首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of different culture systems on the amount of plankton consumed by fingerlings of three carp species (Labeo rohita, Catla catla and Cirrhinus mrigala) was examined in outdoor culture tanks during a 90 day growing period. The fish were raised under two basically different feeding conditions: (a) fed with allochthonous live plankton; (b) fed with plankton grown autochthonously in the fish growing tanks fertilized with manures. Both feeding regimes were compared with control groups. It was found that the plankton intake for carp held in the live food system was significantly higher than with the manured and control systems. Related to maximum intake, maximum abundance of plankton in the live food system was a consequence of improved water quality expressed in terms of lower values of BOD and COD and higher values of DO and pH; this was conducive to fast reproduction of some of the zooplankton which constituted the major food items for the test carp, as well as to the regular exogenous introduction of live plankton. The ingestion of plankton was found to be related to carp body weight raised to the power b. The exponent b ranged from 0.29 to 0.93 during the 90-day growing period.  相似文献   

2.
Plankton diversity reflects the quality and health of waters and should be monitored as a critical feature of marine ecosystems. This study applied a pair of 28S rRNA gene‐specific primers and pyrosequencing to assess the effects of large‐scale cultivation of the seaweed Gracilaria lemaneiformis on the biodiversity of eukaryotic plankton community in the coastal water of Guangdong, China. With 1 million sequences (2,221 operational taxonomic units [OTUs]) obtained from 51 samples, we found that the biodiversity of eukaryotic plankton community was significantly higher in the seaweed cultivation area than that in the nearby control area as reflected in OTU richness, evenness (Shannon–Wiener index) and dominance (Simpson index) for total plankton community and its four subcategories when Gracilaria biomass reached the maximum, while no such a significant difference was observed before seaweed inoculation. Our laboratory experiment using an artificial phytoplankton community of nine species observed the same effects of Gracilaria exposure. Principal component analysis and principal coordinates analysis showed the plankton community structure in cultivation area markedly differed from the control area when Gracilaria biomass reached its maximum. Redundancy analysis showed that G. lemaneiformis was the critical factor in controlling the dynamics of eukaryotic plankton communities in the studied coastal ecosystem. Our results explicitly demonstrated G. lemaneiformis cultivation could enhance biodiversity of plankton community via allelopathy, which prevents one or several plankton species from blooming and consequently maintains a relatively higher biodiversity. Our study provided further support for using large‐scale G. lemaneiformis cultivation as an effective approach for improving costal ecosystem health.  相似文献   

3.
The relationship between physicochemical factors and plankton abundance in the newly created Bui reservoir was studied during 2011 and 2012. The objective was to assess the influence of physicochemical factors on plankton abundance and provide data for monitoring the hydrobiology of the newly created Bui reservoir. Two sampling stations were selected on the Black Volta upstream (Bui) and downstream (Bamboi) of the dam, with samples taken pre‐ and postimpoundment during the study period. Canonical Correspondence Analysis (CCA) was used to trace temporal plankton community changes and to examine the relationships between species composition and physicochemical variables. The relative abundance of some phytoplankton species such as Anabaena sp., Planktothrix sp. and Scenedesmus sp. was directly correlated to nitrates. CCA indicated that physicochemical variables explained 41–64% of zooplankton and 8–12% of phytoplankton variation. Hence, there were correlations between environmental variables and the structure of plankton assemblages. This feature should therefore be used for bio‐monitoring of environmental variables of the river by the Bui Power Authority to ensure protection of the aquatic biota downstream of the Bui dam.  相似文献   

4.
Since penguins rely on the main planktonic resources of the Southern Ocean, knowledge of their diet may be used for monitoring these resources During winter and spring of 1987 and 1989, we investigated the composition of the diet of gentoo penguins. Pygoscelis papua, in relation to changes in the availability of two prey species, Euphausia vallentini and Themisto gaudichaudii, sampled during plankton surveys in the Kerguelen Islands. The comparison between plankton surveys and diet analysis was performed on samples taken 2–4 km from the studied colonies. Data on the abundance of Zooplankton derived from penguins' diet matched closely those from net hauls during a year of high plankton availability (1987). On the other hand, a weaker correspondence was found during a year of restricted availability (1989). The mean sizes of amphipods caught by penguins and net hauls were very similar but the size distribution showed comparatively fewer small and large individuals in net-hauls than in penguin stomachs. Detailed studies on the feeding range and foraging effort of penguins are therefore needed in the near future to validate the potential of penguin diet as a measure of plankton abundance.  相似文献   

5.
Gentleman  Wendy 《Hydrobiologia》2002,480(1-3):69-85
Research on plankton ecology in the oceans has traditionally been conducted via two scientific approaches: in situ (in the field) and in vitro (in the laboratory). There is, however, a third approach: exploring plankton dynamics in silico, or using computer models as tools to study marine ecosystems. Models have been used for this purpose for over 60 years, and the innovations and implementations of historical studies provide a context for how future model applications can continue to advance our understanding. To that end, this paper presents a chronology of the in silico approach to plankton dynamics, beginning with modeling pioneers who worked in the days before computers. During the first 30 years of automated computation, plankton modeling focused on formulations for biological processes and investigations of community structure. The changing technological context and conceptual paradigms of the late-1970s and 1980s resulted in simulations becoming more widespread research tools for biological oceanographers. This period saw rising use of models as hypothesis-testing tools, and means of exploring the effects of circulation on spatial distributions of organisms. Continued computer advances and increased availability of data in the 1990s allowed old approaches to be applied to old and new problems, and led to developments of new approaches. Much of the modeling in the new millennium so far has incorporated these sophistications, and many cutting-edge applications have come from a new generation of plankton scientists who were trained by modeling gurus of previous eras. The future directions for modeling plankton dynamics are rooted in the historical studies.  相似文献   

6.
Fish larvae and fish eggs were sampled from the inshore waters of eastern Lake Michigan from 1978 through 1980, using a benthic sled and a plankton net towed within 0.5 m of the lake bottom. Differences between estimates of ichthyoplankton abundance based on the benthic sled and those based on the plankton net towed near bottom were examined along with interactions between gear, bottom depth, and time of day. Time of day was determined to be an important factor in comparing these two gear, but data were inconclusive as to the effect of depth on gear differences. Abundance of fish eggs calculated using sled tow data was significantly higher than that for the plankton net. For nighttime collections, density of alewife Alosa pseudoharengus larvae sampled in the plankton net significantly exceeded that for the sled, whereas density of spottail shiner Notropis hudsonius larvae based on sled data was significantly higher than that based on the plankton net for day sampling. Overall, the plankton net appeared to be adequate for sampling abundance of alewife larvae, while the sled was preferred for sampling fish eggs, spottail shiner larvae, and the following less common, but apparently demersal larvae: trout-perch Percopsis omiscomaycus, johnny darter Etheostoma nigrum, ninespine stickleback Pungitius pungitius, and slimy sculpin Cottus cognatus.  相似文献   

7.
The seasonal fluctuations in the incidence of planktonic organisms and the larval forms of certain crustaceans such as crabs, barnacles and post larvae of prawns in the plankton of the south-west coast of India have been followed for a period of three years from 1963. South-west monsoon period is the least productive period for zooplankton in this area. Brachyuran zoeae, post larvae of prawns and barnacle nauplii occur in the plankton throughout the year with distinct peaks for different groups. The zoeae ofUca annulipes occur in the plankton from September to May with a peak during November–December. The zoeae ofPortunus pelagicus are present in the plankton from September to June and their abundance is in February–March. The post larvae ofMetapenaeus affinis are found in the inshore plankton from November to June with the peak in March. The nauplii ofBalanus amphitrite communis occur in the plankton in all the months of the year, the peak incidence has been during November January. The zoeae ofU. annulipes are found to tolerate better the medium saline conditions. Of the ecological factors, salinity of the ambient water and the availability of planktonic food for the larvae seem to influence the seasonal fluctuations of these crustacean larvae in this locality.  相似文献   

8.
D. Straile 《Oecologia》2000,122(1):44-50
The timing of various plankton successional events in Lake Constance was tightly coupled to a large-scale meteorological phenomenon, the North Atlantic Oscillation (NAO). A causal chain of meteorological, hydrological, and ecological processes connected the NAO as well as winter and early spring meteorological conditions to planktonic events in summer leading to a remarkable memory of climatic effects lasting over almost half a year. The response of Daphnia to meteorological forcing was most probably a direct effect of altered water temperatures on daphnid growth and was not mediated by changes in phytoplankton concentrations. High spring water temperatures during ”high-NAO years” enabled high population growth rates, resulting in a high daphnid biomass as early as May. Hence, a critical Daphnia biomass to suppress phytoplankton was reached earlier in high-NAO years yielding an early and longer-lasting clear-water phase. Finally, an earlier summer decline of Daphnia produced in a negative relationship between Daphnia biomass in July and the NAO. Meteorological forcing of the seasonal plankton dynamics in Lake Constance included simple temporal shifts of processes and successional events, but also complex changes in the relative importance of different mechanisms. Since Daphnia plays an important role in plankton succession, a thorough understanding of the regulation of its population dynamics provides the key for predictions of the response of freshwater planktonic food webs to global climate change. Received: 15 February 1999 / Accepted: 23 August 1999  相似文献   

9.
Based on materials from plankton surveys carried out in 2004–2009, the period of occurrence, density, and distribution of larvae of three commercial species of crabs in the Peter the Great bay and adjacent areas of Sea of Japan were studied. The larvae of the horsehair crab Erimacrus isenbeckii (Brandt, 1848) occurred in the plankton from mid-March to early June, within the range of water temperature from −1 to 10.8°C. The larvae of the helmet crab Telmessus cheiragonus (Tilesius, 1812) appeared in the plankton in mid-April and occurred to the end of June within the temperature range from 2.8 to 13.0°C. The larvae of the snow crab Chionoecetes opilio (O. Fabricius, 1788) appeared in the plankton in mid-April as well, but some individuals sporadically occurred until early August. All the species of crabs produced one generation of larvae for their reproduction season. The terms of larval stay in plankton depended on water temperature and the duration of the pelagic period increased in colder years. In that area, the larvae of C. opilio were the most abundant (up to 41 ind./m3) and the zoea density of horsehair and helmet crabs was significantly lower (no more than 2 ind./m3). The larvae of C. opilio occurred over the entire area of the Peter the Great bay; the greatest aggregations of their early stages were observed in its southwestern open part. The maximum density of E. isenbeckii zoea was recorded in the south of the Amursky bay and in the Posyet bay. Individual larvae of T. cheiragonus occurred in the Posyet bay and in the southern part of the Amursky and Ussuriisky bays. The late-stage larvae of all crab species were concentrated in areas of the coastal circulation.  相似文献   

10.
11.
Microeukaryotic plankton (0.2–200 μm) are critical components of aquatic ecosystems and key players in global ecological processes. High‐throughput sequencing is currently revolutionizing their study on an unprecedented scale. However, it is currently unclear whether we can accurately, effectively and quantitatively depict the microeukaryotic plankton communities using traditional size‐fractionated filtering combined with molecular methods. To address this, we analysed the eukaryotic plankton communities both with, and without, prefiltering with a 200 μm pore‐size sieve –by using SSU rDNA‐based high‐throughput sequencing on 16 samples with three replicates in each sample from two subtropical reservoirs sampled from January to October in 2013. We found that ~25% reads were classified as metazoan in both size groups. The species richness, alpha and beta diversity of plankton community and relative abundance of reads in 99.2% eukaryotic OTUs showed no significant changes after prefiltering with a 200 μm pore‐size sieve. We further found that both >0.2 μm and 0.2–200 μm eukaryotic plankton communities, especially the abundant plankton subcommunities, exhibited very similar, and synchronous, spatiotemporal patterns and processes associated with almost identical environmental drivers. The lack of an effect on community structure from prefiltering suggests that environmental DNA from larger metazoa is introduced into the smaller size class. Therefore, size‐fractionated filtering with 200 μm is insufficient to discriminate between the eukaryotic plankton size groups in metabarcoding approaches. Our results also highlight the importance of sequencing depth, and strict quality filtering of reads, when designing studies to characterize microeukaryotic plankton communities.  相似文献   

12.
During the 1980s, the North Sea plankton community underwent a well‐documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic‐level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic‐level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959–1980 and 1989–2010. Twenty‐three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para‐pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate‐change impacts on synchrony. We discuss why climate‐change impacts on synchrony may well be more common and consequential than previously recognized.  相似文献   

13.
1. Five oligotrophic clear‐water lakes on the Faroe Islands were studied during August 2000. Algal and bacterial production rates, community respiration, and CO2 saturation were determined. In addition, we examined the plankton community composition (phytoplankton and heterotrophic nanoflagellates) and measured the grazing pressure exerted by common mixotrophic species on bacteria. 2. High respiration to primary production (6.6–33.2) and supersaturation of CO2 (830–2140 μatm) implied that the lakes were net heterotrophic and that the pelagic heterotrophic plankton were subsidised by allochthonous organic carbon. However, in spite of the apparent high level of net heterotrophy, primary production exceeded bacterial production and the food base for higher trophic levels appeared to be mainly autotrophic. 3. We suggest that the observed net heterotrophy in these lakes was a result of the oligotrophic conditions and hence low primary production in combination with an input of allochthonous C with a relatively high availability. 4. Mixotrophic phytoplankton (Cryptomonas spp., Dinobryon spp. and flagellates cf. Ochromonas spp.) constituted a large percentage of the plankton community (17–83%), possibly as a result of their capacity to exploit bacteria as a means of acquiring nutrients in these nutrient poor systems.  相似文献   

14.
Based on an analysis of the gonads, as well as the size composition and abundance of larvae in plankton, we determined the seasonal and long-term dynamics of the reproduction of the mussel Mytilus coruscus in Amursky Bay (Peter the Great Bay, Sea of Japan). Mussel gonads were in a mature condition in late July-early August; the spawning season continued from mid-August to mid-September. The larvae of this species occurred in plankton from June to September, under surface water temperatures of 14.5–23.5°C. The density of larvae in different years varied from 350 to 4500 ind/m3. Two peaks of larval abundance were observed annually, in June and September. The first peak was apparently provided by allochthonous larvae, the second, by larvae of the local population. The high density of larvae of M. coruscus in the plankton of Peter the Great Bay enabled us to consider this species as a potential object for mariculture.  相似文献   

15.
In order to characterize copepod feeding in relation to microbial plankton community dynamics, we combined metabarcoding and metabolome analyses during a 22‐day seawater mesocosm experiment. Nutrient amendment of mesocosms promoted the development of haptophyte (Phaeocystis pouchetii)‐ and diatom (Skeletonema marinoi)‐dominated plankton communities in mesocosms, in which Calanus sp. copepods were incubated for 24 h in flow‐through chambers to allow access to prey particles (<500 μm). Copepods and mesocosm water sampled six times spanning the experiment were analysed using metabarcoding, while intracellular metabolite profiles of mesocosm plankton communities were generated for all experimental days. Taxon‐specific metabarcoding ratios (ratio of consumed prey to available prey in the surrounding seawater) revealed diverse and dynamic copepod feeding selection, with positive selection on large diatoms, heterotrophic nanoflagellates and fungi, while smaller phytoplankton, including P. pouchetii, were passively consumed or even negatively selected according to our indicator. Our analysis of the relationship between Calanus grazing ratios and intracellular metabolite profiles indicates the importance of carbohydrates and lipids in plankton succession and copepod–prey interactions. This molecular characterization of Calanus sp. grazing therefore provides new evidence for selective feeding in mixed plankton assemblages and corroborates previous findings that copepod grazing may be coupled to the developmental and metabolic stage of the entire prey community rather than to individual prey abundances.  相似文献   

16.
A recent meta‐analysis indicates that trophic cascades (indirect effects of predators on plants via herbivores) are weak in marine plankton in striking contrast to freshwater plankton ( Shurin et al. 2002 , Ecol. Lett., 5, 785–791). Here we show that in a marine plankton community consisting of jellyfish, calanoid copepods and algae, jellyfish predation consistently reduced copepods but produced two distinct, opposite responses of algal biomass. Calanoid copepods act as a switch between alternative trophic cascades along food chains of different length and with counteracting effects on algal biomass. Copepods reduced large algae but simultaneously promoted small algae by feeding on ciliates. The net effect of jellyfish on total algal biomass was positive when large algae were initially abundant in the phytoplankton, negative when small algae were dominant, but zero when experiments were analysed in combination. In contrast to marine systems, major pathways of energy flow in Daphnia‐dominated freshwater systems are of similar chain length. Thus, differences in the length of alternative, parallel food chains may explain the apparent discrepancy in trophic cascade strength between freshwater and marine planktonic systems.  相似文献   

17.
Augmentation of plankton production in Indian fishponds by application of manure and inorganic fertilisers was studied in laboratory experiments. The effects of the salinity of the medium were also examined.Laboratory trials were made with mustard oil cake and urea on equivalent nutrient bases in media with varying degrees of salinity (0–30 ppt at 2 ppt. intervals). It was observed that Closterium, Fragilaria, Pinnularia and Gyrosigma grew well in the higher salinity range between 24 to 30 ppt. whereas lower salinities ranging from a trace to 8 ppt. are suitable for improved production of Anabaena, Synedra, Navicula, Amphipleura, Amphora and Nitzschia. Comparatively better production of plankton was recorded with urea than with mustard oil cake.  相似文献   

18.
Dynamics of bacterial plankton community of eutrophic water reservoir in laboratory microecosystems with amino acid lysine was studied using PCR-DGGE technique. The addition of lysine to the microecosystems resulted in changes in the composition of the bacterial plankton in summer; in particular, a number of Lys1 and Lys2 species (genotypes) that consume this amino acid grew fast in the bacterial community. The plank tonic bacterial communities did not respond to the addition of lysine in spring and late summer. The obtained data confirm the hypothesis for the narrow specialization of bacterial plankton species to the consumption of individual organic substances.  相似文献   

19.
Dinophysis acuminata and D. norvegica were observed in plankton net samples during the summer of 2002 from the Kandalaksha Gulf in the White Sea (North European Russia). Prorocentrum lima was found as an epiphyte on subtidal macroalgae in August, but not observed in plankton net samples. Protein phosphatase 2A (PP2A) inhibition measured 127.8 ng OA-equivalent/g of mussel (Mytilus edulis) hepatopancreas from samples collected a few days after when Dinophysis was recorded at a density of 1550 cells L−1. Liquid chromatography–mass spectrometry confirmed presence of several classes of lipophilic shellfish toxins associated with Dinophysis spp. in the mussels including okadaic acid, dinophysistoxin-1, pectenotoxins and yessotoxins. No azaspiracid was detected. This represents the first identification of phycotoxicity in the White Sea.  相似文献   

20.
Typically, the most abundant group of shrimp larvae in the German Bight is formed by representatives of the family Crangonidae. Larvae of the remaining species have been largely ignored, and only scarce information concerning their ecology is available. Thus, the purpose of the present study was to determine the species composition, distribution and abundance of noncrangonid shrimp larvae in the German Bight in July 1990, after the mildest winter of the century. The material is based upon plankton samples collected at 77 stations, covering the entire German Bight. Eight species were identified, as well as larvae of Palaemonidae andProcessa-juveniles.Processa nouveli holthuisi (53.0%) andP. modica (31.3%) were predominant in the collection. The distribution of the two species was clearly separated: the main concentration ofP. nouveli holthuisi (peak concentration of 1.94 larvae per m3) was confined to the northwest corner of the German Bight, while a majority ofP. modica larvae (peak concentration of 0.54 larvae per m3) occurred at the southwesterly stations. The spatial distribution ofCaridion steveni andEualus occultus around Helgoland indicates the presence of an adult population at the only rocky island in the study area. Other taxa, such as larvae of Palaemonidae and juvenilePandalina brevirostris were collected exclusively in estuarine habitats. Based upon both the results of the present study and comparable data, we conclude that developmental stages of ten non-crangonid species, as well as representatives of Palaemonidae, can be expected to occur in the plankton of the German Bight. The extremely mild temperatures of the preceding winter may have been, in part, responsible for the relatively high densities of some taxa encountered during our plankton survey. We assume that warm winter temperatures favour the immigration, reproduction and survival of cold-sensitive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号