首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The mucilages of this alga contain acid polysaccharides, some of which are Ca binding. After deproteinization and gel filtration the residue of the aqueous algal extract has the composition: 2% complexed protein, 3–4% Ca, 0.4–0.5% SiO2, 0.03–0.04% Al, ∼ 0.005% Fe, rest: polysaccharide. The molecular weights of the major and minor polysaccharide fractions are approximately 5000 and 200000 respectively (Sephadex). Uronic acid and O-ester sulfate give a total of 0.25 μequiv. H+/mg polysaccharide whereas the Ca binding capacity is 2.1 μequiv./mg polysaccharide. Ca complexing of the dibasic polyacid is restricted to the low molecular species and involves the 2 acidic and unidentified nonacidic groups. The complexing strength of the polysaccharide for Ca is similar to succinate. These Ca binding polysaccharides may play a role in algal calcification.  相似文献   

2.
Abstract The exchange of CO2, H+ and O2 between seawater and the intertidal brown macroalga Ascophyllum nodosum (L.) Le Jolis were measured in a flowthrough system. While the algae were kept in darkness, seawater with artificially increased alkalinity and pH at 9.85, was alternated with ‘normal’ seawater at pH 8.0. A proton buffering system, with capacity to release and reabsorb about 20 μmol protons per gram alga (fresh weight) was revealed. As the algae were returned to the ‘normal’ seawater, the kinetics of proton reabsorbtion indicated that a proton uptake was gradually induced. This proton uptake, which was not connected to ion exchange in the cell wall, reached its maximum after 12 h. If subjected to high alkalinity seawater in the light, A. Nodosum for a certain period of time was capable of carrying out O, evolution in excess of the import of inorganic carbon. This ‘photosynthetic buffering capacity’ amounted to about 17 μmol O; per gram alga. Besides depending on a buffer of photorcducible substances, this ‘photosynthetic buffering capacity’ appeared to be functionally connected with the proton buffer. The time course for the discharge of the ‘photosynthetic buffer system’ and for the reabsorbtion of protons into the proton buffer (about 6h for 90× of the capacity at a temperature of 6°C) suggests that the ‘photosynthetic buffer system’ has a functional importance in the adaptation of A. nodosum to intertidal regions. The function of the buffer system is discussed in relation to the crassulacean acid metabolism (CAM)-like characteristics recently shown for the intertidal brown algal family Fucaceae.  相似文献   

3.
The red alga Digenea simplex was cultured with various culture media to clarify the nutritional conditions to produce kainic acid (KA ). Unlike the domoic acid‐producing red alga Chondria armata , D. simplex was insensitive to excessive manganese, and grew best (mean growth rate approximately 800% for 25 days) in modified PES medium (mPES ; seawater + nitrate, phosphate, iron, trace metals, vitamins, and 2‐[4‐(2‐hydroxyethyl)‐1‐piperazinyl]‐ ethanesulfonic acid) prepared with autoclaved seawater. Liquid chromatography‐mass spectrometry analysis of the algal extracts revealed that the KA content of the explants cultured with mPES or N·P·Fe medium (seawater + nitrate, phosphate, and iron) was somewhat higher than that of wild specimens (1748–2378 μg g?1 vs 1562 μg g?1). The 1H‐nuclear magnetic resonance spectrum of the KA extracted and purified from pooled explants was indistinguishable from the previously reported KA spectrum. When D. simplex was cultured for 6 weeks with medium in which NaNO 3 of mPES was replaced by Na15NO 3, the ratio of 214KA to total measured KA (totalKA = 213KA + 214KA ) in the cultured explants (0.1 at the beginning of culture) gradually increased to 2.5, indicating that D. simplex produces KA in proportion to its growth under the condition in which sufficient nitrogen source is available.  相似文献   

4.
It has been suggested that the infection of algae-free Paramecium bursaria by symbiotic algae involves an induction in the ciliate. Such a process suggests a need for the synthesis of specific proteins. Therefore, an attempt was made to determine the role of protein synthesis during the initial phases of host-symbiont interaction by examining the capacity of the ciliate to form a stable association with algae when the ciliate is exposed to puromycin (PURO) or cycloheximide (CYC) during the first 1–3 h of algal insestion. Cycloheximide (100 μg/ml) blocked algal but not ciliate growth and protein synthesis while PURO (250 μg/ml) appeared to inhibit these processes in both Puromycin significantly inhibited the infection when presented to the ciliate during the first hour of algal exposure and had little effect when added after that period. Inhibition of ciliate, as compared to the alga, protein synthesis appears to be significant in relationship to those processes leading to infection, as CYC when presented during the first hour of algae-ciliate exposure has no inhibitory effects. Experiments on algal sugar secretion and ciliate ingestion of algae indicated that neither process was significantly affected by these inhibitors. These results point to a need for host protein synthesis during the initial phase of ingestion of algae which appears to be important to establishment of the symbiotic association.  相似文献   

5.
Metabolically active phosphorus-starved cultures of blue-green algae assimilate 32P rapidly in the light and in the dark. The uptake of phosphorus results in a rapid (within 15 min) stimulation in acetylene reduction by Anabaena cylindrica, A. flosaquae, Anabacnopsis circuiaris and Chlorogloea fritschii, with a response being obtained to less than 5 μg/1 of phosphorus. Uptake of phosphorus also causes a rapid increase in respiration in the dark but not in photo respiration, and the size of the cellular ATP pool and the 14CO2 fixation rate both increase more slowly. The metabolism of phosphorus-sufficient cells, which assimilate phosphorus more slowly, shows little response when phosphorus is provided. Excess phosphorus is stored in the vegetative cells of blue-green algae as polyphosphate bodies which may form within 60 min of adding phosphorus to phosphorusstarved cells and which serve as a source of phosphorus for the algae when exogenous phosphorus is limiting. Preliminary results from Scottish waters suggest that urban effluents are important sources of available-phosphorus for algal growth and that the levels entering fresh waters from agricultural land are, per unit volume, lower. In both types of water the levels of available-phosphorus are rather similar to the levels of orthophosphate-phosphorus present. Most detergents tested serve as a source of phosphorus for nitrogen-fixing blue-green algae and cause a rapid stimulation in reduction when added to phosphorus-starved cultures. Of the detergents assayed, the biological types were richest in available phosphorus. The addition of detergents may result in a rapid increase in number of polyphosphate bodies present in the algae. Detergents in general also contain an inhibitor of algal metabolism. Whether a stimu-lation or an inhibition occurs depends on the quantities of detergent added and on whether or not the alga is phosphorus-deficient.  相似文献   

6.
Both global and local environmental changes threaten coral reef ecosystems. To evaluate the effects of high seawater temperature and phosphate enrichment on reef‐building crustose coralline algae, fragments of Porolithon onkodes were cultured for 1 month under laboratory conditions. The calcification rate of the coralline algae was not affected at 30°C, but it decreased to the negatives at 32°C in comparison to the control treatment of 27°C, indicating that the temperature threshold for maintaining positive production of calcium carbonate lies between 30 and 32°C. Phosphate enrichment of 1–2 μmol L ?1 did not affect the calcification rate. The net oxygen production rate was enhanced by phosphate enrichment, suggesting that the photosynthetic rate was limited by the availability of phosphate. It was concluded that moderate phosphate enrichment does not directly deteriorate algal calcification but instead ameliorates the negative effects of high seawater temperature on algal photosynthesis.  相似文献   

7.
The growth characteristics of an algo-bacterial community (Chlamydomonas reinhardtii and bacterial satellites) were studied, as well as the mechanism and patterns of bacterial effect on algae. Four strains of predominant bacteria were isolated and partially characterized. They were assigned to the following taxa: Rhodococcus terrea, Micrococcus roseus, and Bacillus spp. A pure culture of the alga under study was obtained by plating serial dilutions on agarized media. Within the algo-bacterial association, the alga had a higher growth rate (0.76 day?1) and yield (60 μg chlorophyll/ml culture) than in pure cultures (0.4 day?1 and 10 μg chlorophyll/ml culture, respectively). The viability of the algal cells within the association was retained longer than in pure culture. Among the isolated bacterial satellites, strains B1 and Y1, assigned to the species Rhodococcus terrae, had the highest stimulatory effect on algal growth. The culture liquid of bacteria incubated under the conditions not permitting growth stimulated algal growth; the culture liquid of actively growing bacteria had an opposite effect.  相似文献   

8.
Screening of algal strains for metal removal capabilities   总被引:1,自引:0,他引:1  
Eight algal species were tested for their ability to remove five toxic metalsduring 30-min exposures to single-metal (1 mg L-1) solutions at pH7. Efficacy of metal bioremoval varied according to algal species and metal. Al+3 was best removed by the thermophilic blue-green alga(cyanobacterium) Mastigocladus laminosus, Hg+2 and Zn+2 by the thermophilic and acidophilic red alga Cyanidiumcaldarium, and Cd+2 by C. caldarium and the green alga Scenedesmus quadricauda. All of these alga/metal combinations resultedin >90% metal removal. However, none of the eight algal speciesremoved more than 10% of Cr+6. Results indicate that some toxicmetals are more readily removed than others are by algae and that selectionof appropriate strains could potentially enhance bioremoval of specificmetals from wastewater at neutral pH.  相似文献   

9.
【背景】小球藻是一种单细胞绿藻,在不同培养条件下可积累高附加值的代谢产物,这些产物可用于生产生物燃料、食品、保健品、药品等。然而这些代谢产物在藻细胞中的生产率较低且很难通过经济可行的方法将其分离,这使其工业化规模生产受到限制。【目的】研究乙酸钠对小球藻生物量的影响,并分析其对小球藻代谢产物的调控作用。【方法】通过在小球藻培养液中添加不同浓度的乙酸钠(1.0、2.0、3.0、4.0、5.0 g/L),研究其调控小球藻生长和代谢的作用机理。【结果】在添加3.0 g/L乙酸钠的培养液中,小球藻的生物量是对照组的5.2倍,尽管藻细胞中蛋白质含量无明显变化,但油脂和类胡萝卜素含量是对照组的2.4倍和1.2倍,多糖和叶绿素a含量却仅为对照组的54.6%和54.4%。【结论】乙酸钠不仅会影响藻细胞的生长,还会调控其代谢过程,这为深入探索乙酸钠在调控小球藻生长及代谢过程的作用机制提供了理论基础和技术资料。  相似文献   

10.
Jae Sam Yang 《Hydrobiologia》1991,211(3):165-170
Twenty-one species of seaweed from the California coast were analyzed for rhenium. For the first time, high enrichment (thousandfolds) of rhenium relative to seawater was found in brown algae, but not in green or red algae. Brown algae was suggested as a biological sink of rhenium in the sea and the analogous behavior of technetium to rhenium was found in marine algae. Preliminary incubation experiments with a common brown alga (Pelvetia fastigiata) showed that algal surface is not a major accumulating locus of rhenium.  相似文献   

11.
Plankton community structure and major pools and fluxes of carbon were observed before and after culmination of a bloom of cyanobacteria in eutrophic Frederiksborg Slotssø, Denmark. Biomass changes of heterotrophic nanoflagellates, ciliates, microzooplankton (50 to 140 μm), and macrozooplankton (larger than 140 μm) were compared to phytoplankton and bacterial production as well as micro- and macrozooplankton ingestion rates of phytoplankton and bacteria. The carbon budget was used as a means to examine causal relationships in the plankton community. Phytoplankton biomass decreased and algae smaller than 20 μm replacedAphanizomenon after the culmination of cyanobacteria. Bacterial net production peaked shortly after the culmination of the bloom (510 μg C liter?1 d?1 and decreased thereafter to a level of approximately 124 μg C liter?1 d?1. Phytoplankton extracellular release of organic carbon accounted for only 4–9% of bacterial carbon demand. Cyclopoid copepods and small-sized cladocerans started to grow after the culmination, but food limitation probably controlled the biomass after the collapse of the bloom. Grazing of micro- and macrozooplankton were estimated from in situ experiments using labeled bacteria and algae. Macrozooplankton grazed 22% of bacterial net production during the bloom and 86% after the bloom, while microzooplankton (nauplii, rotifers and ciliates larger than 50 μm) ingested low amounts of bacteria and removed 10–16% of bacterial carbon. Both macro-and microzooplankton grazed algae smaller than 20 μm, although they did not control algal biomass. From calculated clearance rates it was found that heterotrophic nanoflagellates (40–440 ml?1) grazed 3–4% of the bacterial production, while ciliates smaller than 50 μm removed 19–39% of bacterial production, supporting the idea that ciliates are an important link between bacteria and higher trophic levels. During and after the bloom ofAphanizomenon, major fluxes of carbon between bacteria, ciliates and crustaceans were observed, and heterotrophic nanoflagellates played a minor role in the pelagic food web.  相似文献   

12.
Potato plants (Solanum tuberosum ssp. tuberosum cv. Adelheid), multiplied in vitro, were cultivated in growth chambers on nutrient solution at calcium regimes of 1000, 90, 60 or 30 μM Ca. An absolute Ca deficiency, particularly at the low Ca‐supply levels of 30 and 60 μM Ca, manifested itself initially in the form of marginal necrosis in younger, but not in the youngest, leaves of the potato plants. Further symptoms were rolling of the leaf lamina, browning of veins and roots, and finally necrosis also of the youngest leaves. Only in an advanced stage of Ca deficiency, the meristem of the shoots died. Ca‐deficiency symptoms could be expected at a Ca content in the leaves of less than 5 mg Ca (g dry weight)?1. However, there was no close negative correlation between the extent of leaf damage and the total Ca content of the leaves. In order to obtain information about the Ca concentration in the apoplast fluid of the leaves, apoplastic washing fluid was extracted by an infiltration‐centrifugation technique. A low Ca supply reduced the Ca concentration both in the apoplast fluid of the leaves and in the cell walls. Up to 60% more diffusible pectin fragments were then found in the apoplast of younger leaves, as compared to the control supplied with an optimum Ca level of 1000 μM. The amount of diffusible pectins accounted for 1–2% of the total pectin content of younger potato leaves. The size of the existing pectin fragments varied depending on the Ca supply. Compared with an optimum Ca supply of 1000 μM, fewer monomers and up to 7 times more diffusible pectin fragments with a degree of polymerization 9–20 were present at the low Ca‐supply level (30 μM). In addition, polygalacturonase activity in tissue homogenates increased remarkably with Ca deficiency. Thus it appears that one major effect of Ca deficiency was a stimulation of the activity of polygalacturonase, which could control the breakdown of pectic polysaccharides in the cell wall. Whether the release of potentially biologically active pectic fragments in cell walls might be involved in the occurrence of Ca‐deficiency symptoms is discussed.  相似文献   

13.
The ontogenetic diet shifts and age specific ability of the two cladoceran species Moina macrocopa and Ceriodaphnia cornuta to derive energy from ciliated protists have been investigated in laboratory. The postembryonic developmental rates and life table demography (longevity, age and size at first reproduction, fecundity and intrinsic rate of natural increase) of the cladocerans have been elucidated on algae (Chlorella vulgaris) and the ciliated protists (Tetrahymena pyriformis, Colpoda (c.f.) steini) as food. For either of the cladoceran, the somatic growth rate and average body size at first reproduction were higher with algal diet. During initial stages of development (0–5 days), either cladoceran realized higher rate of somatic growth on algal diet, subsequently ciliated protists supported significantly higher growth rate than the alga. Algal and ciliate diets did not differ in maximum body size (C. cornuta: 539–554 μm; M. macrocopa: 1274.8–1309 μm) reached by either of the cladocerans. The maximum body sizes were larger than size at first reproduction with either of the ciliated protists, however, with algal diet the maximum body sizes did not differ from the size at first reproduction in each case. In case of C. cornuta the generation time (20.5 ± 0.3 days on ciliate; 15.6 ± 0.17 days on algal diet), reproductive rates (net reproductive rate: 20.05 ± 3.2 on ciliate; 15.5 ± 1.2 on algal diet), and average life expectancy at hatching (27 ± 0.8 days on ciliate; 22.7 ± 0.71 days on alga) were higher, whereas the size at first reproduction (482 μm on ciliate; 521 μm on alga) was smaller with the ciliate than with an algal diet. The algal and the ciliate diets did not differ in survival (life expectancy at hatching: 9.2 ± 0.7 days) and fecundity (NRR: 23.6 ± 2.4) for M. macrocopa. The two ciliates used in the experiment did not differ in their performance as food source for either cladoceran species. Our results suggest that both the cladoceran species are able to utilize smaller ciliate (e.g., T. pyriformis, C. (c.f.) steini) as food; however with differential ability to derive energy from the ciliate diet and this ability is size and age structured in both cases. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Phosphate uptake and utilization by bacteria and algae   总被引:6,自引:2,他引:4  
Mats Jansson 《Hydrobiologia》1988,170(1):177-189
Bacterial uptake of inorganic phosphate (closely investigated in Escherichia coli) is maintained by two different uptake systems. One (Pst system) is Pi-repressible and used in situations of phosphorus deficiency. The other system (Pit system) is constitutive. The Pit system also takes part in the phosphate exchange process where orthophosphate is continuously exchanged between the cell and the surrounding medium.Algal uptake mechanisms are less known. The uptake capacity increases during starvation but no clearly defined transport systems have been described. Uptake capacity seems to be regulated by internal phosphorus pools, e.g., polyphosphates. In mixed algal and bacterial populations, bacteria generally seem to be more efficient in utilizing low phosphate concentrations. The second half of this paper discusses how bacteria and algae can share limiting amounts of phosphate provided that the bacteria have pronouncedly higher affinity for phosphate. Part of the solution to this problem may be that bacteria are energy-limited rather than phosphate-limited and dependent on algal organic exudates for their energy supply.The possible phosphate exchange mechanism so convincingly demonstrated in Escherichia coli is here suggested to play a key role for the flux of phosphorus between bacteria and algae. Such a mechanism can also be used to explain the rapid phosphate exchange between the particulate and the dissolved phase which always occurs in short-term 32P-uptake experiments in lake waters.  相似文献   

15.
Two populations of a diatom alga Thallassiosira weisflogii were grown at photon flux densities (PFD) of 0.8 and 8 μmol/(m2 s). For both diatom populations, the recovery of chlorophyll fluorescence parameters (F 0, F m, F v/F m, and NPQ) was monitored after nondestructive irradiation by visible light at PFD of 40 μmol/(m2 s) and after high-intensity irradiation by visible light (1000–4000 μmol/(m2 s)). The exposure of diatoms to PFD of 40 μmol/(m2 s)—higher than PFD used for algal growth but still nondamaging to photosynthetic apparatus—induced nonphotochemical quenching (NPQ), which was stronger in algae grown at higher PFD (8 μmol/(m2 s)) than in algae grown at low light. After irradiation with high-intensity light, the recovery of chlorophyll fluorescence parameters was more pronounced in algae grown at elevated PFD level. During short-term irradiation of diatoms with high-intensity visible light (1000 μmol/(m2 s)), a stronger NPQ was observed in the culture adapted to high irradiance. After the treatment of algae with dithiothreitol (an inhibitor of carotenoid deepoxidase in the diadinoxanthin cycle) or NH4Cl (an agent abolishing the proton gradient at thylakoid membranes), a short exposure of algae to PFD of 40 μmol/(m2 s) induced hardly any nonphotochemical quenching. The results indicate the dominant contribution of xanthophyll cycle carotenoids to energy-dependent quenching.  相似文献   

16.
Slightly curved calcitic plates with marginal pores recalling an aciculariacean alga are common in Late Tithonian reefal platform margin deposits of the Plassen Carbonate Platform of the Northern Calcareous Alps of Austria. Illustrated also from the Western Carpathians, these forms were assigned to the genus Acicularia, e.g., Acicularia elongata Carozzi. It is demonstrated that these algal parts are not reproductive caps of polyphysacean algae (formerly known as acetabulariaceans), but represent sections through scattered articles fragments of the dasycladalean alga Neoteutloporella socialis (Praturlon), more precisely the proximal parts of the laterals. This alga formed reefal bushes at the platform margin near-by to coral-stromatoporoid patches. The characteristic aciculariacean algae recalling fragments occur in bioclastic packstones, a facies adjacent to these dasycladalean algal microreefs.  相似文献   

17.
Growing algae to scrub nutrients from manure presents an alternative to the current practice of land application and provides utilizable algal biomass as an end product. The objective of this study was to assess algal growth, nutrient removal, and nitrification using higher light intensities and manure loading rates than in the previous experiments. Algal turfs, with periphyton mainly composed of green algal species, were grown under two light regimes (270 and 390 μmol photons·m?2· s?1) and anaerobically digested flushed dairy manure wastewater (ADFDMW) loading rates ranging from 0.8 to 3.7 g total N and 0.12 to 0.58 g total P·m?2·d?1. Filamentous cyanobacteria (Oscillatoria spp.) and diatoms (Navicula, Nitzschia, and Cyclotella sp.) partially replaced the filamentous green algae at relatively high ADFDMW loading rates and more prominently under low incident light. Mean algal production increased with loading rate and irradiance from 7.6±2.71 to 19.1±2.73 g dry weight· m?2·d?1. The N and P content of algal biomass generally increased with loading rate and ranged from 2.9%–7.3% and 0.5%–1.3% (by weight), respectively. Carbon content remained relatively constant at all loading rates (42%–47%). The maximum removal rates of N and P per unit algal biomass were 70 and 13 mg·g?1 dry weight·m?2·d?1, respectively. Recovery of nutrients in harvested algal biomass accounted for about 31%–52% for N and 30%–59% for P. Recovery of P appeared to be uncoupled with N at higher loading rates, suggesting that algal potential for accumulation of P may have already been saturated. It appears that higher irradiance level enhancing algal growth was the overriding factor in controlling nitrification in the algal turf scrubber units.  相似文献   

18.
Two species of benthic damselfishes from the Gulf of California, Mexico, use contrasting behaviors when feeding on benthic algal communities. The small (±70 g) Cortez damselfish, Eupomacentrus rectifraenum (Gill, 1862), feeds selectively from a multi-species algal mat, eats fleshy red and green algae and ignores brown and calcareous algae. The giant blue damselfish, Microspathodon dorsalis (Gill, 1862), is a large (±450 g), lethargic, nonselective feeder which grazes on a near monoculture of a fleshy red alga, Polysiphonia sp. Feeding activity for both species is low in the morning peaks during late afternoon, and drops sharply as night approaches. Based on feeding rates, gut-filling times, and weights of gut contents, Cortez damselfish process six to eight full guts of food and giant blue damselfish three full guts of food per day. The algal mat exhibits high standing crops (291–618 g dry wt · m?2) and low productivity, but the preferred food of the Cortez damselfish (Ulva) appears to colonize the mat frequently and grow rapidly. The Polysiphonia dominated community on giant blue damselfish territories exhibits low standing crops (23 g · m?2) and high productivity (34–47 times that of the mat per gram algae). Even though the feeding behaviors and resources used by the two damselfishes differ, both species eat similar food (delicate red and green fleshy algae, and depend on rapid colonization and/or high productivity to maintain their primary foods in the grazed algal community.  相似文献   

19.
We estimated the fluxes, inputs and outputs of Ca, K,and Mg in a Mexican tropical dry forest. The studywas conducted in five contiguous small watersheds(12–28 ha) gauged for long-term ecosystem research. A total of five 80 × 30 m plots were used for thestudy. We quantified inputs from the atmosphere,dissolved and particulate-bound losses, throughfalland litterfall fluxes, and standing crop litter pools. Mean cation inputs for a six-year period were 3.03 kg/ha for Ca, 1.31 kg/ha for K, and 0.80 kg/ha for Mg. Mean outputs in runoff were 5.24, 2.83, and 1.79 kg/ha, respectively. Calcium, K, and Mgconcentrations increased as rainfall moved through thecanopy. Annual Ca return in the litterfall (11.4 g/m2) was much higher than K (2.3 g/m2)and Mg (1.6 g/m2). Litterfall represented 99%of the Ca, 84% of the Mg, and 53% of the K, totalaboveground return to the soil. Calcium concentrationin standing litter (3.87%) was much higher than K(0.38%) and Mg (0.37%). These concentrations werehigher (Ca), lower (K), or similar (Mg) to those inlitterfall. Residence times on the forest floor were0.86, 1.17, and 1.77 yr for K, Mg, and Carespectively. Compared to the residence time fororganic matter at the site (1.31 yr), these resultssuggest slow mineralization for Ca in this ecosystem. Budget estimates were calculated for a wet and a dryyear. Results indicated that nutrients accumulated inthe dry but that nutrients were lost during the wetyear. Comparison of Ca, K, and Mg losses in streamwater with the input rates from the atmosphere for thesix-year period show that inputs are lower thanoutputs in the Chamela tropical dry forestecosystem.  相似文献   

20.
Abstract

A Potentiometric titration method was used to study the adverse effect of arsenate (As(V)) and arsenite (As(III)) on inorganic carbon uptake in suspensions of the green alga Scenedesmus obliquus. The measurements were performed in a closed CO2-system with diluted synthetic seawater (1‰ salinity) as ionic medium. Usually, the algal chlorophyll concentration was 0.4 mg dm?3, while the arsenate- and arsenite-concentrations were varied within the limits 0.1 to 200 μmol dm?3. In some experiments arsenate toxicity was studied in the presence of 1 to 100 μmol dm?3 of phosphate (P(V)).

With concentrations of arsenate or arsenite less than 0.1 μmol dm?3 no toxic effects were observed. However, at As-concentrations of 200 μmol dm?3, the algal carbon uptake was reduced by 41% with arsenate and 29% with arsenite, i.e., arsenate is more toxic to Scenedesmus obliquus than arsenite. The toxicity of arsenate was negligible in the presence of a ten fold excess of phosphate. This is probably due to chemical similarities between arsenate and phosphate causing competition between the ions for the binding sites.

The importance of taking the speciation as well as the buffer capacity of the algal system into account, when calculating the carbon uptake, is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号