosphatidylinositol turnover in eukaryotic cells. In this work, using two libraries, we isolated two yeast clones that were able to prevent the inhibition of glucose-induced activation of the H+-ATPase by neomycin. We show that the YOL002C gene, which encodes a protein of unknown function, and the SUL1 gene, which is a sulphate transporter belonging to the major facilitator superfamily, suppress growth inhibition by neomycin. However, they are not required for glucose-induced activation of the plasma membrane H+-ATPase. The resistance of the clones to neomycin is probably related to the level and/or activity of proteins functioning as drug extrusion pumps.  相似文献   

14.
The molecular weight and isoelectric point of the plasma membrane H+-ATPase from red beet storage tissue were determined using N,N′-dicyclohexylcarbodiimide (DCCD) and a H+-ATPase antibody. When plasma membrane vesicles were incubated with 20 micromolar [14C]-DCCD at 0°C, a single 97,000 dalton protein was visualized on a fluorograph of a sodium dodecyl sulfate polyacrylamide gel. A close correlation between [14C]DCCD labeling of the 97,000 dalton protein and the extent of ATPase inhibition over a range of DCCD concentration suggests that this 97,000 dalton protein is a component of the plasma membrane H+-ATPase. An antibody raised against the plasma membrane H+-ATPase of Neurospora crassa cross-reacted with the 97,000 dalton DCCD-binding protein, further supporting the identity of this protein. Immunoblots of two-dimensional gels of red beet plasma membrane vesicles indicated the isoelectric point of the H+-ATPase to be 6.5.  相似文献   

15.
橡胶树树皮质膜H~+-ATPase在橡胶树产排胶过程中扮演着重要角色,制备高纯度及高活性的质膜是研究质膜H~+-ATPase特性和功能的必要条件。该研究以一年生巴西橡胶树(Hevea brasiliensis)树皮为材料,利用差速离心法获得粗膜微粒体,通过两相分配法分离纯化质膜,并研究两相体系中不同浓度聚合物(5.9%、6.1%、6.3%、6.5%、6.7%,W/W)和KCl(2、5、8、11、14 mmol·L~(-1))对质膜蛋白得率和纯化效率的影响。通过Bradford法对质膜蛋白得率进行检测,同时采用酶活性检测法对质膜纯度进行检测,分析结果表明选用6.4%(W/W)聚合物浓度和5mmol·L~(-1)KCl组成的两相体系可获得较高纯度和得率的橡胶树树皮质膜。通过电镜观察法在形态学上对质膜纯度进一步评价,利用铅铀能侵染全部膜组分使其染色,而磷钨酸只能专一性地侵染质膜并使其染色这一特性,分别使用铅铀和磷钨酸对切片进行染色,并通过透射电镜对切片染色程度进行直接观察,结果表明提取的粗膜微粒体中质膜组分较少,存在大量的细胞器膜污染,而纯化后的质膜膜组分较单一,其他膜组分污染较少,而且质膜大小较均一,可以用于进行后续橡胶树树皮质膜H~+-ATPase特性和功能的研究。  相似文献   

16.
Compounds belonging to a carbazole series have been identified as potent fungal plasma membrane proton adenosine triphophatase (H+-ATPase) inhibitors with a broad spectrum of antifungal activity. The carbazole compounds inhibit the adenosine triphosphate (ATP) hydrolysis activity of the essential fungal H+-ATPase, thereby functionally inhibiting the extrusion of protons and extracellular acidification, processes that are responsible for maintaining high plasma membrane potential. The compound class binds to and inhibits the H+-ATPase within minutes, leading to fungal death after 1–3 h of compound exposure in vitro. The tested compounds are not selective for the fungal H+-ATPase, exhibiting an overlap of inhibitory activity with the mammalian protein family of P-type ATPases; the sarco(endo)plasmic reticulum calcium ATPase (Ca2+-ATPase) and the sodium potassium ATPase (Na+,K+-ATPase). The ion transport in the P-type ATPases is energized by the conversion of ATP to adenosine diphosphate (ADP) and phosphate and a general inhibitory mechanism mediated by the carbazole derivative could therefore be blocking of the active site. However, biochemical studies show that increased concentrations of ATP do not change the inhibitory activity of the carbazoles suggesting they act as allosteric inhibitors. Furthermore decreased levels of intracellular ATP would suggest that the compounds inhibit the H+-ATPase indirectly, but Candida albicans cells exposed to potent H+-ATPase-inhibitory carbazoles result in increased levels of intracellular ATP, indicating direct inhibition of H+-ATPase.  相似文献   

17.
A cDNA clone encoding an isoform of the plasma membrane H+-ATPase was isolated from Nicotiana tabacum. The steady-state plasma membrane H+-ATPase message levels were the same in unadapted tobacco cells and tobacco cells adapted to 428 mol m−3 NaCl. When cells adapted to 428 mol m−3 NaCl maintained in the absence of NaCl (deadapted) for an excess of 100 passages were exposed to 400 mol m−3 NaCl for 24 h, there was an increased accumulation of plasma membrane H+-ATPase message. The NaCl responsiveness of the deadapted cells was dependent upon the growth cycle stage. Alterations in the levels of plasma membrane FT-ATPase message during the growth cycle support a role for the H+-ATPase in cell growth. These results document the induction by NaCl of plasma membrane FT-ATPase message accumulation in tobacco cells, and suggest that enhanced expression of the plasma membrane FT-ATPase has a role in the short term response of cells of NaCl, but is not necessarily involved in long-term adaptation.  相似文献   

18.
A membrane fraction enriched in plasma membrane (PM) vesicles was isolated from the root cells of a salt-accumulating halophyte Suaeda altissima (L.) Pall. by means of centrifugation in discontinuous sucrose density gradient. The PM vesicles were capable of generating ΔpH at their membrane and the transmembrane electric potential difference (Δψ). These quantities were measured with optical probes, acridine orange and oxonol VI, sensitive to ΔpH and Δψ, respectively. The ATP-dependent generation of ΔpH was sensitive to vanadate, an inhibitor of P-type ATPases. The results contain evidence for the functioning of H+-ATPase in the PM of the root cells of S. altissima. The addition of Na+ and Li+ ions to the outer medium resulted in dissipation of ΔpH preformed by the H+-ATPase, which indicates the presence in PM of the functionally active Na+/H+ antiporter. The results are discussed with regard to involvement of the Na+/H+ antiporter and the PM H+-ATPase in loading Na+ ions into the xylem of S. altissima roots.  相似文献   

19.
 Taking the binding of fusicoccin to plasma membranes as an indicator of complex formation between the 14-3-3 dimer and H+-ATPase, we assessed the effect of osmotic stress on the interaction of these proteins in suspension-cultured cells of sugar beet (Beta vulgaris L.). An increase in osmolarity of the cell incubation medium, accompanied by a decrease in turgor, was found to activate the H+ efflux 5-fold. The same increment was observed in the number of high-affinity fusicoccin-binding sites in isolated plasma membranes; the 14-3-3 content in the membranes increased 2- to 3-fold, while the H+-ATPase activity changed only slightly. The data obtained indicate that osmotic regulation of H+-ATPase in the plant plasma membrane is achieved via modulation of the coupling between H+ transport and ATP hydrolysis, and that such regulation involves 14-3-3 proteins. Received: 10 February 2000 / Accepted: 31 March 2000  相似文献   

20.
H+-ATPase activity of a plasma membrane-enriched fraction decreased after the treatment of barley (Hordeum vulgare) seedlings with Al for 5 days. A remarkably high level of Al was found in the membrane fraction of Al-treated roots. A long-term effect of Al was identified as the repression of the H+-ATPase of plasma membranes isolated from the roots of barley and wheat (Triticum aestivum) cultivars, Atlas 66 (Al-tolerant) and Scout 66 (Al-sensitive). To monitor short-term effects of Al, the electrical membrane potentials across plasma membranes of both wheat cultivars were compared indirectly by measuring the efflux of K+ for 40 min under various conditions. The rate of efflux of K+ in Scout was twice that in Atlas at low pH values such as 4.2. Vanadate, an inhibitor of the H+-ATPase of the plasma membrane, increased the efflux of K+. Al repressed this efflux at low pH, probably through an effect on K+ channels, and repression was more pronounced in Scout. Al strongly repressed the efflux of K+ irrespective of the presence of vanadate. Ca2+ also had a repressive effect on the efflux of K+ at low pH. The effect of Ca2+, greater in Scout, might be related to the regulation of the net influx of H+, since the effect was negated by vanadate. The results suggest that extracellular low pH may cause an increase in the influx of H+, which in turn is counteracted by the efflux of K+ and H+. These results suggest that the ability to maintain the integrity of the plasma membrane and the ability to recover the electrical balance at the plasma membrane through a net influx of H+ and the efflux of K+ seem to participate in the mechanism of tolerance to Al stress under acidic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号