首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammonium uptake rates and the mechanism for ammonium transport into the cells have been analysed in Zostera marina L. In the cells of this species, a proton pump is present in the plasmalemma, which maintains the membrane potential. However, this seagrass shows a high-affinity transport mechanism both for nitrate and phosphate which is dependent on sodium and is unique among angiosperms. We have then analysed if the transport of another N form, ammonium, is also dependent of sodium. First, we have studied ammonium transport at the cellular level by measurements of membrane potentials, both in epidermal root cells and mesophyll cells. And second, we have monitored uptake rates in whole leaves and roots by depletion experiments. The results showed that ammonium is taken up by a high-affinity transport system both in root and leaf cells, although two different of kinetics could be discerned in mesophyll cells (with affinity constants of 2.2 ± 1.1 μM NH4+, in the range 0.01-10 μM NH4+, and 23.2 ± 7.1 μM NH4+, at concentrations between 10 and 500 μM NH4+). However, only one kinetic could be observed in epidermal root cells, which showed a Km = 11.2 ± 1.0 μM NH4+, considering the whole ammonium concentration range assayed (0.01-500 μM NH4+). The higher affinity of leaf cells for ammonium was consistent with the higher uptake rates observed in leaves, with respect to roots, in depletion experiments at 10 μM NH4+ initial concentration. However, when an initial concentration of 100 μM was assayed, the difference between uptake rates was reduced, but still being higher in leaves. Variations in proton or sodium-electrochemical gradient did not affect ammonium uptake, suggesting that the transport of this nutrient is not driven by these ions and that the ammonium transport mechanism could be different to the transport of nitrate and phosphate in this species.  相似文献   

2.
The ammonium analogue, methylamine, is taken up rapidly from dilute solution by Macrocystis pyrifera (L.) C. A. Agardh. 14C-methylamine was used to characterize the transport system, with respect to dependence on external concentration, temperature, pH and substrate specificity. The results suggest that methylamine enters the algal tissue via a specific mediated transport system. Uptake of methylamine showed no consistent relation to the N content of the plant tissue, but was highly dependent on the portion of plant sampled and severely affected by cutting the tissue. The strong inhibition of methylamine uptake by ammonium and lesser inhibition by other alkylamines suggests that the uptake system functions as an “ammonium permease”. Uptake of 14C-methylamine can be used as a highly sensitive measure of NH4+ uptake activity and should be a useful tool for studying NH4+ uptake in the laboratory and field.  相似文献   

3.
The effects of metabolic and protein synthesis inhibitors on NH4 + uptake by Pisum arvense plants at low (0.05 mM) and high (1 mM) external ammonium concentration were studied. In short-time experiments cycloheximide decreased the ammonium uptake rate at low level of NH4 + and increased the absorption of NH4 + from uptake medium containing high ammonium concentration. Arsenate and azide supplied into uptake solutions at low ammonium concentration strongly decreased or completely suppressed the NH4 + uptake rate, respectively. When the experiments were carried out at high level of ammonium only azide decreased the uptake rate of NH4 + and arsenate stimulated this process. Dinitrophenol very strongly repressed the uptake rate of NH4 + at both ammonium concentrations. After removing dinitrophenol from both solutions, neither at low nor high external ammonium level the recovery of NH4 + uptake rate was achieved within 150 min or 3 h, respectively. The recovery of NH4 + uptake rate after removing azide was observed within 90 min and 3 h at low and high ammonium concentrations, respectively. The regulation of NH4 + uptake by some inhibitors at low external ammonium level was investigated using plasma membrane vesicles isolated from roots by two-phase partitioning. Orthovanadate completely suppressed the uptake of NH4 + by vesicles and quinacrine decreased the NH4 + uptake which 55 suggests that ammonium uptake depends on activities of plasma membrane-bound enzymes. On the other hand, it was found that dinitrophenol completely reduced the NH4 + uptake by vesicles. The various effects of inhibitors on ammonium uptake dependent on external ammonium concentration suggest the action of different ammonium transport systems in Pisum arvense roots. The ammonium transport into root cells at low NH4 + level requires energy and synthesis of protein in the cytoplasm. The research was supported by grant of KBN No. 6PO4C 068 08  相似文献   

4.
Previous data in Egeria densa leaves demonstrated a strong inhibitory effect of Cs+ on passive K+ influx and on K+-induced, ATP-dependent electrogenic proton extrusion. In this paper we analyzed, using the same material, the effects of Cs+ on ammonium (NH4+) and methylammonium (CH3NH3+) transport in order to elucidate whether a common transport system for K+ and NH4+ could be demonstrated. The effects of Cs+ on NH4+- and CH3NH3+-induced titratable H+ extrusion (–ΔH+) and on transmembrane electrical potential difference (Em) in E. densa leaves were analyzed in parallel. All experiments were run either in the absence or presence of fusicoccin, corresponding to low or high H+-ATPase activity and membrane hyperpolarization and leading, in this material, to respectively active or passive transport of K+. The results suggest the presence in E. densa leaves of two distinct pathways for NH4+ uptake: one in common with NH4+ and (with lower affinity) CH3NH3+, insensitive to Cs+, and a second system, operating at higher H+-ATPase activity and Em hyperpolarization, strongly inhibited by Cs+ and impermeable to CH3NH3+. In agreement with this hypothesis, Xenopus laevis oocytes injected with the KAT1 RNA of Arabidopsis thaliana were permeable to K+ and NH4+, but not to CH3NH3+.  相似文献   

5.
The effects of internally applied 1 mM vanadate on the Na+ efflux in dialysed squid axons were found to depend on the presence of external K+. In K+-free artificial sea water, vanadate did not produce any change in the rate of Na+ efflux, whereas in the presence of 10 mM K+ the Na+ efflux was reduced to values even lower than those observed in the absence of K+ (inversion of the K+-free effect). In vanadate-poisoned axons, K+ and NH4+ at low concentrations activated Na+ efflux, but at high concentrations both cations were inhibitory. However, NH4+ was always a better activator and a poorer inhibitor than K+.  相似文献   

6.
THE PENETRATION OF THE MEMBRANE OF BRAIN MITOCHONDRIA BY ANIONS   总被引:1,自引:0,他引:1  
The permeability of the membrane of rat brain non-synaptosomal mitochondria, towards inorganic and substrate anions, was assessed by measuring the rate of swelling that occurred when mitochondria were suspended in an iso-osmotic solution of a permeant anion, in the presence of a permeant cation such as NH+4 or K+ in the presence or absence of valinomycin. In NH+4-phosphate swelling was higher than it was in KCI or K+-phosphate, which showed the prevalence of the mechanism of phosphate transport previously demonstrated in liver mitochondria. The entry of succinate and L-malate seemed to require the presence in the inner mitochondrial membrane of specific carriers. as previously postulated for liver mitochondria, but the rate of swelling of brain mitochondria was lower than that of liver organelles. In K+-succinate, in the presence of antimycin, added ATP induced swelling and this was attributable to the simultaneous permeation both of the anion and the cation. Fumarate did not penetrate into brain mitochondria. Practically no swelling was recorded in NH+4 or K+-citrate, which indicated that this anion penetrated poorly into the isolated brain mitochondria even in the presence of malate. Swelling occurred in NH+4-L-glutamate in the presence of rotenone, and the entry of this anion seemed to follow a gradient of concentration although the presence of a specific translocator in the inner mitochondrial membrane might be concerned. The entry of glutamate was independent of that of phosphate and N-ethylmaleimide appeared to be a specific inhibitor of this entry. Swelling in K+-L-glutamate, in the presence of rotenone, was enhanced by the addition of valinomycin or ATP but in the latter case when osmotic equilibrium was reached swelling was not reversed by oligomycin. In conclusion, the lesser extent of swelling of isolated brain mitochondria compared with liver mitochondria could be attributed to the heterogeneity of the populations of these organelles, each population possessing its own characteristics of membrane permeability. Observations of electron micrographs of brain mitochondria incubated in iso-osmotic substrate anions confirmed the heterogeneous rate of swelling of these particles.  相似文献   

7.
Effectors of fatty acid synthesis in hepatoma tissue culture cells   总被引:1,自引:0,他引:1  
An investigation was undertaken to better understand the process of fatty acid synthesis in hepatoma tissue culture (HTC) cells. By comparing the findings to the normal liver some of the differences between normal and cancer tissue were defined. Incubation of the HTC cells in a buffered salt-defatted albumin medium showed that fatty acid synthesis was dependent upon the addition of substrate. The order of stimulation was glucose + pyruvate ~- glucose + alanine ~- glucose + lactate ~- pyruvate > glucose > alanine ? no additions. Fatty acid synthesis in HTC cells was decreased by oleate. In these respects HTC cells are similar to the liver; however, in contrast to the normal liver, N6, O2-dibutyryl cyclic adenosine 3′,5′-monophosphate (dibutyryl-cAMP) did not inhibit glycolysis or fatty acid synthesis. The cytoplasmic redox potential, as reflected by the lactate to pyruvate ratio, was found to be elevated compared to normal liver but unchanged by the addition of dibutyryl cAMP. Since higher rates of fatty acid synthesis are associated with lower lactate-to-pyruvate ratios in normal liver, it was expected that by decreasing the lactate-to-pyruvate ratio in HTC cells the rate of fatty acid synthesis would increase. One way to lower the lactate to pyruvate ratio is to increase the activity of the malate-aspartate shuttle. Stimulators of the hepatic malate-aspartate shuttle in normal liver (ammonium ion, glutamine, and lysine) had mixed effects on the redox state and fatty acid synthesis in HTC cells. Both ammonium ion and glutamine decreased the redox potential and increased the rate of fatty acid synthesis. Lysine was without effect on either process. Since NH4Cl and glutamine stimulate the movement of reducing equivalents into the mitochondria and decrease the redox potential, then the stimulation of fatty acid synthesis by NH4Cl and glutamine may be due to an increase in the movement of reducing equivalents into the mitochondria. However, if the shuttle were rate determining for fatty acid synthesis the rate from added lactate would be the same as from glucose alone but would be lower than from pyruvate which does not require the movement of reducing equivalents. This was not the case. Lactate and pyruvate gave comparable rates which were higher than glucose alone. Other possible sites of stimulation were investigated. The possibility that NH4+ and glutamine stimulated fatty acid synthesis by activating pyruvate dehydrogenase was excluded by finding that dichloroacetate, an activator of pyruvate dehydrogenase, did not stimulate fatty acid synthesis when glucose was added. Stimulation by NH4+ and glutamine at steps beyond pyruvate dehydrogenase was ruled out by the observation that NH4+ caused no stimulation from added pyruvate. NH4+ and glutamine did not alter the pentose phosphate pathway as determined by 14CO2 production from [1-14C]- or [6-14C]glucose. Ammonium ion and glutamine increased glucose consumption and increased lactate and pyruvate accumulation. The increased glycolysis in HTC cells appears to be the explanation for the stimulation of fatty acid synthesis by NH4+ and glutamine, even though glycolysis is much more rapid than fatty acid synthesis in these cells. The following observations support this conclusion. First, the percentage increase in glycolysis caused by NH4+ or glutamine is closely matched by the percentage increase in fatty acid synthesis. Second, the malate-aspartate shuttle, the pentose phosphate pathway, and the steps past pyruvate are not limiting in the absence of NH4+ or glutamine.  相似文献   

8.
The effect of uncouplers and diffusible acids on K+ transport was studied in yeast.Although the K+ transport system seems to depend on ATP to function, the effects of uncouplers are not due primarily to its action on the energy conserving systems of the cell.Other uncouplers with different structures to that of DNP showed also an inhibitory effect on K+ transport, which agrees with their reported ability to conduct protons through membranes.Uncouplers, besides inhibiting K+ uptake, produce an efflux of this cation; however, the rate of efflux produced is quantitatively important only when the cells have previously taken up the cation; there seems to exist a mechanism which prevents the loss of cations by yeast.In the absence of substrate, at pH 8.5, with 0.5 m KCl, TCS produces the efflux of H+, and when 86Rb+ was used as a substitute for K+, an increase of the entrance of the cation could be detected in the presence of the uncoupler. It seems that the effect of the uncoupler depends on the direction of the combined H+ and K+ gradients, or the electrochemical potential of the cell.As reported by other authors, weak diffusible acids increase the uptake of K+ by yeast, and this effect is not due to changes in the metabolism, but to the magnitude of the entrance of the molecules to the yeast cell.It was found that the efflux of the acids (H2CO3), on the other hand, can produce an efflux of K+, which means that anions are important not only for the entrance of the cations, but for its permanence within the cell as well.The data seem to be in agreement with the hypothesis of the existence of a proton pump, responsible for the creation of an electrochemical potential, involved in K+ transport. At low pH, this pump seems to be activated by the transport of K+ into the cell.  相似文献   

9.
In organisms from all kingdoms of life, ammonia and its conjugated ion ammonium are transported across membranes by proteins of the AMT/Rh family. Efficient and successful growth often depends on sufficient ammonium nutrition. The proteins mediating this transport, the so called Ammonium Transporter (AMT) or Rhesus like (Rh) proteins, share a very similar trimeric overall structure and a high sequence similarity even throughout the kingdoms. Even though structural components of the transport mechanism, like an external substrate recruitment site, an essential twin histidine pore motif, a phenylalanine gate and the hydrophobic pore are strongly conserved and have been analyzed in detail by molecular dynamic simulations and mutational studies, the substrate(s), which pass the central pores of the AMT/Rh subunits, NH4+, NH3 + H+, NH4+ + H+ or NH3, are still a matter of debate for most proteins, including the best characterized AmtB protein from Escherichia coli. The lack of a robust expression system for functional analysis has hampered proof of structural and mutational studies, although the NH3 transport function for Rh-like proteins is rarely disputed. In plant transporters belonging to the subfamily AMT1, transport is associated with electrical currents, while some plant transporters, notably of the AMT2 type, were suggested to transport NH3 across the membrane, without associated ionic currents. Here we summarize data in favor of each substrate for the distinct AMT/Rh classes, discuss mutants and how they differ in structure and functionality. A common mechanism with deprotonation and subsequent NH3 transport through the central subunit pore is suggested.  相似文献   

10.
In organisms from all kingdoms of life, ammonia and its conjugated ion ammonium are transported across membranes by proteins of the AMT/Rh family. Efficient and successful growth often depends on sufficient ammonium nutrition. The proteins mediating this transport, the so called Ammonium Transporter (AMT) or Rhesus like (Rh) proteins, share a very similar trimeric overall structure and a high sequence similarity even throughout the kingdoms. Even though structural components of the transport mechanism, like an external substrate recruitment site, an essential twin histidine pore motif, a phenylalanine gate and the hydrophobic pore are strongly conserved and have been analyzed in detail by molecular dynamic simulations and mutational studies, the substrate(s), which pass the central pores of the AMT/Rh subunits, NH4+, NH3 + H+, NH4+ + H+ or NH3, are still a matter of debate for most proteins, including the best characterized AmtB protein from Escherichia coli. The lack of a robust expression system for functional analysis has hampered proof of structural and mutational studies, although the NH3 transport function for Rh-like proteins is rarely disputed. In plant transporters belonging to the subfamily AMT1, transport is associated with electrical currents, while some plant transporters, notably of the AMT2 type, were suggested to transport NH3 across the membrane, without associated ionic currents. Here we summarize data in favor of each substrate for the distinct AMT/Rh classes, discuss mutants and how they differ in structure and functionality. A common mechanism with deprotonation and subsequent NH3 transport through the central subunit pore is suggested.  相似文献   

11.
J. Schlee  E. Komor 《Planta》1986,168(2):232-238
The preincubation of Chlorella cells with glucose caused a tenfold increase of the maximal uptake rate of ammonium without change in the K m (2 M). A similar stimulation of ammonium uptake was found when the cells were transferred to nitrogen-free growth medium. The time-course of uptake stimulation by glucose revealed a lag period of 10–20 min. The turnover of the ammonium transport system is characterized by a half-life time of 5–10 h, but in the presence of light 30% of uptake activity stayed even after 50 h. 6-Deoxyglucose was not able to increase the ammonium uptake rate. These data together were interpreted as evidence for induction of an ammonium transport system by a metabolite of glucose. Mechanistic studies of the ammonium transport system provided evidence for the electrogenic uptake of the ammonium ion. The charge compensation for NH 4 + entry was achieved by immediate K+ efflux from the cells, and this was followed after 1 min by H+ extrusion. Ammonium accumulated in the cells; the rate of uptake was sensitive to p-trifluoromethoxy-carbonylcyanide-phenylhydrazon and insensitive to methionine-sulfoxime. Uptake studies with methylamine revealed that methylamine transport is obviously catalyzed by the ammonium transport system and, therefore, also increased in glucose-treated Chlorella cells.Abbreviation p.c. packed cells  相似文献   

12.
Pisum arvense plants were subjected to 5 days of nitrogen deprivation. Then, in the conditions that increased or decreased the root glutamine and asparagine pools, the uptake rates of 0.5 mM NH4 + and 0.5 mM K+ were examined. The plants supplied with 1 mM glutamine or asparagine took up ammonium and potassium at rates lower than those for the control plants. The uptake rates of NH4 + and K+ were not affected by 1 mM glutamate. When the plants were pre-treated with 100 μM methionine sulphoximine, an inhibitor of glutamine synthesis, the efflux of NH4 + from roots to ambient solution was enhanced. On the other hand, exposure of plants to methionine sulphoximine led to an increase in potassium uptake rate. The addition of asparagine, glutamine or glutamate into the incubation medium caused a decline in the rate of NH4 + uptake by plasma membrane vesicles isolated from roots of Pisum arvense, whereas on addition of methionine sulphoximine increased ammonium uptake. The results indicate that both NH4 + and K+ uptake appear to be similarly affected by glutamine and asparagine status in root cells. The research was supported by grant of KBN No. 6PO4C 068 08  相似文献   

13.
Leaves of 12-week-old tobacco plants (Nicotiana tabacum L. cv. Samsun NN) were infiltrated with suspensions of Pseudomonas syringae pv, pisi (DSM 50291) to induce hypersensitive reaction (HR). Cotyledons of 2-week-old cotton plants (Gossypium hirsutum L. cv. Acala 442 and Coker BR) were infiltrated with Xanthomonas campestris pv. malvacearum (race 10) to induce the disease. In tobacco, HR-related increases in NH+4 levels started within 2 h after infection and continued up to the time of tissue decay. Increase of NH+4 and especially K+ efflux were detected in intercellular washing fluids (IWF). Antibiotics stopped and later reverted NH+4 production and K+ efflux, but only if applied within 2 h after infection. When 10 mM NH+4 was injected into leaves, it was rapidly consumed from the IWF, and also, although more slowly, within the leaf cells. The concomitant K+ efflux was strong but delayed, and most of the K+ was reabsorbed after 2 h. Bacterial cell multiplication in HR stopped before the appearance of HR symptoms and cell necrosis. In the compatible reaction in cotton cotyledons, both NH+4accumulation and K+ efflux proceeded much more slowly than in the HR with tobacco, and bacteria continued to multiply until general cell necrosis occurred. The compatible reaction developed faster in constant darkness than in a light/dark rhythm. Bacterial enzymes produced NH+4, mainly from proteins of host cells, in both light and darkness. Continuous light delayed the main peak of both NH+4 production and K+ efflux. High CO2 concentration inhibited both processes, thus indicating that photorespiration plays a role in enhancing the release of free ammonium during bacterial pathogenesis. This is supported by shifts in the pattern of amino acids. The results demonstrate the accelerating and aggravating effect of ammonium in pathogenesis and HR, though ammonium is not the primary agent.  相似文献   

14.
The mutant Escherichia coli B 525 requires histidine, leucine and methionine and an elevated extracellular K+ concentration for growth, and is unable to retain K+ tightly inside the cells when incubated in media supplemented with glucose, arabinose, galactose or lactose as the sole energy and carbon source. The loss of K+ from the cells of B 525 can be prevented by adding histidine and leucine, which react specifically and only in combination. In media supplemented with glycerol as the substrate, with glucose and NH4+, or with glucose under anaerobic conditions, a stationary level of K+ inside the cells can be obtained without the addition of histidine-leucine.On the addition of ribose to glycerol-adapted cells of B 525 preincubated in glycerol media, the intracellular K+ decreased immediately and markedly. This decrease can be overcome by the addition of histidine-leucine.  相似文献   

15.
Glutamine synthetase from the plant cytosol fraction of lupin nodules was purified 89-fold to apparent homogeneity. The enzyme molecule is composed of eight subunits of Mr 44,700 ± 10%. Kinetic analysis indicates that the reaction mechanism is sequential and there is some evidence that Mg-ATP is the first substrate to bind to the enzyme. Michaelis constants for each substrate using the ammonium-dependent biosynthetic reaction are as follows: ATP, 0.24 mm; l-glutamate, 4.0–4.2 mm; ammonium, 0.16 mm. Using an hydroxamate-forming biosynthetic reaction the Km ATP is 1.1 mm but the Km for l-glutamate is not altered. The effect of pH on the Km for ammonium indicates that NH3 rather than NH4+ may be the true substrate. At 10 mm Mg2+, the pH optimum of the enzyme is between 7.5 and 8, but increasing Mg2+ concentrations produce progressively more acidic optima while lower Mg2+ concentrations raise the pH optimum. The rate-response curve for Mg2+ is sigmoidal becoming bell-shaped in alkaline conditions. The enzyme is inhibited by l-Asp (Ki, 1.4 mm) and less markedly by l-Gln and l-Asn. Inhibition by ADP and AMP is strong, both nucleotides exhibiting Ki values around 0.3 mM. Investigations of the probable physiological conditions within the nodule plant cytosol indicate that in situ glutamine synthetase has an activity greater than that required to support the efflux of amino acid nitrogen from the nodule. A possible role for glutamine synthetase in the control of nodule ammonium assimilation is suggested.  相似文献   

16.
NH4 + transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3 +) into the intact cells. 14CH3NH3 + uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3 + as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3 + completely inhibited 14CH3NH3 + uptake. These results indicate that 14CH3NH3 + uptake in this bacterium is mediated via an NH4 + transport system and not by a specific carrier for CH3NH3 +. The respiratory substrate succinate was required to drive 14CH3NH3 + uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3 + uptake. The 14CH3NH3 + uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0° and 15°C, and the apparent K m value for CH3NH3 + of the uptake did not change significantly over the temperature range from 0° to 25°C. Thus, the NH4 + transport system of this bacterium was highly active at low temperatures. Received: August 1, 1998 / Accepted: October 8, 1998  相似文献   

17.
Summary Representative arable soils from Hesse were investigated for their contents of fixed NH4 + and EUF-extractable potassium in the rooting zone. Alluvial soils were found to be rich in fixed ammonium and low in EUF-extractable potassium, while soils of basaltic origin were low in fixed ammonium and rich in EUF-extractable potassium. A negative correlation (r=0.79*) was found between fixed NH4 + and EUF-extractable soil K+. The content of fixed NH4 + in the soil profile showed considerable and significant changes during the growing season, which finding is supposed to be due to NH4 + uptake by the crop.  相似文献   

18.
Heterotrophic carbon utilizing microbes were acclimatized in the laboratory by inoculating sludge collected from the waste discharge pond of a small-scale rural abattoir in India in a nutrient solution intermittently fed with glucose and ammonium chloride. Cultures of 10 well-developed isolates were selected and grown in a basal medium containing glucose and ammonium chloride. Culture supernatants were periodically analyzed for ammonium nitrogen (NH4 +-N) and chemical oxygen demand (COD). Polyphasic taxonomic study of the most active nitrifier (S18) was done. Half saturation concentration (K s), maximum rate of substrate utilization (k), yield coefficient (Y) and decay coefficient (K d) were determined from the Lineweaver–Burk plot using the modified Monod equation. S18 was able to remove 97 ± 2% of (NH4 +-N) and 88 ± 3% of COD. Molecular phylogenetic study supported by physiological and biochemical characteristics assigned S18 as Achromobacter xylosoxidans. Nitrification activity of A. xylosoxidans was demonstrated for the first time, while interestingly, the distinctive anaerobic denitrification property was preserved in S18. K s values were determined as 232.13 ± 1.5 mg/l for COD reduction and 2.131 ± 1.9 mg/l for NH4 +-N utilization. Yield coefficients obtained were 0.4423 ± 0.1134 mg of MLVSS/mg of COD and 0.2461 ± 0.0793 mg of MLVSS/mg of NH4 +-N while the decay coefficients were 0.0627 ± 0.0013 per day and 0.0514 ± 0.0008 per day, respectively. After a contact period of 24 h, 650 ± 5 mg/l solids were produced when the initial concentration of COD and NH4 +-N were 1820 ± 10 mg/l and 120 ± 5.5 mg/l, respectively. This is the first report on the kinetic coefficients for carbon oxidation and nitrification by a single bacterium isolated from slaughterhouse wastewater.  相似文献   

19.
Effects of ammonium on the photosynthetic recovery of Nostoc flagelliforme Berk. et M. A. Curtis were assayed when being rehydrated in low‐K+ or high‐K+ medium. Its photosynthetic recovery was K+ limited after 3 years of dry storage. The potassium absorption of N. flagelliforme reached the maximum after 3 h rehydration in low‐K+ medium but at 5 min in high‐K+ medium. The K+ content of N. flagelliforme rehydrated in high‐K+ medium was much higher than that in low‐K+ medium. The maximal PSII quantum yield (Fv/Fm) value of N. flagelliforme decreased significantly when samples were rehydrated in low‐K+ medium treated with 5 mM NH4Cl. However, the treatment of 20 mM NH4Cl had little effect on its Fv/Fm value in high‐K+ medium. The relative Fv/Fm 24 h EC50 (concentration at which 50% inhibition occurred) value of NH4+ in high‐K+ medium (64.35 mM) was much higher than that in low‐K+ medium (22.17 mM). This finding indicated that high K+ could alleviate the inhibitory action of NH4+ upon the photosynthetic recovery of N. flagelliforme during rehydration. In the presence of 10 mM tetraethylammonium chloride (TEACl), the relative Fv/Fm 24 h EC50 value of NH4+ was increased to 46.34 and 70.78 mM, respectively, in low‐K+ and high‐K+ media. This observation suggested that NH4+ entered into N. flagelliforme cells via the K+ channel. Furthermore, NH4+ could decrease K+ absorption in high‐K+ medium.  相似文献   

20.
The involvement of potassium (K+)-selective, Shaker-type channels, particularly AKT1, in primary K+ acquisition in roots of higher plants has long been of interest, particularly in the context of low-affinity K+ uptake, at high K+ concentrations, as well as uptake from low-K+ media under ammonium (NH4+) stress. We recently demonstrated that K+ channels cannot mediate K+ acquisition in roots of intact barley (Hordeum vulgare L.) seedlings at low (22.5 µM) external K+ concentrations ([K+]ext) and in the presence of high (10 mM) external NH4+, while the model species Arabidopsis thaliana L. utilizes channels under comparable conditions. However, when external NH4+ was suddenly withdrawn, a thermodynamic shift to passive (channel-mediated) K+ influx was observed in barley and both species demonstrated immediate and dramatic stimulations in K+ influx, illustrating a hitherto unexplored magnitude and rapidity of K+-uptake capacity and plasticity. Here, we expand on our previous work by offering further characterization of channel-mediated K+ fluxes in intact barley, with particular focus on anion effects, root respiration and pharmacological sensitivity and highlight key additions to the current model of K+ acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号