首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Komor E  Thom M  Maretzki A 《Plant physiology》1982,69(6):1326-1330
The electrochemical proton gradient across the tonoplast of isolated (Saccharum sp.) vacuoles and vacuoles in situ was measured. The isolated vacuoles show no significant protonmotive potential difference, the pH gradient of 0.8 (inside acid) was balanced by a membrane potential of about −80 mv (inside negative). From pH and uncoupler insensitivity and K+ sensitivity, it was concluded that the experimentally caused K+ gradient created the electric potential.  相似文献   

2.
l-Proline-producing mutants were screened from Corynebacterium acetoacidophilum ATCC 13870. Proline accumulation in test tube cultivation by TA-20 strain was most effectively stimulated by addition of l-glutamate, rising from 11.8 g/l to 30.8 g/l in the presence of 2% of l-glutamate. Use of radioactively labeled glutamate demonstrated that the increased amount of proline derived from the quantitative conversion of glutamate to proline. Unlike other strains reported previously, this strain showed no dependence on biotin concentration or high (more than 4%) salt concentration. In 2-l jar fermentors, proline productivity was also stimulated by the addition of glutamate. The amount of proline accumulated increased with the concentration of glutamate in the range of 2% to 6%. With 6% of glutamate and 2.5% of ammonium sulfate, 108.3 g/l of l-proline was accumulated in 42 h of cultivation.  相似文献   

3.
Membrane vesicles were isolated from the roots of the halophyte Atriplex nummularia Lindl. H+-translocating Mg2+-ATPase activity was manifested by the establishment of a positive membrane potential (measured as SCN accumulation); and also by the establishment of a transmembrane pH gradient (measured by quinacrine fluorescence quenching). H+-translocation was highly specific to ATP and was stable to oligomycin. Growing the plants in the presence of 400 millimolar NaCl doubled the proton-translocating activity per milligram of membrane protein and otherwise modulated it in the following ways. First, the flat pH profile observed in non-salt-grown plants was transformed to one showing a peak at about pH 6.2. Second, the lag effect observed at low ATP concentration in curves relating SCN accumulation to ATP concentration was abolished; the concave curvature shown in the double reciprocal plot was diminished. Third, sensitivity to K-2 (N-morpholino)ethanesulfonic acid stimulation was shown in salt-grown plants (about 40% stimulation) but was absent in non-salt-grown plants. Fourth, the KCl concentration bringing about 50% dissipation of ATP-dependent SCN accumulation was 20 millimolar for salt-grown plants and 50 millimolar for non-salt-grown plants. Vanadate sensitivity was shown in both cases. No clear NO3 inhibition was observed.  相似文献   

4.
Lin W 《Plant physiology》1985,78(1):41-45
The accumulation of tetraphenylphosphonium (TPP+), 5,5′-dimethyl-oxazolidine-2,4-dione (DMO), and a micro pH electrode were used to measure membrane potential, intracellular and extracellular pH, respectively, upon the addition of exogenous sucrose to soybean cotyledon protoplasts. Addition of sucrose caused a specific and transient (a) depolarization of the membrane potential (measured by TPP+ accumulation), (b) acidification of the intracellular pH (measured by DMO accumulation), and (c) alkalization of the external medium (measured by a micro pH electrode). The time course for all these changes was similar (i.e. 5 to 10 minutes). Based on the rate of sucrose uptake and alkalization of the external medium, a stoichiometry of 1.02 to 1.10 for proton to sucrose was estimated. These data strongly support a proton/sucrose cotransporting mechanism in soybean cotyledon cells.  相似文献   

5.
An amino acid uptake system specific for glycine, alanine, serine and proline was induced by glucose in Chlorella vulgaris. The uptake system translocated the zwitterionic form of the amino acid. There was more than 100-fold accumulation which indicated a coupling to metabolic energy. The depolarization of the membrane potential during proline uptake and the sensitivity of its uptake rate to the membrane potential point to coupling with an ion flow. Inhibitors of plasmalemma-bound H+-ATPase inhibit proline uptake. These data are interpreted to mean that proline is taken up as a proton symport. In some Chlorella strains the proline-coupled H+ uptake could be measured with electrodes, but not in Chlorella vulgaris. There is evidence that the transport of amino acids rapidly stimulates the proton-translocating ATPase of Chlorella vulgaris, so that the proline-coupled proton uptake is immediately neutralized.  相似文献   

6.
Proline transport across the inner membrane of rat liver mitochondria shows the following properties: (a) It is stereospecific; the penetration of l-proline is two times faster than the penetration of dl-proline. (b) Proline is accumulated against a concentration gradient, (c) The transport of proline is enhanced in the presence of respiratory substrates such as succinate or tetramethylphenylenediamine + ascorbate; it is inhibited by uncouplers of oxidative phosphorylation. (d) Proline transport is inhibited by mersalyl and p-chloromercuribenzoate, but not by hydrophobic thiol blocking reagents; thus, proline transport involves thiol groups located in a very hydrophilic environment. The penetration of several other neutral amino acids (alanine, glycine, serine) is almost insensitive to mersalyl. These results suggest that proline does not travel across the mitochondrial membrane by free diffusion, but that its transport is mediated by a specific carrier. The rate of proline transport has been compared with the rates of the first two steps of proline oxidation: All of these rates are very similar, indicating that proline transport is not a limiting factor of proline metabolism in rat liver mitochondria.  相似文献   

7.
Exit of thiomethylgalactoside (TMG) from preloaded cells induced the accumulation of proline. Likewise, proline exit stimulated TMG accumulation. Since a proton ionophore (carbonyl-cyanide-m-chlorophenylhydrazone) abolished these effects, a proton-motive force was implicated as the “intermediate” in the coupling reaction. The evidence suggests that the exit of TMG resulted in proton exit, which produced either a membrane potential (inside negative) or a pH gradient (outside acid) or both. This inwardly directed protonmotive force provided the energy for proline entry and accumulation. Thus the energy coupling was not via a common transport protein but by proton movements which coupled the two separate H+-dependent transport processes.  相似文献   

8.
The sodium-dependent entry of proline and glycine into rat renal brushborder membrane vesicles was examined. The high Km system for proline shows no sodium dependence. The low Km system for glycine entry is strictly dependent on a Na+ gradient but shows no evidence of the carrier system having any affinity for Na+. The low Km system for proline and high Km system for glycine transport appear to be shared. Both systems are stimulated by a Na+ gradient and appear to have an affinity for the Na+. The effect of decreasing the Na+ concentration in the ionic gradient is to alter the Km for amino acid entry and, at low Na+ concentrations, to inhibit the V for glycine entry.  相似文献   

9.
The membrane potential generated at pH 8.5 by K+-depleted and Na+-loaded Vibrioalginolyticus is not collapsed by proton conductors which, instead, induce the accumulation of protons in equilibrium with the membrane potential. The generation of such a membrane potential and the accumulation of protons are specific to Na+-loaded cells at alkaline pH and are dependent on respiration. Extrusion of Na+ at pH 8.5 occurs in the presence of proton conductors unless respiration is inhibited while it is abolished by proton conductors at acidic pH. The uptake of α-aminoisobutyric acid, which is driven by the Na+-electrochemical gradient, is observed even in the presence of proton conductors at pH 8.5 but not at acidic pH. We conclude that a respiration-dependent primary electrogenic Na+ extrusion system is functioning at alkaline pH to generate the proton conductor-insensitive membrane potential and Na+ chemical gradient.  相似文献   

10.
We present evidence strongly suggesting that a proton gradient (acid inside) is used to drive an electroneutral, substrate-specific, K+/H+ antiport in both tonoplast and plasma membrane-enriched vesicles obtained from oilseed rape (Brassica napus) hypocotyls. Proton fluxes into and out of the vesicles were monitored both by following the quenching and restoration of quinacrine fluorescence (indicating a transmembrane pH gradient) and of oxonol V fluorescence (indicating membrane potential.) Supply of K+ (with Cl or SCN) after a pH gradient had been established across the vesicle membrane by provision of ATP to the H+-ATPase dissipated the transmembrane pH gradient but did not depolarize the positive membrane potential. Evidence that the K+/H+ exchange thus indicated could not be accounted for by mere electric coupling included the findings that, first, no positive potential was generated when KSCN or KCl was supplied, even in the absence of 100 millimolar Cl and, second, efflux of K+ from K+-loaded vesicles drives intravesicular accumulation of H+ against the electrochemical potential gradient. Neither was the exchange due to competition between K+ and quinacrine for membrane sites, nor to inhibition of the H+-ATPase. Thus, it is likely that it was effected by a membrane component. The exchanger utilized primarily K+ (at micromolar concentrations); Na+/H+ antiport was detected only at concentrations two orders of magnitude higher. Rb+, Li+, or Cs+ were ineffective. Dependence of tonoplast K+/H+ antiport on K+ concentration was complex, showing saturation at 10 millimolar K+ and inhibition by concentrations higher than 25 millimolar. Antiport activity was associated both with tonoplast-enriched membrane vesicles (where the proton pump was inhibited by more than 80% by 50 millimolar NO3 and showed no sensitivity to vanadate or oligomycin) and with plasma membrane-enriched fractions prepared by phase separation followed by separation on a sucrose gradient (where the proton pump was vanadate and diethylstilbestrol-sensitive but showed no sensitivity to NO3 or oligomycin). The possible physiological role of such a K+/H+ exchange mechanism is discussed.  相似文献   

11.
The membrane carrier for L-proline (product of the putP gene) of Escherichia coli K12 was solubilized and functionally reconstituted with E. coli phospholipid by the cholate dilution method. The counterflow activity of the reconstituted system was studied by preloading the proteoliposomes with either L-proline or the proline analogues: L-azetidine-2-carboxylate or 3,4-dehydro-L-proline. The dilution of such preloaded proteoliposomes into a buffer containing [3H]proline resulted in the accumulation of this amino acid against a considerable concentration gradient. A second driving force for proline accumulation was an electrochemical potential difference for Na+ across the membrane. More than a 10-fold accumulation was seen with a sodium electrochemical gradient while no accumulation was found with proton motive force alone. The optimal pH for the L-proline carrier activities for both counterflow and sodium gradient-driven uptake was between pH 6.0 and 7.0. The stoichiometry of the co-transport system was approximately one Na+ for one proline. The effect of different phospholipids on the proline transport activity of the reconstituted carrier was also studied. Both phosphatidylethanolamine and phosphatidylglycerol stimulate the carrier activity while phosphatidylcholine and cardiolipin were almost inactive.  相似文献   

12.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   

13.
Proline accumulation is a well-known response to water deficits in leaves. The primary cause of accumulation is proline synthesis. Δ1-Pyrroline-5-carboxylate reductase (PCR) catalyzes the final reaction of proline synthesis. To determine the subcellular location of PCR, protoplasts were made from leaves of Pisum sativum L., lysed, and fractionated by differential and Percoll density gradient centrifugation. PCR activity comigrated on the gradient with the activity of the chloroplast stromal marker NADPH-dependent triose phosphate dehydrogenase. We conclude that PCR is located in chloroplasts, and therefore that chloroplasts can synthesize proline. PCR activities from chloroplasts and etiolated shoots were compared. PCR activity from both extracts is stimulated at least twofold by 100 millimolar KCl or 10 millimolar MgCl2. The pH profiles of PCR activity from both extracts reveal two separate optima at pH 6.5 and 7.5. Native isoelectric focusing gels of sampies from etiolated tissue reveal a single band of PCR activity with a pl of 7.8.  相似文献   

14.
Transport of l-proline into Saccharomyces cerevisiae K is mediated by two systems, one with a KT of 31 μM and Jmax of 40 nmol · s?1 · (g dry wt.)?1, the other with KT > 2.5 mM and Jmax of 150–165 nmol · s?1 · (g dry wt.)?1, The kinetic properties of the high-affinity system were studied in detail. It proved to be highly specific, the only potent competitive inhibitors being (i) l-proline and its analogs l-azetidine-2-carboxylic acid, sarcosine, d-proline and 3,4-dehydro-dl-proline, and (ii) l-alanine. The other amino acids tested behaved as noncompetitive inhibitors. The high-affinity system is active, has a sharp pH optimum at 5.8–5.9 and, in an Arrhenius plot, exhibits two inflection points at 15°C and 20–21°C. It is trans-inhibited by most amino acids (but probably only the natural substrates act in a trans-noncompetitive manner) and its activity depends to a considerable extent on growth conditions. In cells grown in a rich medium with yeast extract maximum activity is attained during the stationary phase, on a poor medium it is maximal during the early exponential phase. Some 50–60% of accumulated l-proline can leave cells in 90 min (and more if washing is done repeatedly), the efflux being insensitive to 0.5 mM 2,4-dinitrophenol and uranyl ions, to pH between 3 and 7.3, as well as to the presence of 10–100 mM unlabeled l-proline in the outside medium. Its rate and extent are increased by 1% d-glucose and by 10 μg nystatin per ml.  相似文献   

15.
Calcium and proton transport in membrane vesicles from barley roots   总被引:9,自引:6,他引:3       下载免费PDF全文
Ca2+ uptake by membrane fractions from barley (Hordeum vulgare L. cv CM72) roots was characterized. Uptake of 45Ca2+ was measured in membrane vesicles obtained from continuous and discontinuous sucrose gradients. A single, large peak of Ca2+ uptake coincided with the peak of proton transport by the tonoplast H+-ATPase. Depending on the concentration of Ca2+ in the assay, Ca2+ uptake was inhibited 50 to 75% by those combinations of ionophores and solutes that eliminated the pH gradient and membrane potential. However, 25 to 50% of the Ca2+ uptake in the tonoplast-enriched fraction was not sensitive to ionophores but was inhibited by vanadate. The results suggest that 45Ca uptake was driven by the low affinity, high capacity tonoplast Ca2+/nH+ antiporter and also by a high affinity, lower capacity Ca2+-ATPase. The Ca2+-ATPase may be associated with tonoplast, Golgi or contaminating vesicles of unknown origin. No Ca2+ transport was specifically associated with the distinct peak of endoplasmic reticulum that was identified by NADH cytochrome c reductase, choline phosphotransferase, and dolichol-P-man-nosyl synthase activities. A small shoulder of Ca2+ uptake in the plasma membrane region of the gradient was inhibited by vanadate and erythrosin B and may represent the activity of a separate plasma membrane Ca2+-ATPase. Vesicle volumes were estimated using electron spin resonance techniques, and intravesicular Ca2+ concentrations were estimated to be as high as 5 millimolar. ATP-driven uptake of Ca2+ created 800- to 2000-fold concentration gradients within minutes. Problems in interpreting the effects of Ca2+ on ATP-generated pH gradients are discussed and the suggestion is made that Ca2+ dissipates pH gradients by a different mechanism than is responsible for Ca2+ uptake into tonoplast vesicles.  相似文献   

16.
Cultures of Methanobacterium thermoautotrophicum (Marburg) growing on media low in potassium accumulated the cation up to a maximal concentration gradient ([K+]intracellular/[K+]extracellular) of approximately 50,000-fold. Under these conditions, the membrane potential was determined by measuring the equilibrium distribution of the lipophilic cation (14C) tetraphenylphosphonium (TPP+). This cation was accumulated by the cells 350-to 1,000-fold corresponding to a membrane potential (inside negative) of 170–200 mV. The pH gradient, as measured by equilibrium distribution of the weak acid, benzoic acid, was found to be lower than 0.1 pH units (extracellular pH=6.8). The addition of valinomycin (0.5–1 nmol/mg cells) to the culture reduced the maximal concentration gradient of potassium from 50,000-to approximately 500-fold, without changing the membrane potential. After dissipation of the membrane potential by the addition of 12C-TTP+ (2 mol/mg cells) or tetrachlorosalicylanilide (3 nmol/mg cells), a rapid and complete efflux of potassium was observed.These data indicate that potassium accumulation in the absence of valinomycin is not in equilibrium with the membrane potential. It is concluded that at low extracellular K+ concentrations potassium is not accumulated by M. thermoautotrophicum via an electrogenic uniport mechanism.Non-common abbreviations TPP+ Tetra phenylphosphonium bromide - DTE Dithioerythritol - TCS 3,5,3,4-Tetrachlorosalycylanilide  相似文献   

17.
A technique for the estimation of light-induced membrane potential in chromatophores is described. It is based on measurement of light-induced enhancement in fluorescence of 8-anilinonaphthalene sulfonic acid, which is calibrated by known K+ diffusion potentials. The electrochemical proton gradient (ΔμH+?) formed during lightinduced electron transport in Rhodospirillum rubrum chromatophores amounts to 250 mV, which is almost equally distributed between the membrane potential and the pH gradient as measured by changes in the fluorescence of anilinonaphthalene sulfonate and 9-amino acridine. Addition of the permeant anion, NaSCN, or of NH4Cl reduces the overall ΔμH+? by less than 20% but changes its distribution between the pH gradient and the membrane potential so that with NaSCN it is composed mainly of the first and with NH4Cl mainly of the second. Initiation of phosphorylation causes a drop of about 50 mV in the measured ΔμH+?. In the absence of salts, the drop is observed in both components, although two-thirds of it are reflected in the membrane potential. In the presence of NaSCN or NH4Cl the 50-mV drop is exclusively recorded in the pH gradient or in the membrane potential, respectively. The steady-state phosphate potential maintained during electron transport was found to change in parallel to the ΔμH+?, but exceeded it by 60 to 80 mV when based on a stoichiometry of two protons translocated per ATP synthesized.  相似文献   

18.
Na+-independent l-arginine uptake was studied in rabbit renal brush border membrane vesicles. The finding that steady-state uptake of l-arginine decreased with increasing extravesicular osmolality and the demonstration of accelerative exchange diffusion after preincubation of vesicles with l-arginine, but not d-arginine, indicated that the uptake of l-arginine in brush border vesicles was reflective of carrier-mediated transport into an intravesicular space. Accelerative exchange diffusion of l-arginine was demonstrated in vesicles preincubated with l-lysine and l-ornithine, but not l-alanine or l-proline, suggesting the presence of a dibasic amino acid transporter in the renal brush border membrane. Partial saturation of initial rates of l-arginine transport was found with extravesicular [arginine] varied from 0.005 to 1.0 mM. l-Arginine uptake was inhibited by extravesicular dibasic amino acids unlike the Na+-independent uptake of l-alanine, l-glutamate, glycine or l-proline in the presence of extravesicular amino acids of similar structure. l-Arginine uptake was increased by the imposition of an H+ gradient (intravesicular pH<extravesicular pH) and H+ gradient stimulated uptake was further increased by FCCP. These findings demonstrate membrane-potential-sensitive, Na+-independent transport of l-arginine in brush border membrane vesicles which differs from Na+-independent uptake of neutral and acidic amino acids. Na+-independent dibasic amino acid transport in membrane vesicles is likely reflective of Na+-independent transport of dibasic amino acids across the renal brush border membrane.  相似文献   

19.
The Influence of H+ on the Membrane Potential and Ion Fluxes of Nitella   总被引:23,自引:4,他引:19  
The resting membrane potential of the Nitella cell is relatively insensitive to [K]o, but behaves like a hydrogen electrode. K+ and Cl- effluxes from the cell were measured continuously, while the membrane potential was changed either by means of a negative feedback circuit or by external pH changes. The experiments indicate that PK and PCl are independent of pH but are a function of membrane potential. Slope ion conductances, GK, GCl, and GNa were calculated from efflux measurements, and their sum was found to be negligible compared to membrane conductance. The possibility that a boundary potential change might be responsible for the membrane potential change was considered but was ruled out by the fact that the peak of the action potential remained at a constant level regardless of pH changes in the external solution. The conductance for H+ was estimated by measuring the membrane current change during an external pH change while the membrane potential was clamped at K+ equilibrium potential. In the range of external pH 5 to 6, H+ chord conductance was substantially equal to the membrane conductance. However, the [H]i measured by various methods was not such as would be predicted from the [H]o and the membrane potential using the Nernst equation. In artificial pond water containing DNP, the resting membrane potential decreased; this suggested that some energy-consuming mechanism maintains the membrane potential at the resting level. It is probable that there is a H+ extrusion mechanism in the Nitella cell, because the potential difference between the resting potential and the H+ equilibrium potential is always maintained notwithstanding a continuous H+ inward current which should result from the potential difference.  相似文献   

20.
Hydrophobic protein (H protein) was isolated from membrane fractions of Bacillus subtilis and constituted into artificial membrane vesicles with lipid of B. substilis. Glutamate was accumulated into the vesicle when a Na+ gradient across the membrane was imposed. The maximum effect of Na+ on the transport was achieved at a concentration of about 40 mM, while the apparent Km for Na+ was approximately 8 mM. On the other hand, Km for glutamate in the presence of 50 mM Na+ was about 8 μM. Increasing the concentration of Na+ resulted in a decrease in Km for glutamate, maximum velocity was not affected. The transport was sensitive to monensin (Na+ ionophore).Glutamate was also accumulated when pH gradient (interior alkaline) across the membrane was imposed or a membrane potential was induced with K+-diffusion potential. The pH gradient-driven glutamate transport was sensitive to carbonylcyanide m-chlorophenylhydrazone and the apparent Km for glutamate was approximately 25 μM.These results indicate that two kinds of glutamate transport system were present in H protein: one is Na+ dependent and the other is H+ dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号