首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S.J. Coughlan  U. Schreiber 《BBA》1984,767(3):606-617
A rapid quench technique utilizing the addition of excess buffer containing free amine groups (Tris, glycylglycine) to the reaction medium has enabled a detailed study of the time-course of glutaraldehyde inactivation on the spinach thylakoid membrane to be undertaken. The following light-induced parameters were inactivated in the sequence: slow transmittance changes (0–5 s) > coupling factor activity (5–20 s) > narrow angle 90° scattering changes (30–60 s). About 20% of PS II activity was lost by this treatment. No effect on activity, proton pumping and proton gradient formation was observed over the time-course studied. A consideration of these effects led to the proposal that the slow, light-induced transmittance changes reflect reversible thylakoid structural changes (unstacking, membrane flattening) in response to electron transport and the consequent proton pumping. The narrow angle 90° scattering changes were considered to reflect directly microconformational structural changes in response to the light-driven proton translocation as previously concluded from other workers.  相似文献   

2.
Complex I (NDH-1) translocates protons across the membrane using electron transfer energy. Two different coupling mechanisms are currently being discussed for complex I: direct (redox-driven) and indirect (conformation-driven). Semiquinone (SQ) intermediates are suggested to be key for the coupling mechanism. Recently, using progressive power saturation and simulation techniques, three distinct SQ species were resolved by EPR analysis of E. coli complex I reconstituted into proteoliposomes. The fast-relaxing SQ (SQNf) signals completely disappeared in the presence of the uncoupler gramicidin D or the potent E. coli complex I inhibitor squamotacin. The slow-relaxing SQ (SQNs) signals were insensitive to gramicidin D, but they were sensitive to squamotacin. The very slow-relaxing SQ (SQNvs) signals were insensitive to both gramicidin D and squamotacin. Interestingly, no SQNs signal was observed in the ΔNuoL mutant, which lacks transporter module subunits NuoL and NuoM. Furthermore, we sought out the effect of using menaquinone (which has a lower redox potential compared to that of ubiquinone) as an electron acceptor on the proton pumping stoichiometry by in vitro reconstitution experiments with ubiquinone-rich or menaquinone-rich double knock-out membrane vesicles, which contain neither complex I nor NDH-2 (non-proton translocating NADH dehydrogenase). No difference in the proton pumping stoichiometry between menaquinone and ubiquinone was observed in the ΔNuoL and D178N mutants, which are considered to lack the indirect proton pumping mechanism. However, the proton pumping stoichiometry with menaquinone decreased by half in the wild-type. The roles and relationships of SQ intermediates in the coupling mechanism of complex I are discussed.  相似文献   

3.
Measurements of proton translocation in CF1-depleted, N, N′-dicyclohexylcarbodiimide-resealed broken chloroplasts were made under different light intensities. Kinetic analysis of the data shows that the outward leakage of accumulated protons through CF0 is still dependent on light intensity with a first-order rate constant equal to mR0, where R0 is the initial rate of proton uptake which normally increases with light intensity and m is a characteristic constant which is independent of proton gradient and light intensity. Measurements of proton translocation in these modified chloroplasts cross-linked with glutaraldehyde under illumination and in the dark respectively suggest that the light-dependent proton leakage through CF0 is regulated by conformation change in the membrane. It is proposed that the ovserved regulation of proton leakage through the CF1.CF0 complex in native chloroplasts is for optimizing the steady state synthesis of ATP under different light intensities.  相似文献   

4.
Light-induced fluorescence changes of 9-aminoacridine, an indicator of proton gradient in energy-transducing membranes, were studied in Plectonema boryanum and other cyanobacteria. The fluorescence changes observed in cell suspensions resulted from a superposition of fluorescence quenching and enhancement as the analysis of the kinetic data shows. Both components of the fluorescence changes are abolished by 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and m-chlorocarbonylcyanide phenylhydrazone. The inhibitory effect of DCMU is removed by 2,3,5,6- or N,N,N′,N′-tetramethyl-p-phenylenediamine. The fluorescence quenching sensitive to substrates and uncouplers of the photophosphorylation is only observed in membrane vesicles obtained by osmotic shock of P. boryanum spheroplasts. Presumably, light-induced quenching of the dye fluorescence in the cells of cyanobacteria is due to the proton transport from the cytoplasm in the inner space of thylakoids while fluorescence enhancement is due to the proton efflux from the cytoplasm into the incubation medium.  相似文献   

5.
The effects of spegazzinine, a dihydroindole alkaloid, on various energy-transducing functions of chloroplasts were studied. The following observations were made, (i) Spegazzinine inhibited both cyclic and noncyclic photophosphorylation in isolated spinach chloroplast. The I50 value was about 80 μm. Over a concentration range which gave marked inhibition of ÀTP synthesis, there was no effect on basal or uncoupled electron flow or light-induced proton accumulation by isolated thylakoids, while the fraction of electron transport stimulated by coupled phosphorylation was reduced to the basal level by spegazzinine. (ii) The regulatory effect of low concentrations of ATP on proton movements and electron transport was diminished by the alkaloid, (iii) Spegazzinine also inhibited with similar efficiency the ATPase activities of membrane-bound coupling factor 1 (CF1) and of purified CF1. One mole of spegazzinine per mole of CF1 seemed to be required to inhibit the ATPase activity, (iv) The allosteric effect of ADP on ATPase activity was not affected by spegazzinine. (v) On the basis of these results it is concluded that spegazzinine acts as an energy transfer inhibitor of hotophosphorylation and that its site of action may be at or near the catalytic site of ATPase.  相似文献   

6.
The effects of the local anesthetic dibucaine on coupling between electron transport and ATP synthesis-hydrolysis by the coupling-factor complex (CF0CF1 ATPase) were investigated in thylakoid membranes from Spinacia oleracea L. cv. Monatol. Evidence is presented that inhibition of ATP synthesis was produced by a specific uncoupling mechanism which was based on dibucaine-membrane surface interactions rather than on the interaction of dibucaine with the ATPase complex. Dibucaine reduced the osmotic space of thylakoid vesicles. At low pH of the medium it stimulated ATP hydrolysis beyond the rates obtained with optimum concentrations of ‘classical’ uncouplers. After addition of dibucaine, there was displacement of membrane-bound Mg2+ and strong thylakoid stacking in the presence of only low Mg2+ concentrations. Inhibition of ATP synthesis and transmembrane pH gradient increased with medium pH. Hydrolysis of ATP by isolated CF1 and the CF0CF1 complex was only slightly affected by dibucaine. The data are discussed assuming the involvement of localized proton channels on the membrane surface in protonic coupling of electron transport and ATP synthesis. A hypothesis for the mechanisms of action of local anesthetics at the thylakoid membrane is presented.  相似文献   

7.
Several treatments were investigated in an attempt to increasethe proportion of vanadate-sensitive proton pumping activityderived from membrane fractions of Ricinus cotyledons. The mostsuccessful procedure involved KI treatment of the microsomalfraction followed by solubilization with 1.25% (w/v) octylglucosideand reconstitution into phosopholipid liposomes. KI treatmentof the microsomal fraction resulted in an increase in the ATPasesensitivity to vanadate. Reconstitution was carried out by adilution method and the existence of ATP-driven H+-transportacross the proteoliposomes was demonstrated by quinacrine fluorescencequenching. The quenching was gramicidin reversible and stronglyinhibited by vanadate, ER B and PCMBS. Less inhibition was observedin the presence of NEM. Fusicoccin and sucrose did not havemarked effects on H+ -transport. Key words: ATPase, proton pumping, KI-treatment, solubilization, reconstitution, Ricinus communis  相似文献   

8.
K. A. Santarius 《Planta》1986,168(2):281-286
Chloroplast thylakoid membranes isolated from spinach leaves (Spinacia oleracea L. cv. Monatol) were subjected to a freeze-thaw treatment in a buffered medium containing 70 mM KCl, 30 mM NaNO3 and 20 mM K2SO4 in different combinations. In the presence of the three predominant inorganic electrolytes, inactivation of photophosphorylation was mainly caused by a decrease in the capacity of the photosynthetic electron transport; release of proteins from the membranes was not manifest and light-induced H+ gradient and proton permeability were largely unaffected. Omission of nitrate from the medium had little effect. When either sulfate or chloride or both were omitted prior to freezing, inactivation of photophosphorylation was correlated with stimulation of the phosphorylating electron flow, marked increase in H+ permeability and loss of the ability of the thylakoids to accumulate protons in the light. In the absence of sulfate, uncoupling was mainly a consequence of the dissociation of chloroplast coupling factor (CF1). Partial restoration of proton impermeability and pH gradient occurred upon the addition of N,N-dicyclohexylcarbodiimide (DCCD). When sulfate was present but chloride omitted, CF1 remained attached to the membranes and the addition of DCCD had no effect, indicating that the increase in proton efflux was caused by a different mechanism. It is concluded that sulfate stabilizes the CF1 and prevents its release from the membranes, but KCl is also necessary for maintaining the low permeability of the membranes to protons. The importance of complex media for investigations on isolated biomembrane systems is stressed.Abbreviations CF1 chloroplast coupling factor - DCCD N,N-dicyclohexylcarbodiimide - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid I=Santarius 1986 b  相似文献   

9.
The three high-molecular-weight subunits of chloroplast coupling factor (CF1) are the primary proteins released from pyrophosphate-washed thylakoids exposed to freezing. Identical subunit profiles are found in the supernatant proteins of thylakoids exposed to different intensities of freezing stress by the inclusion of sugars with varying degrees of cryoprotective efficiency. Isolated CF1 is inactivated by freezing in the presence of NaCl, glucose, and sucrose but raffinose can protect against loss of enzymatic activity during freezing. The low specific activity of the supernatant proteins released from the thylakoid and the inability to recover the Ca2+-dependent ATPase activity lost from the membrane suggest that inactivation accompanies release of CF1 during freezing.  相似文献   

10.
Summary The proton-driven ATP synthase of chloroplasts is composed of two elements, CF0 and CF1. The membrane bound CF0 conducts protons and the peripheral CF1 interacts with nucleotides. By flash spectrophotometric techniques applied to thylakoid membranes from which about 50% of total CF1 was removed, we have previously determined the protonic (timeaveraged) single-channel conductance of CF0. Being in the order of 1 pS, it was sufficiently large to support the proposed role of CF0 as a low-impedance access for protons to the coupling site in CF0CF1. On the other hand, it was too large to be readily reconciled with current concepts of proton supply to and proton conduction through the channel.We studied the time-averaged single-channel conductance of CF0 under variation of pH, pD, ionic composition, temperature, and water/membrane structure with the following results: (i) CF0 was proton-specific even against a background of 300mm monovalent or 30mm divalent catins. (ii) While the conductance of CF0 was pH/pD-independent in the range from 5.6–8.0, in D2O it was lower by a constant factor of 1.7 than in H2O (iii) Addition of glycerol diminished the conductance and abolished the isotope effect. (iv) The Arrhenius activation energy was 42 kJ/mol and thus intermediate between the ones found for the water-filled pore, gramicidin (30 kJ/mol), and the mobile carrier, valinomycin (65 kJ/mol).The results implied that CF0 is endowed with an extremely proton-specific (107-fold) selectivity filter. Its conductance is very high, and its conduction cycle is not necessarily rate limited by a protolytic reaction. The mechanisms of rapid proton supply to the channel mouth and of proton conduction remained enigmatic.  相似文献   

11.
We have earlier shown that extraction of Rhodospirillum rubrum chromatophores with LiCl removed completely the beta-subunit of their coupling factor ATPase complex leaving the other four subunits attached to the membrane (Philosoph, S., Binder, A., and Gromet-Elhanan, Z. (1977) J. Biol. Chem. 252, 8747-8752). Further treatment of these beta-less chromatophores with LiBr, under the described optimal conditions, resulted in specific removal of one additional subunit, the gamma-subunit, and both subunits were purified to homogeneity. The beta, gamma-less chromatophores as well as the beta-less ones lost their ATP-linked activities, but retained their light-induced proton uptake, resulting in the formation of an electrochemical gradient of protons composed of both a pH gradient and a membrane potential. These results indicate that the removed beta and gamma subunits cannot be an integral part of an H+ gate in the R. rubrum chromatophore membrane. Each of the removed subunits could bind to the beta, gamma-less chromatophores, but such separate reconstitution of either beta or gamma alone did not lead to restoration of any ATP-linked activity. ATP synthesis and hydrolysis could be restored to the same extent to these chromatophores by their reconstitution with both beta and gamma. It is thus concluded that the presence of both subunits is required for ATP synthesis as well as hydrolysis by the R. rubrum F0.F1 complex. The identical degree of elimination and restoration of ATP synthesis and hydrolysis upon removal and reconstitution of beta and gamma indicates that in R. rubrum at least, there seems to be no reason for suggesting the operation of different catalytic sites for the two activities.  相似文献   

12.
The effects of external pH on the efflux of protons from illuminated spinach chloroplasts have been studied by monitoring the rates of proton-pumping electron transport under a variety of steady-state conditions. Phosphorylation-coupled proton efflux through the ATP synthase (CF0-CF1), determined from the rates of ATP formation and that portion of the total electron transport attributable to phosphorylation, is strongly dependent upon pH over the range 6–9, with little activity below pH 7 and half-maximal activity at pH ≈ 7.6. Noncoupled proton efflux through the ATP synthase, determined in the absence of ADP and phosphate, was also strongly pH sensitive, with little activity below pH 7.5 and half-maximal activity at pH ~- 7.9. When proton efflux via CF0 was prevented by triphenyltin, the rate of passive proton leakage across the membrane was very low and practically insensitive to external pH indicating that the major pH-sensitive pathway(s) for proton efflux in the light involves CF0 · CF1. Modification of CF1 sulfhydryls by Ag+ resulted in an apparent increase in proton efflux via the normally coupled CF0 · CF1 pathway (half-maximal activity = pH 7.6), whereas modification by Hg2+ resulted in an apparent increase in proton efflux via the noncoupled CF0 · CF1 pathway (half-maximal activity = pH 7.9).  相似文献   

13.
《FEBS letters》1987,219(2):321-325
Previous studies on the ability of CF1, fragments to reconstitute photophosphorylation in CF1,-depleted thylakoids have shown that the degree of reconstitution was correlated with the presence of subunit δ in the fragment. This was taken as evidence that subunit δ was necessary for plugging the active proton channel CF0 [(1986) Eur. J. Biochem. 160, 635–643]. We questioned whether or not δ alone had this ability. In order to obtain δ we investigated the role of bound nucleotides in the stability of CF1. Starting from ammonium sulfate-precipitated CF1, we found that a low content of bound ADP (1 mol ADP/mol CF1) seemed to stabilize the β—δ interaction, while loosening the interaction between α,β and γ. By elution from an anion-exchange column in the presence of the nonionic surfactant Mega 9 we obtained β3δ and CF1(—δ) (both containing one ADP) or, after washing with alcohol/glycerol mixtures, β (nucleotide-free) and CF1/CF1(—ϵ). On the other hand, with a further 2 ADP and 2 ATP bound to CF1, (after incubation with excess ATP) the α-β-γ interaction was stabilized in such a way that subunit δ alone could be isolated from the complex. Subunit δ, when isolated by this procedure and added back to CF1-depleted thylakoids, reconstituted a high rate of photophosphorylation.  相似文献   

14.
The γ-subunits of chloroplast ATP synthases are about 30 amino acids longer than the bacterial or mitochondrial homologous proteins. This additional sequence is located in the mean part of the polypeptide chain and includes in green algae and higher plants two cysteines (Cys198 and Cys204 in Chlamydomonas reinhardtii) responsible for thiol regulation. In order to investigate its functional significance, a segment ranging from Asp-D210 to Arg-226 in the γ-subunit of chloroplast ATP synthase from C. reinhardtii was deleted. This deletion mutant called T2 grows photoautotrophically, but slowly than the parental strain. The chloroplast ATP synthase complex with the mutated γ is assembled, membrane bound, and as CF0CF1 displays normal ATPase activity, but photophosphorylation is inhibited by about 20 %. This inhibition is referred to lower light-induced transmembrane proton gradient. Reduction of the proton gradient is apparently caused by a disturbed functional connection between CF1 and CF0 effecting a partially leaky ATP synthase complex.  相似文献   

15.
Nolan WG 《Plant physiology》1981,67(6):1259-1263
Temperature-induced changes in the decay of the light-induced proton gradient of chloroplast thylakoids isolated from chilling-resistant and chilling-sensitive plants have been examined. In the presence of N-methylphenazonium methosulfate, the thylakoids isolated from chilling-resistant barley (cv. Kanby) and pea (cv. Alaska) and chilling-sensitive mung bean (cv. Berken) plants showed temperature-induced changes at approximately 8.6, 13.3, and 14.0 C, respectively. Barley thylakoids assayed in the presence of sodium thiocyanate also showed a change at 8.6 C, whereas with no addition or upon the inclusion of both N-methylphenazonium methosulfate and sodium thiocyanate the change occurred at approximately 11.5 C.  相似文献   

16.
The activation of spinach (Spinacia oleracea) chloroplast coupling factor 1 (CF1) by thioredoxin (ThR) was characterized using membrane-bound and soluble CF1. Light generates an electrochemical proton gradient across the thylakoid membrane, which increases the accessibility of the disulfide bond on the γ-subunit of CF1 to reduced ThR. The proton gradient substantially accelerates the activation of CF1 compared with thylakoids incubated in the dark with similar concentrations of dithiothreitol and ThR. The interaction of soluble CF1 with ThR was studied using fluorescent probes. CF1 in solution, with and without its associated ε-subunit, was labeled at Cys-322 of the γ-subunit with fluoresceinyl maleimide. ThR from Escherichia coli was labeled with eosin isothiocyanate. Labeled ThR and CF1 showed normal activities. Fluorescence energy transfer between donor fluoresceinyl maleimide and acceptor eosin isothiocyanate, manifested by a quenching of the donor fluorescence, was detected, suggesting that ThR and CF1 form an intermolecular complex. When the ε-subunit was absent, quenching of donor fluorescence was approximately doubled, indicating that labeled ThR could approach more closely to the γ-subunit of CF1. The distance between the fluorescent probes on CF1 and ThR was calculated to be approximately 65 Å when ε-subunit was present and 52 Å when ε was absent. These values are consistent with other distance measurements and energy transfer values reported previously for fluorescent probes on CF1. Whereas the extent of quenching increased by removal of the ε-subunit, the apparent dissociation constant was unchanged. The quenching effect was reversed when the ε-subunit was added back to the titration mixture. Similarly, the addition of unlabeled ThR decreased donor quenching.  相似文献   

17.
Catalytic and noncatalytic sites of the chloroplast coupling factor (CF1) were selectively modified by incubation with the dialdehyde derivative of fluorescent adenosine diphosphate analog 1,N6-ethenoadenosine diphosphate. The modified CF1 was reconstituted with EDTA-treated thylakoid membranes of chloroplasts. The effects of light-induced transmembrane proton gradient and phosphate ions on the fluorescence of 1,N6-ethenoadenosine diphosphate, covalently bound to the catalytic sites of ATP synthase, were studied. Quenching of fluorescence of covalently bound 1,N6-ethenoadenosine diphosphate was observed under illumination of thylakoid membranes with saturating white light. Addition of inorganic phosphate to the reaction mixture in the dark increased the fluorescence of the label. Quenching reappeared under repeated illumination; however, addition of phosphate ions had no effect on the fluorescence yield in this case. When 1,N6-ethenoadenosine diphosphate was covalently bound to noncatalytic sites of ATP synthase, no similar fluorescence changes were observed. The relation between the observed changes of 1,N6-ethenoadenosine diphosphate fluorescence and the mechanism of energy-dependent structural changes in the catalytic site of ATP synthase is discussed.  相似文献   

18.
Arlette Danon  S.Roy Caplan 《BBA》1976,423(1):133-140
The relationship between proton movement and phosphorylation in Halobacterium halobium R1 has been investigated under anaerobic conditions. The light-induced changes in the bacteriorhodopsin are accompanied by proton movements across the cell membrane which result in pH changes in the suspending medium. The initial alkaline shift is shown to be closely paralleled by (and hence correlated with) ATP synthesis. Acidification of the medium in the presence of valinomycin, under conditions of low external potassium, brings about ATP synthesis in the dark.  相似文献   

19.
Photophosphorylation was discovered in chloroplasts by D. Arnon and coworkers, and in bacterial ‘chromatophores’ (intercytoplasmic membranes) by A. Frenkel. Initial low rates were amplified by adding electron-carrying compounds such as FMN, later shown to support the ‘pseudocyclic’ electron flow. ATP synthesis, and coupling to electron flow, was detected accompanying linear electron flow from H2O to either NADP+ or ferricyanide. Another pattern of electron flow supporting photophosphorylation was that of a cycle around Photosystem I (PS I). Isolation and analysis of the ATP synthase showed, as with mitochondrial and bacterial analogues, an intrinsic membrane complex (CF0) and an extrinsic complex (CF1). CF1 is a latent ATPase, activated additively by the high-energy state of the thylakoids, and by reduction of a disulfide bond on the gamma subunit. Once reduced, ATP synthesis occurs at lower energy levels. The search for an ‘intermediate’ linking electron flow and ATP synthesis led to the discovery of post-illumination ATP synthesis by thylakoids, where turnover occurs in the dark. Once interpreted by P.Mitchell's chemiosmotic hypothesis, this led to the discovery of light-driven proton uptake into the thylakoid lumen, with accompanying Cl intake and Mg2+ and K+ output. Chemiosmosis was confirmed in several ways, including ATP synthesis in the dark due to an acid-to-base transition of thylakoids, and photophosphorylation accomplished in artificial lipid vesicles containing both the proton-pumping bacterial rhodopsin and a mitochondrial ATPase complex. The now generally accepted chemiosmotic interpretation is able to clarify some other aspects of photosynthesis as well. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Summary We previously introduced a flash spectrophotometric method to analyze proton conduction by CF0 in vesicles derived from thylakoid membranes (H. Lill, S. Engelbrecht, G. Schönknecht & W. Junge, 1986,Eur. J. Biochem. 160:627–634). The unit conductance of CF0, as revealed by this technique, was orders of magnitude higher than that theoretically expected for a hydrogen-bonded chain. We scrutinized the validity of this method. Small vesicles were derived from thylakoids by EDTA treatment. The intrinsic electric generators in the membrane were stimulated by short flashes of light and the relaxation of the voltage via ionic channels was measured through electrochromic absorption changes of intrinsic pigments. The voltage decay was stimulated by a statistical model. As the vesicle-size distribution had only a minor influence, the simulation required only two fit parameters, the first proportional to the unit conductance of an active channelG, and the second denoting the average number of active channels per vesiclen. This technique was applied to CF0, the proton channel of the chloroplast ATP synthase, and to gramicidin, serving as a standard. For both channels we found the above two fit parameters physically meaningful. They could be independently varied in predictable wasy, i.e.n by addition of known inhibitors of F0-type proton channels andG via the temperature. for gramicidin, the unit conductance (2.7 pS) was within the range described in the literature. This established the competence of this method for studies on the mechanism of proton conduction by CF0, whose conductance so far has not been accessible to other, more conventional approaches. The time-averaged unit conductance of CF0 was about 1 pS, equivalent to the turnover of 6×105 H+/(CF0·sec) at 100 mV driving force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号