首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
《FEBS letters》1986,202(2):224-228
Electron transfer QA → QB has been reconstituted with added Q-10 in Rhodospirillum rubrum chromatophores associated with a phospholipid-impregnated collodion film. Rapid kinetics measurements of laser flash-induced ΔΨ generated in the chromatophores show that whereas electron transfer from Qa to QB upon the first flash is not electrogenic in dark-adapted chromatophores, reduction of QB to Qbh2 induced by the second flash gives rise to an electrogenic phase with τ = 250 μs at pH 7.5 which contributes about 10% to the total ΔΨ generated upon the flash. The electrogenic phase is ascribed to vectorial protonation of Q2−B.  相似文献   

2.
Generation of photoelectric potential in chromatophores of Rhodopseudomonas sphaeroides has been measured (i) spectrophotometrically, using electrochromic shift of carotenoid absorption band or (ii) electrometrically, by means of two electrodes separated by a collodion film covered on one side with chromatophores. A 15 ns laser flash was used to induce a single turnover of photosynthetic reaction centers. It was found that results obtained by both methods are similar in (i) direction of electric vector (the chromatophore interior positive) and (ii) redox titration curves (Em = 10mV). The magnitudes of the photopotential were about 60 and 25 mV, when monitored with spectral and electrometric techniques, respectively. In both cases, the rise times of the photopotentials were faster than time resolution of the techniques used. Decay of the response of carotenoids was found to be slower than that in the collodion film system. The addition of ubiquinone Q10 into the decane solution of asolectin used to impregnate the collodion film led to slowing down of the decay. The carotenoid response decay could be accelerated by FCCP or o-phenanthroline. In the latter case, the shape of the decay curve coincides with decay of the photopotential measured in the collodion film system. It is suggested that decane extracts secondary ubiquinone from chromatophores attached to the collodion film. Such an unfavorable effect can be strongly decreased by added ubiquinone  相似文献   

3.
《BBA》1987,892(3):275-283
Electron-transfer reactions and triplet decay rates have been studied at pressures up to 300 MPa. In reaction centers from Rhodobacter sphaeroides R-26, high pressure hastened the electron transfers from both the primary and secondary quinones (QA and QB) to the primary electron donor bacteriochlorophyll, P. Motion of QA between two sites, one nearer to P and the other nearer to QB, could account for these pressure effects. In reaction centers from Rhodopseudomonas viridis, charge recombination was slowed by high pressure. Decay rates were also studied for the triplet state, PR. In Rb. sphaeroides R-26 with QA reduced with Na2S2O4, the decay was hastened by pressure. This could be explained if PR decays through a charge-transfer triplet state, or if the decay kinetics of PR are sensitive to the distance between P and QA. In Rps. viridis reaction centers, and in Rb. sphaeroides reaction centers that were depleted of QA, the lifetime of PR was not altered by pressure.  相似文献   

4.
Magnetic fields influence two properties of the P-870 triplet state observed in Rps. sphaeroides reaction centers: the yield of formation and the kinetics of decay. These effects have been studied in reaction centers which were prepared in three different states: state QA , state QA 2– and state (– QA) (QA depleted). The triplet yields decrease with increasing magnetic fields, with B1/2's of about 140, 41 and 57 Gauss, respectively. The half-time of 3P-870 decay is not influenced by the field in state QA ; it increases at increasing fields, in state QA 2– and state (– QA), with the same B1/2 as the triplet yield. These results are discussed in the framework of current theories of the radical-pair dynamics and of the mechanism of triplet decay.Abbreviations I primary electron acceptor - LDAO lauryldimethylamine oxide - P-870 primary electron donor - QA first quinone acceptor - SDS sodium dodecylsulfate - YAG Yttrium Aluminum Garnet  相似文献   

5.
The temperature dependences of the P870+Q?A → P870QA and P870+Q?B → P870QB recombination reactions were measured in reaction centers from Rhodopseudomonas sphaeroides. The data indicate that the P870+Q?B state decays by thermal repopulation of the P870+Q?A state, followed by recombination. ΔG° for the P870+Q?A → P870+Q?B reaction is ?6.89 kJ · mol?1, while ΔH° = ?14.45 kJ · mol?1 and ?TΔS° = + 7.53 kJ · mol?1. The activation ethalpy, H3, for the P870+Q?A Δ P870+Q?B reaction is +56.9 kJ · mol?1, while the activation entropy is near zero. The results permit an estimate of the shape of the potential energy curve for the P870+Q?A → P870+Q?B electron transfer reaction.  相似文献   

6.
《BBA》1986,849(1):150-161
Flash-induced absorption changes at 450 nm were investigated in isolated chromatophores of Rhodopseudomonas sphaeroides and Rhodospirillum rubrum non-sulfur purple bacteria to follow the redox changes of the semiquinone species of the secondary quinone acceptor of the photosynthetic reaction center. Excitation of a dark-adapted chromatophore suspension by a series of successive flashes in the presence of electron donors capable of rapidly reducing the photooxidized reaction-center pigment causes the formation of a stable semiquinone species (QB) with a lifetime which is shown to be proportional to the amount of the oxidized redox mediator in the incubation medium. It is shown that the disappearance of the flash-induced absorption changes at 450 nm on lowering the ambient redox potential (Eh) to 200–300 mV is the result of increasing the lifetime of QB, as the amount of the oxidized mediator diminishes; consequently, in these circumstances, the 2–5 min dark interval between the flash cycles appears insufficient for QB recovery. After the addition of redox mediators with a low midpoint potential, acting as an oxidant for QB, the flash-induced redox changes of QB were observed at low Eh values unless Eh reached a value at which QB underwent reduction at equilibrium to form QBH2. The data provide evidence that reaction centers with a fully oxidized secondary acceptor can donate electrons to the cyclic electron-transport chain only after two turnovers, leading to the formation of the doubly reduced ubiquinone species (QBH2) of the secondary acceptor.  相似文献   

7.
Using the pulse picosecond fluorometric technique the fluorescence properties of intact cells, isolated chromatophores and photosynthetic reaction centres were studied in bacteria Rhodopseudomonas sphaeroides, strain 1760-1.The fluorescent emission from reduced reaction centres excited by 694.3 nm light has a biphasic character, the lifetimes of the components being τ1 = 15±8 ps and τ2 = 250 ps. The faster component, τ1, contributes to the integral fluorescence in the long wavelength region. It disappears with oxidation of the reaction centres and is attributed to photoactive bacteriochlorophyll P870. The slow component, τ, is apparently due to both bacteriochlorophyll P800 and bacteriopheophytin. The fluorescence from intact cells exhibits a monophasic pattern and decays with τ = 200 ps.The fluorescence emitted by chromatophores comprises two components with τ3 = 200 ps and τ4 = 4200 ps. The duration of fluorescence τ3 increases to its maximum of 500–550 ps, as P870 is oxidized chemically or photochemically, while τ4 remains unchanged. The fluorescence with a lifetime of 200 ps was ascribed to the photosystem and the 4200-ps fluorescence to bacteriochlorophyll which had lost its functional links with the photosystem.The rise time of the fluorescence emitted by chromatophores varies from 60 or 70 ps to 350 ps depending on the wavelength of the exciting light and the recorded spectral region. On the basis of our findings the rate for energy migration was estimated to be 109 s?1.  相似文献   

8.
Antimycin A causes a biphasic suppression of the light-induced membrane potential generation in Rhodospirillum rubrum and Rhodopseudomonas sphaeroides chromatophores incubated anaerobically. The first phase is observed at low antibiotic concentrations and is apparently due to its action as a cyclic electron transfer inhibitor. The second phase is manifested at concentrations which are greater than 1–2 μM and is due to uncoupling that may be connected with an antibiotic-induced dissipation of the electrochemical H+ gradient across the chromatophore membrane. The inhibitory effect of anti-mycin added at low concentrations under aerobic conditions is removed by succinate to a large extent. It is expected that the electrogenic cyclic redox chain in the bacterial chromatophores incubated under conditions of continuous illumination may function at two regimes: (1) as a complete chain involving all the redox components, and (2) as a shortened chain involving only the P-870 photoreaction center, ubiquinone and cytochrome c2.  相似文献   

9.
The orientation ofRhodobacter sphaeroides reaction center complexes (RC complexes) in proteoliposomal membranes was investigated by a direct electrometric method. Conditions were found that allow monitoring of only that RC complex fraction that is oriented with its donor side to the inner part of the proteoliposome. It is shown thato-phenanthroline, an inhibitor of electron transfer between primary (QA) and secondary (QB) quinone acceptors, can also inhibit the photoinduced QA reduction. The efficiency of this inhibition depends on the concentration of added ubiquinone. It is assumed that the laser flash-inducedo-phenanthroline inhibition of primary dipole (P-870+ · Q A ) formation is of a competitive nature.  相似文献   

10.
Redox-active quinones play essential roles in efficient light energy conversion in type-II reaction centers of purple phototrophic bacteria. In the light-harvesting 1 reaction center (LH1-RC) complex of purple bacteria, QB is converted to QBH2 upon light-induced reduction and QBH2 is transported to the quinone pool in the membrane through the LH1 ring. In the purple bacterium Rhodobacter sphaeroides, the C-shaped LH1 ring contains a gap for quinone transport. In contrast, the thermophilic purple bacterium Thermochromatium (Tch.) tepidum has a closed O-shaped LH1 ring that lacks a gap, and hence the mechanism of photosynthetic quinone transport is unclear. Here we detected light-induced Fourier transform infrared (FTIR) signals responsible for changes of QB and its binding site that accompany photosynthetic quinone reduction in Tch. tepidum and characterized QB and QBH2 marker bands based on their 15N- and 13C-isotopic shifts. Quinone exchanges were monitored using reconstituted photosynthetic membranes comprised of solubilized photosynthetic proteins, membrane lipids, and exogenous ubiquinone (UQ) molecules. In combination with 13C-labeling of the LH1-RC and replacement of native UQ8 by ubiquinones of different tail lengths, we demonstrated that quinone exchanges occur efficiently within the hydrophobic environment of the lipid membrane and depend on the side chain length of UQ. These results strongly indicate that unlike the process in Rba. sphaeroides, quinone transport in Tch. tepidum occurs through the size-restricted hydrophobic channels in the closed LH1 ring and are consistent with structural studies that have revealed narrow hydrophobic channels in the Tch. tepidum LH1 transmembrane region.  相似文献   

11.
In reaction centers from Rhodobacter sphaeroides, subjected to continuous illumination in the presence of an inhibitor of the QA to QB electron transfer, the oxidation of P870 consisted of several kinetic phases with a fast initial reaction followed by very slow accumulation of P870+ with a halftime of several minutes. When the light was turned off, a phase of fast charge recombination was followed by an equally slow reduction of P870+. In reaction centers depleted of QB, where forward electron transfer from QA is also prevented, the slow reactions were also observed but with different kinetic properties. The kinetic traces of accumulation and decay of P870+ could be fitted to a simple three-state model where the initial, fast charge separation is followed by a slow reversible conversion to a long-lived, charge-stabilized state. Spectroscopic examination of the charge-separated, semi-stable state, using optical absorbance and EPR spectroscopy, suggests that the unpaired electron on the acceptor side is located in an environment significantly different from normal. The activation parameters and enthalpy and entropy changes, determined from the temperature dependence of the slow conversion reaction, suggest that this might be coupled to changes in the protein structure of the reaction centers, supporting the spectroscopic results. One model that is consistent with the present observations is that reaction centers, after the primary charge separation, undergo a slow, light-induced change in conformation affecting the acceptor side. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Purple, photosynthetic reaction centers from Rhodobacter sphaeroides bacteria use ubiquinone (UQ10) as both primary (QA) and secondary (QB) electron acceptors. Many quinones reconstitute QA function, while a few will act as QB. Nine quinones were tested for their ability to bind and reconstitute QA and QB functions. Only ubiquinone (UQ) reconstitutes both functions in the same protein. The affinities of the non-native quinones for the QB site were determined by a competitive inhibition assay. The affinities of benzoquinones, naphthoquinone (NQ), and 2-methyl-NQ for the QB site are 7 ± 3 times weaker than that at QA site. However, di-ortho-substituted NQs and anthraquinone bind tightly to the QA site (K d ≤ 200 nM), and ≥1,000 times more weakly to the QB site, perhaps setting a limit on the size of the site. With a low-potential electron donor, 2-methyl, 3-dimethylamino-1,4-NQ, (Me-diMeAm-NQ) at QA, QB reduction is 260 meV, more favorable than with UQ as QA. Electron transfer from Me-diMeAm-NQ at the QA site to NQ at the QB site can be detected. In the QB site, the NQ semiquinone is estimated to be ≈60–100 meV higher in energy than the UQ semiquinone, while in the QA site, the semiquinone energy level is similar or lower with NQ than with UQ. Thus, the NQ semiquinone is more stable in the QA than in the QB site. In contrast, the native UQ semiquinone is ≈60 meV lower in energy in the QB than in the QA site, stabilizing forward electron transfer from QA to QB.  相似文献   

13.
Low-temperature absorption, circular dichroism and resonance Raman spectra of the LM units isolated with sodium dodecyl sulfate from wild-type Rhodopseudomonas sphaeroides reaction centers (Agalidis, I. and Reiss-Husson, F. (1983) Biochim. Biophys. Acta 724, 340–351) are described in comparison with those of intact reaction centers. In LM unit, the Qy absorption band of P-870 at 77 K shifted from 890 nm (in reaction center) to 870 nm and was broadened by about 30%. In contrast, the 800 nm bacteriochlorophyll absorption band including the 810 species remained unmodified. It was concluded that the 810 nm transition is not the higher excitonic component of P-870. The Qx band of P-870 shifted from 602 nm (in reaction center) to 598 nm in LM, whereas the Qx band of the other bacteriochlorophylls was the same in reaction center and LM and had two components at about 605 and 598 nm. The QxII band of bacteriopheophytin was upshifted to 538 nm and a slight blue shift of the Qy band of bacteriopheophytin was observed. Resonance Raman spectra of spheroidene in LM showed that its native cis-conformation was preserved. Resonance Raman spectroscopy also demonstrated that in LM the molecular interactions assumed by the conjugated carbonyls of bacteriochlorophyll molecules were altered, but not those assumed by the bacteriopheophytins carbonyls. In particular at least one Keto group of bacteriochlorophyll free in reaction center, becomes intermolecularly bounded in LM (possibly with extraneous water). This group may belong to the primary donor molecules.  相似文献   

14.
In chromatophores from the facultative photosynthetic bacterium, Rhodopseudomonas sphaeroides, Ga, the function of ubiquinone-10 (UQ-10) at two specialized binding sites (QB and QZ) has been determined by kinetic criteria. These were the rate of rereduction of flash-oxidized [BChl]2+ through the back reaction, or the binary pattern of cytochrome b561 (for the Qb site), and the rapid rate of rereduction of flash-oxidized cytochrome c, or the relative amplitude of the antimycin-sensitive Phase III (t12 ~ 1.5 ms) of the carotenoid spectral shift induced by a single turnover flash at Eh ~ 100 mV (for the QZ site). The phenomenon associated with the two binding sites behaved differently on extraction of UQ from lyophilized chromatophores using isooctane. By this selective extraction procedure it has been possible to show that UQ-10 molecules are required at different concentrations in the membrane for specific redox events in secondary electron transfer. The reduction of cytochrome b occurs in particles which no longer show the phenomena associated with QZ, but still possess a large proportion of Qb, while rapid rereduction of flash-oxidized cytochrome c requires an additional complement of UQ-10 (QZ). Extracted particles lacking QZ and a large amount of QB have been reconstituted with different UQ homologs (UQ-1, UQ-3, and UQ-10). Specific redox events have been studied in reconstituted particles. All UQ homologs act as secondary acceptors from the reaction center; UQ-3 and UQ-10, but not UQ-1, are also able to reconstitute the function of QZ as electron donor to cytochrome c. Only UQ-10, however, is able to restore normal rates of the overall cyclic electron transfer induced by a train of flashes, and maximal rates of the light-induced ATP synthesis. The results are interpreted in terms of Q-cycle mechanisms in which quinone and quinol at both the QZ and Qb sites are in rapid equilibrium with the quinone pool.  相似文献   

15.
Illumination of intact cells of Rhodobacter sphaeroides under anaerobic conditions has a dual effect on the redox state of the quinone pool. A large oxidation of the quinone pool is observed during the first seconds following the illumination. This oxidation is suppressed by the addition of an uncoupler in agreement with a light-induced reverse electron transfer at the level of the complex I, present both in the non-invaginated part of the membrane and in the chromatophores. At longer dark times, this illumination increases the reducing power of the cells leading to a significant reduction of the others reaction centers (RCs). From the observation that a significant proportion of RCs could be reduced by the preillumination without affecting the numbers of charge separation for the RCs, we conclude that there is no rapid thermodynamic equilibrium between the quinones present in the non-invaginated part of the membrane and those localized in the chromatophores. Under anaerobic conditions where the chromatophores quinone pool is fully reduced, we deduce, on the basis of flash-induced fluorescence kinetics, that the reduced RCs are exclusively reoxidized by the quinone generated at the Q o site of the cyt bc 1 complex. The supramolecular association between a dimeric RC-LHI complex and one cyt bc 1 complex allows the confinement of a quinone between the RC-LHI directly associated to the cyt bc 1 complex.  相似文献   

16.
Hiroyuki Arata  Mitsuo Nishimura 《BBA》1983,725(2):394-401
Delayed fluorescence of chromatophores of Rhodopseudomonas sphaeroides was measured to estimate the standard free energy change accompanying the electron transfer from the bacteriochlorophyll dimer (P) to the primary acceptor quinone (QA). The chromatophores emitted delayed fluorescence with a lifetime of about 60 ms in the presence of o-phenanthroline. By comparing the intensity of the delayed fluorescence with that of the prompt fluorescence, the standard free energy of the P+QA? radical pair was evaluated. It was about 0.87 eV below the level of excited singlet state, P1QA, or 0.51 eV above the ground state, PQA, independent of pH.  相似文献   

17.
Hiroshi Ishikita 《BBA》2007,1767(11):1300-1309
In bacterial photosynthetic reaction centers (bRC), the electron is transferred from the special pair (P) via accessory bacteriochlorophyll (BA), bacteriopheopytin (HA), the primary quinone (QA) to the secondary quinone (QB). Although the non-heme iron complex (Fe complex) is located between QA and QB, it was generally supposed not to be redox-active. Involvement of the Fe complex in electron transfer (ET) was proposed in recent FTIR studies [A. Remy and K. Gerwert, Coupling of light-induced electron transfer to proton uptake in photosynthesis, Nat. Struct. Biol. 10 (2003) 637-644]. However, other FTIR studies resulted in opposite results [J. Breton, Steady-state FTIR spectra of the photoreduction of QA and QB in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones, Biochemistry 46 (2007) 4459-4465]. In this study, we calculated redox potentials of QA/B (Em(QA/B)) and the Fe complex (Em(Fe)) based on crystal structure of the wild-type bRC (WT-bRC), and we investigated the energetics of the system where the Fe complex is assumed to be involved in the ET. Em(Fe) in WT-bRC is much less pH-dependent than that in PSII. In WT-bRC, we observed significant coupling of ET with Glu-L212 protonation upon oxidation of the Fe complex and a dramatic Em(Fe) downshift by 230 mV upon formation of QA (but not QB) due to the absence of proton uptake of Glu-L212. Changes in net charges of the His ligands of the Fe complex appear to be the nature of the redox event if we assume the involvement of the Fe complex in the ET.  相似文献   

18.
Quinone and inhibitor binding to Rhodopseudomonas sphaeroides (R-26 and GA) reaction centers were studied using spectroscopic methods and by direct adsorption of reaction centers onto anion exchange filters in the presence of 14C-labelled quinone or inhibitor. These measurements show that as secondary acceptor, QB, ubiquinone (UQ) is tightly bound in the semiquinone form and loosely bound in the quinone and quinol forms. The quinol is probably more loosely bound than the quinone. o-Phenanthroline and terbutryn, a triazine inhibitor, compete with UQ and with each other for binding to the reaction center. Inhibition by o-phenanthroline of electron transfer from the primary to the secondary quinone acceptor (QA to QB) occurs via displacement of UQ from the QB binding site. Displacement of UQ by terbutryn is apparently accessory to the inhibition of electron transfer. Terbutryn binding is lowered by reduction of QB to Q?B but is practically unaffected by reduction of QA to Q?A in the absence of QB. UQ-9 and UQ-10 have a 5- to 6-fold higher binding affinity to the QB site than does UQ-1, indicating that the long isoprenoid chain facilitates the binding to the QB site.  相似文献   

19.
A photosynthetic reaction center (RC) complex was isolated from a purple bacterium, Acidiphilium rubrum. The RC contains bacteriochlorophyll a containing Zn as a central metal (Zn-BChl a) and bacteriopheophytin a (BPhe a) but no Mg-BChl a. The absorption peaks of the Zn-BChl a dimer (PZn), the accessory Zn-BChl a (BZn), and BPhe a (H) at 4 K in the RC showed peaks at 875, 792, and 753 nm, respectively. These peaks were shorter than the corresponding peaks in Rhodobacter sphaeroides RC that has Mg-BChl a. The kinetics of fluorescence from PZn*, measured by fluorescence up-conversion, showed the rise and the major decay with time constants of 0.16 and 3.3 ps, respectively. The former represents the energy transfer from BZn* to PZn, and the latter, the electron transfer from PZn to H. The angle between the transition dipoles of BZn and PZn was estimated to be 36° based on the fluorescence anisotropy. The time constants and the angle are almost equal to those in the Rb. sphaeroides RC. The high efficiency of A. rubrum RC seems to be enabled by the chemical property of Zn-BChl a and by the L168HE modification of the RC protein that modifies PZn.  相似文献   

20.
Non-heme iron is a conservative component of type II photosynthetic reaction centers of unknown function. We found that in the reaction center from Rba. sphaeroides it exists in two forms, high and low spin ferrous states, whereas in Rsp. rubrum mostly in a low spin state, in line with our earlier finding of its low spin state in the algal photosystem II reaction center (Burda et al., 2003). The temperature dependence of the non-heme iron displacement studied by Mössbauer spectroscopy shows that the surrounding of the high spin iron is more flexible (Debye temperature ~ 165 K) than that of the low spin atom (~ 207 K). Nuclear inelastic scattering measurements of the collective motions in the Rba. sphaeroides reaction center show that the density of vibrational states, originating from non-heme iron, has well-separated modes between lower (4-17 meV) and higher (17-25 meV) energies while in the one from Rsp. rubrum its distribution is more uniform with only little contribution of low energy (~ 6 meV) vibrations. It is the first experimental evidence that the fluctuations of the protein matrix in type II reaction center are correlated to the spin state of non-heme iron. We propose a simple mechanism in which the spin state of non-heme iron directly determines the strength of coupling between the two quinone acceptors (QA and QB) and fast collective motions of protein matrix that play a crucial role in activation and regulation of the electron and proton transfer between these two quinones. We suggest that hydrogen bond network on the acceptor side of reaction center is responsible for stabilization of non-heme iron in different spin states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号