首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cohen WS 《Plant physiology》1989,91(3):1107-1111
The membrane-bound coupling factor of maize mesophyll thylakoids is a latent ATPase. Mg2+-ATPase activity can be induced in the light with either dithiothreitol or low concentrations of trypsin. Maize thylakoids that are activated with light plus trypsin exhibit considerably higher levels of activity in Na2SO3-dependent Mg2+-ATPase assays compared to thylakoids that are light and dithiothreitol activated (1400 micromoles per milligram of chlorophyll per hour versus 200 micromoles per milligram of chlorophyll per hour). Treatment with light and dithiothreitol or light plus trypsin were also required to demonstrate high levels of octyl glucoside-dependent Mg2+-ATPase activity in maize mesophyll thylakoids. Only small differences in octyl glucoside-dependent Mg2+-ATPase activity were observed in preparations that were activated in the light with either trypsin or dithiothreitol. Mg2+-ATPase activity can also be induced in maize mesophyll chloroplasts by illuminating intact preparations under appropriate conditions. Little or no ATPase activity was observed in the absence of illumination or in the presence of light plus methyl viologen. The active state decayed in the dark with a t½ of 6 to 7 minutes at room temperature. Based on the effect of the thiol oxidant, o-iodosobenzoate, and the uncoupler, nigericin, on the kinetics of deactivation of ATPase activity in intact maize chloroplasts, it appears that the activation process requires a transmembrane proton gradient and reduction of a key disulfide bridge in the gamma of chloroplast coupling factor one.  相似文献   

2.
(1) The relationship between activation of the membrane-bound ATPase and the stimulation of dissipation of the flash-induced membrane potential by preillumination was studied in intact spinach leaves by measuring the ATPase activity of rapidly isolated chloroplasts and the decay of the flash-induced 515-nm absorbance change (ΔA515) in intact leaves. (2) The decay of ΔA515 was accelerated by preillumination. The ΔA515 decay in leaves treated with N,N′-dicyclohexylcarbodiimide (DCCD) became slower and was not accelerated by preillumination. However, treatment with DCCD did not lower the intensity of delayed fluorescence. (3) Membrane-bound ATPase of chloroplasts which were rapidly isolated from the preilluminated leaves (90 s preparation time) showed a higher activity (over 200 μmol Pi/mg chlorophyll per h in the case of 2-min preillumination) than that of chloroplasts isolated from dark-adapted leaves. (4) The acceleration of ΔA515 decay and the activation of ATPase showed similar dependences on illumination time in intact leaves. 3-(3′,4′-Dichlorophenyl)-1,1-dimethylurea, carbonyl cyanide p-chlorophenylhydrazone and DCCD inhibited the activation of ATPase and the acceleration of the ΔA515 decay by preillumination. (5) The ATPase activity of chloroplasts isolated from illuminated leaves showed a single exponential decay (‘dark inactivation in vitro’). The ATPase activity induced by illuminating the leaves became lower as the dark interval between illumination and the isolation of chloroplasts was increased (‘dark inactivation in vivo’). The time course of the decay of activity had a lag and showed a sigmoidal curve when plotted semilogarithmically. The decay had an apparent half-time of 25 min. (6) The recovery of the accelerated ΔA515 decay in preilluminated leaves to the original slow rate showed a sigmoidal decay similar to that of the activity of ATPase in intact leaves with a half-time of about 23 min in the dark. (7) It was concluded that the decay rate of ΔA515 reflected the chloroplast ATPase activity in intact leaves and that the ion conductance of thylakoid membrane was mainly determined by the H+ flux through the ATPase, the activity of which was increased after the formation of the high-energy state.  相似文献   

3.
Hassan M. Younis  John S. Boyer 《BBA》1979,548(2):328-340
(1) Photophosphorylation, fCa2+-ATPase and Mg2+-ATPase activities of isolated chloroplasts were inhibited 55–65% when the chemical potential of water was decreased by dehydrating leaves to water potentials (ψw) of ?25 bars before isolation of the plastids. The inhibition could be reversed in vivo by rehydrating the leaves.(2) These losses in activity were reflected in coupling factor (CF1) isolated from the leaves, since CF1 from leaves with low ?w had less Ca2+-ATPase activity than control CF1 and did not recouple phosphorylation in CF1-deficient chloroplasts. In contrast, CF1 from leaves having high ?w only partially recoupled phosphorylation by CF1-deficient chloroplasts from leaves having low ?w. This indicated that low ?w affected chloroplast membranes as well as CF1 itself.(3) Coupling factor from leaves having low ψw had the same number of subunits, and the same electrophoretic mobility, and could be obtained with the same yields as CF1 from control leaves. However, direct measurements of fluorescence polarization, ultraviolet absorption, and circular dichroism showed that CF1 from leaves having low ?w differed from control CF1. The CF1 from leaves having low ?w also had decreased ability to bind fluorescent nucleotides (?-ATP and ?-ADP).(4) Exposure of isolated CF1 to low ?w in vitro by preincubation in sucrose-containing media inhibited the Ca2+-ATPase activity of the protein in subsequent assays without sucrose. Inclusion of 5 or 10 mM Mg2+ in the preincubation medium markedly inhibited Ca2+-ATPase activity.(5) These results show that CF1 undergoes changes in cells which alter its phosphorylating ability. Since low cell ?w changed the spectroscopic properties but not other protein properties of CF1, the changes were most likely caused by altered conformation of the protein. This decreased the binding of nucleotides and, in turn, photophosphorylation. The inhibition of ATPase activity in CF1 in vitro at low ?w and high ion concentration mimicked the change in activity seen in vivo.  相似文献   

4.
In order to gain some information regarding Ca2+-dependent ATPase, the enzyme was purified from cardiac sarcolemma and its properties were compared with Ca2+-ATPase activity of myosin purified from rat heart. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by Ca2+ but the maximal activation of Ca2+-dependent ATPase required 4 mM Ca2+ whereas that of myosin ATPase required 10 mM Ca2+. These ATPases were also activated by other divalent cations in the order of Ca2+ > Mn2+ > Sr2+ > Br2+ > Mg2+; however, there was a marked difference in the pattern of their activation by these cations. Unlike the myosin ATPase, the ATP hydrolysis by Ca2+-dependent ATPase was not activated by actin. The pH optima of Ca2+-dependent ATPase and myosin ATPase were 9.5 and 6.5 respectively. Na+ markedly inhibited Ca2+-dependent ATPase but had no effect on the myosin ATPase activity. N-ethylmaleimide inhibited Ca2+-dependent ATPase more than myosin ATPase whereas the inhibitory effect of vanadate was more on myosin ATPase than Ca2+-dependent ATPase. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by K-EDTA and NH4-EDTA. When myofibrils were treated with trypsin and passed through columns similar to those used for purifying Ca2+-ATPase from sarcolemma, an enzyme with ATPase activity was obtained. This myofibrillar ATPase was maximally activated at 3–4 mM Ca2+ and 3 to 4 mM ATP like sarcolemmal Ca2+-dependent ATPase. K+ stimulated both ATPase activities in the absence of Ca2+ and inhibited in the presence of Ca2+. Both enzymes were inhibited by Na+, Mg2+, La3+, and azide similarly. However, Ca2+ ATPase from myofibrils showed three peptide bands in SDS polyacrylamide gel electrophoresis whereas Ca2+ ATPase from sarcolemma contained only two bands. Sarcolemmal Ca2+-ATPase had two affinity sites for ATP (0.012 mM and 0.23 mM) while myofibrillar Ca2+-ATPase had only one affinity site (0.34 mM). Myofibrillar Ca2+-ATPase was more sensitive to maleic anhydride and iodoacetamide than sarcolemmal Ca2+-ATPase. These observations suggest that Ca2+-dependent ATPase may be a myosin like protein in the heart sarcolemma and is unlikely to be a tryptic fragment of myosin present in the myofibrils.  相似文献   

5.
P Gmaj  H Murer  E Carafoli 《FEBS letters》1982,144(2):226-230
Surface membrane fractions from Paramecium tetraurelia cells contain a calmodulin-stimulated Ca2+-ATPase responding to low levels of free Ca2+ and with features characteristic of a membrane-bound ATPase responding to low levels of free Ca2+ and with features characteristics of a membrane-bound ATPase. Among the different strains analyzed this enzyme was practically absent selectively from the ‘non-discharge” mutant nd9—28°C (from J. Beisson); if cultured at a permissive temperature (18°C), this strain showed identical values of calmodulin-stimulated Ca2+-ATPase activity as wild-type cells (7S) or strains with mutations which do not affect exocytosis performance. We conclude that this calmodulin-stimulated Ca2+-activated ATPase might be a prerequisite for membrane fusion in the course of exocytosis performance.  相似文献   

6.
Dark-induced aging of detached primary leaves of 11-day-old barley seedlings brings about a significant decline in the rates of ferricyanide [Fe(CN)6]3? reduction and photophosphorylations of isolated chloroplasts. Ferricyanide-supported noncyclic photophosphorylation is somewhat more susceptible to leaf aging than phenazine methosulfate (PMS)-supported cyclic phosphorylation. Non-latent membrane-bound adenosine triphosphatase (ATPase) and ribulosediphosphate carboxylase (RuDPCase) lose about half of their initial activities after 24 h, while during this period the electron transport and photophosphorylation activities are much less affected. Also, the loss of RuDPCase is almost complete, while chloroplasts still exhibit a significant level of [Fe(CN)6]3? reduction and photophosphorylations after 7 days of dark incubation. This would suggest that the enzymatic dark reactions are more sensitive to aging stress than the primary photochemical reactions of chloroplasts. Studies on the effect of divalent cations such as Mg2+ and Ca2+ on non-latent ATPase activity revealed that the dark stressed aging of detached leaves brings about a time dependent alteration in the response of this enzyme to Mg2+, but not to Ca2+. The former showed inhibitory as well as stimulatory response, whereas the latter always caused the usual stimulation. Addition of kinetin (50 μM) ensured retention of [Fe(CN)6]3? reduction, photophosphorylations and RuDPCase activity in chloroplasts during leaf aging, but it failed to preserve the initial loss in the activity of the non-activated membrane-bound ATPase.  相似文献   

7.
Oligomycin inhibited the membrane-bound, Ca2+-dependent ATPase of pea (Pisum sativum var. Progress No. 9) chloroplasts up to 50%, but only after treating the membranes with trypsin, whether or not the trypsin step was needed for full activity. The energy-linked Mg2+-dependent (light- and dithiothreitol (DTT)-activated) ATPase of pea thylakoids could be inhibited up to 100% under specified conditions. The data indicate that oligomycin does not interfere with activation processes, and it failed to inhibit the ATPase of solubilized chloroplast coupling factor 1 under any circumstances. Photophosphorylation, previously thought insensitive to oligomycin, was inhibited 30% in the case of pea chloroplasts, and this increased to 50% inhibition after pretreating the chloroplasts with either trypsin or DTT. The nature of inhibition of phosphorylation was complex, with apparent small components of electron transport inhibition and uncoupling, as well as energy transfer inhibition.  相似文献   

8.
Adenosine triphosphatase activity of tobacco leaf chloroplasts in the dark was measured, using leaves of different age as determined by the position of the leaves along the stem. The activity of the chloroplast preparations strongly decreased with age, regardless of the addition of Mg2+ or Ca2+. Opposite effects of Mg2+ and Ca2+ on the activity of the chloroplasts were noted in experiments where different ratios of Mg2+/Ca2+ were applied. They were related to the age of the leaves, Ca2+ strongly stimulated the activity of the preparations from old leaves but was practically without effect in young, just expanded leaves. Mg2+ slightly stimulated the activity from old leaves while it invariably inhibited the hydrolytic activity of preparations from young leaves.  相似文献   

9.
Membrane-bound ATPase activities in chloroplasts of Euglena were examined. Ca2+- and Mg2+-dependent activities were relatively high in membrane preparations and could not be further activated by a number of procedures. The enzyme was found to be highly specific for purine nucleotides and was inhibited by the usual inhibitors of photophosphorylation. Km values of Ca2+ and Mg2+ ATPase for ATP were 2.5 and 2.1 mM, respectively. Both activities were competitively inhibited by ADP and inorganic phosphate. A relationship was found between Ca2+- or Mg2+-dependent ATPase activities and chloroplast completeness. The possibilities that these activities result from one enzyme depending on Ca2+ or Mg2+ or from two different enzymes are discussed.  相似文献   

10.
In contrast to everted mitochondrial inner membrane vesicles and eubacterial plasma membrane vesicles, the ATPase activity of chloroplast ATP synthase in thylakoid membranes is extremely low. Several treatments of thylakoids that unmask ATPase activity are known. Illumination of thylakoids that contain reduced ATP synthase (reduced thylakoids) promotes the hydrolysis of ATP in the dark. Incubation of thylakoids with trypsin can also elicit higher rates of ATPase activity. In this paper the properties of the ATPase activity of the ATP synthase in thylakoids treated with trypsin are compared with those of the ATPase activity in reduced thylakoids. The trypsin-treated membranes have significant ATPase activity in the presence of Ca2+, whereas the Ca2+-ATPase activity of reduced thylakoids is very low. The Mg2+-ATPase activity of the trypsinized thylakoids was only partially inhibited by the uncouplers, at concentrations that fully inhibit the ATPase activity of reduced membranes. Incubation of reduced thylakoids with ADP in Tris buffer prior to assay abolishes Mg2+-ATPase activity. The Mg2+-ATPase activity of trypsin-treated thylakoids was unaffected by incubation with ADP. Trypsin-treated membranes can make ATP at rates that are 75–80% of those of untreated thylakoids. The Mg2+-ATPase activity of trypsin-treated thylakoids is coupled to inward proton translocation and 10 mM sulfite stimulates both proton uptake and ATP hydrolysis. It is concluded that cleavage of the γ subunit of the ATP synthase by trypsin prevents inhibition of ATPase activity by the ε subunit, but only partially overcomes inhibition by Mg2+ and ADP during assay.  相似文献   

11.
We investigated responses of chloroplasts from flag leaves of a newly-developed super-high-yield rice (Oryza sativa L.) hybrid LiangYouPeiJiu (LYPJ) to water stress (withholding irrigation) during the grain-filling period. In the early stage of water stress (0–6 d) only the activity of Hill reaction was inhibited, whereas activities of photophosphorylation and Ca2+-ATPase, and ATP content were increased and peaked in the day 6 of withholding irrigation. In the late stage of water stress (6-12 d), the activities of photosynthetic O2 evolution, Hill reaction, photophosphorylation, and Ca2+- ATPase, and ATP content were significantly reduced. The membrane lipid content was sharply decreased, especially of sulfoquinovosyl-diacylglycerol (SQDG) and phosphatidylglycerol (PG). The changes in the ultrastructure of chloroplasts included mainly a decrease in number of grana and increase in number of osmiophilic granules.  相似文献   

12.
1. o-Iodosobenzoate and 2,2′-dithio bis-(5-nitropyridine) inhibited by about fifty per cent the ATPase activity of heat-activated chloroplast coupling factor 1 only when present during the heating but were without effect when added before or after the activation. Reversion of this inhibition was only obtained by a second heat treatment with 10 mM dithioerythritol.2. The inhibition of the Ca2+-ATPase of coupling factor 1 by o-iodosobenzoate or 2,2′-dithio bis-(5-nitropyridine) was not additive with similar inhibitions obtained with the alkylating reagents iodoacetamide and N-ethylmaleimide.3. The heat-activated ATPase of o-iodosobenzoate-treated coupling factor 1 had a higher Km for ATP, without modification of V. The modified enzyme was desensitized against the allosteric inhibitor ADP.  相似文献   

13.
Fractionation of sarcoplasmic reticulum vesicles from rabbit skeletal muscle was performed by solubilization of the vesicles in the presence of deoxycholate, followed by sucrose density gradient centrifugation and gel filtration chromatography. This procedure permitted the isolation of essentially pure Ca2+-ATPase; this enzyme showed ATPase as well as acylphosphatase activity, both activities being clearly enhanced by deoxycholate. The acylphosphatase activity of the purified Ca2+-ATPase was characterized with regard to some kinetic properties, such as pH, Mg2+, Ca2+, and deoxycholate dependence, and substrate affinity, determined in the presence of acetylphosphate, succinylphosphate, carbamylphosphate, and benzoylphosphate; in addition, the stability of both activities was checked in time-course experiments. The main similarities between the two activities, such as the Mg2+ requirement, the deoxycholate activation, and the pH dependence, together with the competitive inhibition of the benzoylphosphatase activity by ATP, the inhibition of both activities by tris(bathophenanthroline)-Fe2+, and the relief of this inhibitory effect by carbonylcyanide-4-trifluoromethoxyphenyl hydrazone support the hypothesis that acylphosphatase and ATPase activities of sarcoplasmic reticulum vesicles reside in the same active site of the enzyme. With regard to possible relationships between acylphosphatase activity of the purified Ca2+-ATPase and “soluble” acylphosphatase present in the 100,000g supernatant fraction, comparison of some kinetic and structural parameters indicate that these two activities are supported by quite different enzymes.  相似文献   

14.
We investigated responses of chloroplasts from flag leaves of a newly-developed super-high-yield rice (Oryza sativa L.) hybrid LiangYouPeiJiu (LYPJ) to water stress (withholding irrigation) during the grain-filling period. In the early stage of water stress (0–6 d) only the activity of Hill reaction was inhibited, whereas activities of photophosphorylation and Ca2+-ATPase, and ATP content were increased and peaked in the day 6 of withholding irrigation. In the late stage of water stress (6-12 d), the activities of photosynthetic O2 evolution, Hill reaction, photophosphorylation, and Ca2+- ATPase, and ATP content were significantly reduced. The membrane lipid content was sharply decreased, especially of sulfoquinovosyl-diacylglycerol (SQDG) and phosphatidylglycerol (PG). The changes in the ultrastructure of chloroplasts included mainly a decrease in number of grana and increase in number of osmiophilic granules.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

15.
A. R. Wellburn 《Planta》1977,135(2):191-198
Samples of internal membrane systems separated from lysates of intact plastids from dark grown Avena sativa L. (vars, Cooba and Mostyn) and Hordeum vulgare L. (vars, Himalaya and Deba Abed) given different periods of illumination before isolation were assayed for trypsin-activated Ca2+-dependent ATPase activities and also examined in the electron microscope after treatment in the manner described by Oleszko and Moudinanakis (1974) which assists the visualization of the chloroplast coupling factor (CF1) particles. Concentrations of membrane-attached CF1 particles were not observed on the membrane surfaces of the prolamellar bodies (PLBs) proper but only on the attached extruded lamellar membranes. Increasing lengths of illumination followed by plastid isolation and subsequent membrane separation had the effect of progressively increasing the mean distance between these individual lamellar-attached CF1 particles. Measurements of trypsin-activated Ca2+-dependent ATPase activities during similar developmental regimes indicated that functions associated with CE1 particles are relative constant and largely independent of the period of illumination if the values were expressed on a per plastid basis indicating that assembly of CF1 particles may take place in either etioplasts, etiochloroplasts or mature chloroplasts.Abbreviations PLB prolamellar body - EDTA ethylene-diaminetetra-acetic acid - CF1 chloroplast coupling factor particles - ATPase adenosine triphosphatase  相似文献   

16.
An endogenous soluble protease has been demonstrated to unmask a Ca2+-stimulated ATPase activity in purified dog gastric microsomes. The presence of ATP during protease treatment appears essential for the manifestation of the gastric Ca2+-stimulated ATPase activity. The endogenous protease appears to have trypsin-like activity, since soybean trypsin inhibitor completely blocks the protease effect. Manifestation of the Ca2+-stimulated ATPase occurs without affecting the microsomal (H+ +K+)-ATPase activity and associated H+ uptake ability. The unmasked Ca2+-stimulated ATPase appears insensitive to calmodulin. Possible roles of the enzyme in the regulation of gastric H+ transport have been discussed.  相似文献   

17.
Antibodies raised in rabbits against the purified erythrocyte membrane Ca2+ pumping ATPase were affinity-purified using an ATPase-Sepharose column. Addition of a few molecules of the purified antibody per molecule of ATPase was sufficient to inhibit the ATPase activity. Extensively washed ghosts or preincubated pure ATPase sometimes develop an appreciable Mg2+-ATPase activity. In such cases, the antibodies inhibited the Mg2+-ATPase as well as the Ca2+-ATPase. This is consistent with the hypothesis that a portion of the Mg2+-ATPase activity of ghosts is derived from the Ca2+-ATPase. When nitrophenylphosphatase activity was observed, both Mg2+ - and Ca2+-stimulated activities were observed. Only the Ca2+ activity was inhibited by the antibodies, confirming that this activity is due to the Ca2+ pump, and suggesting that the Mg2+-nitrophenylphosphatase is due to a separate enzyme. Amounts of antibody comparable to those which inhibited the Ca2+-ATPases had no effect on the Na+-K+-ATPase; 4-fold higher amounts of antibody significantly stimulated the Na+-K+-ATPase, but this effect of the antibody was not specific: Immunoglobulins from the nonimmune serum also significantly stimulated the Na+-K+-ATPase.In resealed erythrocyte membranes, antibodies incorporated into the ghosts inactivated the Ca2+-ATPase, while antibodies added to the outside had no significant effect.  相似文献   

18.
利用脱硫废弃物改良盐碱地对于确保国家粮食安全和生态安全,发展循环经济具有重要意义。为了探索脱硫废弃物提高植物抗盐碱机理,采用盆栽试验法, 研究了施入不同量脱硫废弃物和CaSO4对碱胁迫下油葵叶片细胞钙分布、总钙含量以及质膜和液泡膜Ca2+-ATPase活性的影响。结果表明:在碱胁迫下(CK),Ca2+与焦锑酸钾结合成黑色颗粒成团零星分布于叶绿体和液泡中,叶绿体超微结构受到不同程度的破坏。施入脱硫废弃物和CaSO4,叶绿体结构完整,细胞间隙、细胞壁和液泡中的钙颗粒逐渐增多,同时,质膜和液泡膜Ca2+-ATPase活性随脱硫废弃物和纯品硫酸钙施量的增加而增加,其中液泡膜Ca2+-ATPase活性无论是对照(CK)还是处理的活性均高于质膜Ca2+-ATPase活性。叶片细胞内总钙含量也随脱硫废弃物和CaSO4施用量的增加呈升高趋势。说明脱硫废弃物和CaSO4通过增加Ca2+-ATPase活性,有利于钙通过质膜和液泡膜进入细胞内,维持膜结构的稳定性,缓解碱对油葵的胁迫。  相似文献   

19.
The effects of crosslinking agent-DFDNB (difluoro dinitro benzene) on functions of chloroplast thylakoid membrane proteins were investigated. DFDNB inhibited activities of PSP and membrane-bound ATPase in chloroplasts. It decreased proton uptake of light-inducted chloroplast thylakoids and the relative value of fluorescence quenching of 9-aminoacridine, and inhibited the rate of fast electrogenic phase of absorption change at 515 nm in chloroplasts. In addition, the isolated CF1-ATPase was crosslinked with DFDNB. The pattern of polymers of crosslinked CF1-ATPase was observed on SDS-PAGE.  相似文献   

20.
The effect of calcium and a soluble cytoplasmic activator on (Ca2+ + Mg2+)-ATPase of density-separated human red cells was investigated. At all calcium concentrations tested, dense (old) lysed cells and their isolated membranes displayed lower activities as compared to the light (young) cells and their membranes. Isolated membranes from all density red cell fractions showed two distinct (Ca2+ + Mg2+)-ATPase activities; one at low calcium and another at moderate calcium concentrations. At high calcium concentration, (Ca2+ + Mg2+)-ATPase activity of isolated membranes was low in all cell fractions. In contrast to the isolated membranes, lysed cells from all density fractions had a maximum (Ca2+ + Mg2+)-ATPase activity only at a low concentration of calcium, while moderate and high calcium concentrations produced low activity. Upon isolation of membranes, a substantial loss of (Ca2+ + Mg2+)-ATPase activity took place from all density cell fractions. Upon membrane isolation, the relative loss of (Ca2+ + Mg2+)-ATPase activity at low Ca2+ concentration was greater in older cells. The extent of stimulation of (Ca2+ + Mg2+)-ATPase by the activator at low calcium concentration was 3–4-fold greater in older cell membranes than in the young ones.These data suggest that the lower (Ca2+ + Mg2+)-ATPase activity in old cells could be accounted for by a selective loss of (Ca2+ + Mg2+)-ATPase activity at low Ca2+ concentration presumably due to reduced affinity of old cell membranes to activator protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号