首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seedlings of Eucalyptus grandis were grown at five different rates of nitrogen supply. Once steady‐state growth rates were established, a detailed set of CO2 and water vapour exchange measurements were made to investigate the effects of leaf nitrogen content (N), as determined by nitrogen supply rate, on leaf structural, photosynthetic, respiratory and stomatal properties. Gas exchange data were used to parametrize the Farquhar–von Caemmerer photosynthesis model. Leaf mass per area (LMA) was negatively correlated to N. A positive correlation was observed between both day (Rd) and night respiration (Rn) and N when they were expressed on a leaf mass basis, but no correlation was found on a leaf area basis. An Rd/Rn ratio of 0·59 indicated a significant inhibition of dark respiration by light. The maximum net CO2 assimilation rate at ambient CO2 concentration (Amax), the maximum rate of potential electron transport (Jmax) and the maximum rate of carboxylation (Vcmax) significantly increased with N, particularly when expressed on a mass basis. Although the maximum stomatal conductance to CO2 (gscmax) was positively correlated with Amax, there was no relationship between gscmax and N. Leaf N content influenced the allocation of nitrogen to photosynthetic processes, resulting in a decrease of the Jmax/Vcmax ratio with increasing N. It was concluded that leaf nitrogen concentration is a major determinant of photosynthetic capacity in Eucalyptus grandis seedlings and, to a lesser extent, of leaf respiration and nitrogen partitioning among photosynthetic processes, but not of stomatal conductance.  相似文献   

2.
Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2   总被引:4,自引:0,他引:4  
Because biological and physical processes alter the stable isotopic composition of atmospheric CO2, variations in isotopic content can be used to investigate those processes. Isotopic flux measurements of 13CO2 above terrestrial ecosystems can potentially be used to separate net ecosystem CO2 exchange (NEE) into its component fluxes, net photosynthetic assimilation (FA) and ecosystem respiration (FR). In this paper theory is developed to partition measured NEE into FA and FR, using measurements of fluxes of CO2 and 13CO2, and isotopic composition of respired CO2 and forest air. The theory is then applied to fluxes measured (or estimated, for 13CO2) in a temperate deciduous forest in eastern Tennessee (Walker Branch Watershed). It appears that there is indeed enough additional information in 13CO2 fluxes to partition NEE into its photosynthetic and respiratory components. Diurnal patterns in FA and FR were obtained, which are consistent in magnitude and shape with patterns obtained from NEE measurements and an exponential regression between night‐time NEE and temperature (a standard technique which provides alternate estimates of FR and FA). The light response curve for photosynthesis (FA vs. PAR) was weakly nonlinear, indicating potential for saturation at high light intensities. Assimilation‐weighted discrimination against 13CO2 for this forest during July 1999 was 16.8–17.1‰, depending on canopy conductance. The greatest uncertainties in this approach lie in the evaluation of canopy conductance and its effect on whole‐canopy photosynthetic discrimination, and thus the indirect methods used to estimate isotopic fluxes. Direct eddy covariance measurements of 13CO2 flux are needed to assess the validity of the assumptions used and provide defensible isotope‐based estimates of the component fluxes of net ecosystem exchange.  相似文献   

3.
We investigate the utility of an improved isotopic method to partition the net ecosystem exchange of CO2 (F) into net photosynthesis (FA) and nonfoliar respiration (FR). Measurements of F and the carbon isotopic content in air at a high‐elevation coniferous forest (the Niwot Ridge AmeriFlux site) were used to partition F into FA and FR. Isotopically partitioned fluxes were then compared with an independent flux partitioning method that estimated gross photosynthesis (GEE) and total ecosystem respiration (TER) based on statistical regressions of night‐time F and air temperature. We compared the estimates of FA and FR with expected canopy physiological relationships with light (photosynthetically active radiation) and air temperature. Estimates of FA and GEE were dependent on light as expected, and TER, but not FR, exhibited the expected dependence on temperature. Estimates of the isotopic disequilibrium D , or the difference between the isotopic signatures of net photosynthesis (δA, mean value ?24.6‰) and ecosystem respiration (δR, mean value ?25.1‰) were generally positive (δAR). The sign of D observed here is inconsistent with many other studies. The key parameters of the improved isotopic flux partitioning method presented here are ecosystem scale mesophyll conductance (gm) and maximal vegetative stomatal conductance (gcmax). The sensitivity analyses of FA, FR, and D to gcmax indicated a critical value of gcmax (0.15 mol m?2 s?1) above which estimates of FA and FR became larger in magnitude relative to GEE and TER. The value of D decreased with increasing values of gm and gcmax, but was still positive across all values of gm and gcmax. We conclude that the characterization of canopy‐scale mesophyll and stomatal conductances are important for further progress with the isotope partitioning method, and to confirm our anomalous isotopic disequilibrium findings.  相似文献   

4.
The possible interference when measuring gas exchange with respiratory CO2 produced under the gasket of commercially available clamp‐on leaf chambers was investigated. Two of these chambers were compared with a leaf chamber that accommodated an entire leaf without clamping it under a gasket. An overestimation of dark respiration rate (RD) by 55% was found with Plantago major leaves, a species with homobaric leaves that have high resistance for lateral gaseous transport. The percentage was similar in the heterobaric Ficus benjamina, but was 32% in the highly porous homobaric Nicotiana tabacum. Net photosynthetic rate at low photon flux density was underestimated by 35% in the clamp‐on chamber. However, the gasket effect was not detectable at light saturation because the error was small in comparison with the high photosynthetic rates. Estimation of respiration in the light (RL) in Nicotiana as derived from CO2 exchange at low CO2 concentrations was complicated by three factors. The inward diffusion of respiratory CO2 from under the gasket was added to a diffusion of CO2 from outside through the gasket material and through the leaf, which produced an even larger error in RL in comparison with RD at ambient CO2. These errors are significant for estimations of carbon gain at whole plant and canopy level and also at the leaf level when photosynthetic rates are low. Possible improvements in gasket design and corrections of CO2 exchange measurements for the gasket effect are discussed.  相似文献   

5.
We integrated soil models with an established ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to investigate the influence of soil processes on modelled values of soil CO2 fluxes (R Soil). Model parameters were determined from literature values and a data assimilation routine that used a 7-year record of the net ecosystem exchange of CO2 and environmental variables collected at a high-elevation subalpine forest (the Niwot Ridge AmeriFlux site). These soil models were subsequently evaluated in how they estimated the seasonal contribution of R Soil to total ecosystem respiration (TER) and the seasonal contribution of root respiration (R Root) to R Soil. Additionally, these soil models were compared to data assimilation output of linear models of soil heterotrophic respiration. Explicit modelling of root dynamics led to better agreement with literature values of the contribution of R Soil to TER. Estimates of R Soil/TER when root dynamics were considered ranged from 0.3 to 0.6; without modelling root biomass dynamics these values were 0.1–0.3. Hence, we conclude that modelling of root biomass dynamics is critically important to model the R Soil/TER ratio correctly. When soil heterotrophic respiration was dependent on linear functions of temperature and moisture independent of soil carbon pool size, worse model-data fits were produced. Adding additional complexity to the soil pool marginally improved the model-data fit from the base model, but issues remained. The soil models were not successful in modelling R Root/R Soil. This is partially attributable to estimated turnover parameters of soil carbon pools not agreeing with expected values from literature and being poorly constrained by the parameter estimation routine. We conclude that net ecosystem exchange of CO2 alone cannot constrain specific rhizospheric and microbial components of soil respiration. Reasons for this include inability of the data assimilation routine to constrain soil parameters using ecosystem CO2 flux measurements and not considering the effect of other resource limitations (for example, nitrogen) on the microbe biomass. Future data assimilation studies with these models should include ecosystem-scale measurements of R Soil in the parameter estimation routine and experimentally determine soil model parameters not constrained by the parameter estimation routine.  相似文献   

6.
Knowledge of root respiration is a prerequisite for a better understanding of ecosystem carbon budget and carbon allocation. However, there are not many relevant data in the literature on direct measurements of in situ root respiration by root chamber method. Furthermore, few studies have been focused on the effects of root diameter (D r) and root nitrogen concentration (N r) on in situ root respiration among different seasons and tree species. To address these goals, we used a simplified root-chamber system to measure in situ root respiration rates of Acacia crassicarpa and Eucalyptus urophylla in subtropical plantations of south China. We found that the species and season variation in root respiration were affected by D r and N r. Also, the root respiration per unit dry mass (R r, nmol CO2 g−1 s−1) and root respiration per unit N (R n, nmol CO2 g N−1 s−1) were affected by D r and N r. The R r, R n, N r and soil temperature sensitivity (Q 10) of R r for the two species significantly decreased with an increase of D r. The R r of the two species showed significant an inter-seasonal and diurnal pattern, and this trend decreased with increasing D r. Both the R r and Q 10 of the two species increased with increasing N r. The D r and N r explained 54 and 52% of the observed variation in R r for A. crassicarpa, and 65 and 70% for E. urophylla. The R r, N r, and Q 10 of A. crassicarpa were significantly higher than those of E. urophylla. Our results indicated that root respiration was dependent on D r and N r, and this dependence varied with season and plant species.  相似文献   

7.
In order to understand the pathway involved in the chemical enhancement of photosynthetic rate, sodium bisulfite (NaHSO3) and benzyladenine (BA), a growth regulator, were applied to strawberry plants. The influence of these compounds on gas exchange and millisecond delayed light emission (ms-DLE) was investigated using 2-month-old plants. Results showed the net photosynthetic rate (A) in leaves was promoted by both NaHSO3 and BA. Stomatal conductance (g) and transpiration rate (E) were significantly increased only by BA, while intercellular CO2 concentration (Ci) was significantly decreased by NaHSO3. The enhancement of A by NaHSO3 and BA was only a short-term effect, lasting approximately 5 days for NaHSO3 and 30 h for BA. Plants treated with NaHSO3, BA or NaHSO3 + BA, showed no significant fluctuations in carboxylation efficiency (CE), photorespiration (RP) or dark respiration (RD). These results suggest that the influences of NaHSO3 and BA on gas exchange particularly A, could be via different mechanisms: the enhancement of A by the application of low concentrations of NaHSO3 appears to be associated with increased cyclic electron flow, while BA enhancement of A is at least partially due to increased g and/or E.  相似文献   

8.
Sacks WJ  Schimel DS  Monson RK 《Oecologia》2007,151(1):54-68
Fundamental questions exist about the effects of climate on terrestrial net ecosystem CO2 exchange (NEE), despite a rapidly growing body of flux observations. One strategy to clarify ecosystem climate–carbon interactions is to partition NEE into its component fluxes, gross ecosystem CO2 exchange (GEE) and ecosystem respiration (R E), and evaluate the responses to climate of each component flux. We separated observed NEE into optimized estimates of GEE and R E using an ecosystem process model combined with 6 years of continuous flux data from the Niwot Ridge AmeriFlux site. In order to gain further insight into the processes underlying NEE, we partitioned R E into its components: heterotrophic (R H) and autotrophic (R A) respiration. We were successful in separating GEE and R E, but less successful in accurately partitioning R E into R A and R H. Our failure in the latter was due to a lack of adequate contrasts in the assimilated data set to distinguish between R A and R H. We performed most model runs at a twice-daily time step. Optimizing on daily-aggregated data severely degraded the model’s ability to separate GEE and R E. However, we gained little benefit from using a half-hourly time step. The model-data fusion showed that most of the interannual variability in NEE was due to variability in GEE, and not R E. In contrast to several previous studies in other ecosystems, we found that longer growing seasons at Niwot Ridge were correlated with less net CO2 uptake, due to a decrease of available snow-melt water during the late springtime photosynthetic period. Warmer springtime temperatures resulted in increased net CO2 uptake only if adequate moisture was available; when warmer springtime conditions led into mid-summer drought, the annual net uptake declined.  相似文献   

9.
To quantify stem respiration (RS) under elevated CO2 (eCO2), stem CO2 efflux (EA) and CO2 flux through the xylem (FT) should be accounted for, because part of respired CO2 is transported upwards with the sap solution. However, previous studies have used EA as a proxy of RS, which could lead to equivocal conclusions. Here, to test the effect of eCO2 on RS, both EA and FT were measured in a free‐air CO2 enrichment experiment located in a mature Eucalyptus native forest. Drought stress substantially reduced EA and RS, which were unaffected by eCO2, likely as a consequence of its neutral effect on stem growth in this phosphorus‐limited site. However, xylem CO2 concentration measured near the stem base was higher under eCO2, and decreased along the stem resulting in a negative contribution of FT to RS, whereas the contribution of FT to RS under ambient CO2 was positive. Negative FT indicates net efflux of CO2 respired below the monitored stem segment, likely coming from the roots. Our results highlight the role of nutrient availability on the dependency of RS on eCO2 and suggest stimulated root respiration under eCO2 that may shift vertical gradients in xylem [CO2] confounding the interpretation of EA measurements.  相似文献   

10.
By investigating the R D-C a (dark respiration rate-atmospheric CO2 concentration) and P N (net photosynthetic rate)-C a curves of bamboo (Fargesia denudata) and poplar (Populus cathayanna), we found that: (1) the minimal R D was close to ambient CO2 concentration, and the elevated or decreased atmospheric CO2 concentration enhanced the R D of both species; (2) the response curves of R D-C a were simulated well by quadratic function. This phenomenon might be an inherent property of leaf R D of F. denudata and P. cathayanna. If this was true, it implies that effect of CO2 on R D could be interpreted with the relationship of R D-C a curves and the quadratic function.  相似文献   

11.
Abstract Climate change is predicted to bring about a water level (WL) draw-down in boreal peatlands. This study aimed to assess the effect of WL on the carbon dioxide (CO2) dynamics of a boreal oligotrophic fen ecosystem and its components; Sphagnum mosses, sedges, dwarf shrubs and the underlying peat. We measured CO2 exchange with closed chambers during four growing seasons in a study site that comprised different vegetation treatments. WL gradient in the site was broadened by surrounding half of the site with a shallow ditch that lowered the WL by 10–25 cm. We modeled gross photosynthesis (P G) and ecosystem respiration (R ECO) and simulated the CO2 exchange in three WL conditions: prevailing and WL draw-down scenarios of 14 and 22 cm. WL draw-down both reduced the P G and increased the R ECO, thus leading to a smaller net CO2 uptake in the ecosystem. Of the different components, Sphagnum mosses were most sensitive to WL draw-down and their physiological activities almost ceased. Vascular plant CO2 exchange, en bloc, hardly changed but whereas sedges contributed twice as much to the CO2 exchange as shrubs in the prevailing conditions, the situation was reversed in the WL draw-down scenarios. Peat respiration was the biggest component in R ECO in all WL conditions and the increase in R ECO following the WL draw-down was due to the increase in peat respiration. The results imply that functional diversity buffers the ecosystem against environmental variability and that in the long term, WL draw-down changes the vegetation composition of boreal fens.  相似文献   

12.
A trenching method was used to determine the contribution of root respiration to soil respiration. Soil respiration rates in a trenched plot (R trench) and in a control plot (R control) were measured from May 2000 to September 2001 by using an open-flow gas exchange system with an infrared gas analyser. The decomposition rate of dead roots (R D) was estimated by using a root-bag method to correct the soil respiration measured from the trenched plots for the additional decaying root biomass. The soil respiration rates in the control plot increased from May (240–320 mg CO2 m–2 h–1) to August (840–1150 mg CO2 m–2 h–1) and then decreased during autumn (200–650 mg CO2 m–2 h–1). The soil respiration rates in the trenched plot showed a similar pattern of seasonal change, but the rates were lower than in the control plot except during the 2 months following the trenching. Root respiration rate (R r) and heterotrophic respiration rate (R h) were estimated from R control, R trench, and R D. We estimated that the contribution of R r to total soil respiration in the growing season ranged from 27 to 71%. There was a significant relationship between R h and soil temperature, whereas R r had no significant correlation with soil temperature. The results suggest that the factors controlling the seasonal change of respiration differ between the two components of soil respiration, R r and R h.  相似文献   

13.
A cheap CO2 enrichment system was designed to perform continuous gas exchange measurements of branches of mature European beech trees (Fagus sylvatica L.). Branches were grown at ambient (350 cm3 m-3) and elevated CO2 (700cm3 m-3) during the whole 1992 leafy period. Leaks resulting from airtightness defaults in the system appeared to be low enough to measure accurately net CO2 assimilation and transpiration rates during the day. However, the CO2 exchange rates during the night (respiration) were too low to allow accurate measurements. Elevated CO2 had a great effect on the net assimilation rate of branches via its influence on both the C3 photosynthetic pathway and the shade-tolerance of beech trees (85% increase). The A/Ca curves showed no acclimation effect to high CO2, both control and enriched branches increasing their net assimilation in the same way. The decrease of net assimilation rates in mature leaves was similar for both control and enriched branches. The pattern of daily transpiration rates remained the same for both control and enriched branches, hence we can assume that there was no visible CO2 effect on stomata.  相似文献   

14.
Using CO2 gasometry, net photosynthetic (P N) and dark respiration rates (R D) were measured in leaves or traps of 12 terrestrial carnivorous plant species usually grown in the shade. Generally, mean maximum P N (60 nmol CO2 g−1(DM) s−1 or 2.7 μmol m−2 s−1) was low in comparison with that of vascular non-carnivorous plants but was slightly higher than that reported elsewhere for carnivorous plants. After light saturation, the facultatively heliophytic plants behaved as shade-adapted plants. Mean R D in leaves and traps of all species reached about 50% of maximum P N and represents the high photosynthetic (metabolic) cost of carnivory.  相似文献   

15.
We linked a leaf-level CO2 assimilation model with a model that accounts for light attenuation in the canopy and measurements of sap-flux-based canopy conductance into a new canopy conductance-constrained carbon assimilation (4C-A) model. We estimated canopy CO2 uptake (AnC) at the Duke Forest free-air CO2 enrichment (FACE) study. Rates of AnC estimated from the 4C-A model agreed well with leaf gas exchange measurements (Anet) in both CO2 treatments. Under ambient conditions, monthly sums of net CO2 uptake by the canopy (AnC) were 13% higher than estimates based on eddy-covariance and chamber measurements. Annual estimates of AnC were only 3% higher than carbon (C) accumulations and losses estimated from ground-based measurements for the entire stand. The C budget for the Pinus taeda component was well constrained (within 1% of ground-based measurements). Although the closure of the C budget for the broadleaf species was poorer (within 20%), these species are a minor component of the forest. Under elevated CO2, the C used annually for growth, turnover, and respiration balanced only 80% of the AnC. Of the extra 700 g C m−2 a−1 (1999 and 2000 average), 86% is attributable to surface soil CO2 efflux. This suggests that the production and turnover of fine roots was underestimated or that mycorrhizae and rhizodeposition became an increasingly important component of the C balance. Under elevated CO2, net ecosystem production increased by 272 g C m−2 a−1: 44% greater than under ambient CO2. The majority (87%) of this C was sequestered in a moderately long-term C pool in wood, with the remainder in the forest floor–soil subsystem.  相似文献   

16.
For most ecosystems, net ecosystem exchange of CO2 (NEE) varies within and among years in response to environmental change. We analyzed measurements of CO2 exchange from eight native rangeland ecosystems in the western United States (58 site‐years of data) in order to determine the contributions of photosynthetic and respiratory (physiological) components of CO2 exchange to environmentally caused variation in NEE. Rangelands included Great Plains grasslands, desert shrubland, desert grasslands, and sagebrush steppe. We predicted that (1) week‐to‐week change in NEE and among‐year variation in the response of NEE to temperature, net radiation, and other environmental drivers would be better explained by change in maximum rates of ecosystem photosynthesis (Amax) than by change in apparent light‐use efficiency (α) or ecosystem respiration at 10 °C (R10) and (2) among‐year variation in the responses of NEE, Amax, and α to environmental drivers would be explained by changes in leaf area index (LAI). As predicted, NEE was better correlated with Amax than α or R10 for six of the eight rangelands. Week‐to‐week variation in NEE and physiological parameters correlated mainly with time‐lagged indices of precipitation and water‐related environmental variables, like potential evapotranspiration, for desert sites and with net radiation and temperature for Great Plains grasslands. For most rangelands, the response of NEE to a given change in temperature, net radiation, or evaporative demand differed among years because the response of photosynthetic parameters (Amax, α) to environmental drivers differed among years. Differences in photosynthetic responses were not explained by variation in LAI alone. A better understanding of controls on canopy photosynthesis will be required to predict variation in NEE of rangeland ecosystems.  相似文献   

17.
Measurements of net fluxes of CO2 and O2 from leaves and chlorophyll a fluorescence were used to determine the role of mitochondrial respiration during nitrate (NO3) assimilation in both a C3 (wheat) and a C4 (maize) plant. Changes in the assimilatory quotient (net CO2 consumed over net O2 evolved) when the nitrogen source was shifted from NO3 to NH4+AQ) provided a measure of shoot NO3 assimilation. According to this measure, elevated CO2 inhibited NO3 assimilation in wheat but not maize. Net O2 exchange under ambient CO2 concentrations increased in wheat plants receiving NO3 instead of NH4+, but gross O2 evolution from the photosynthetic apparatus (JO2) was insensitive to nitrogen source. Therefore, O2 consumption within wheat photosynthetic tissue (ΔΟ2), the difference between JO2 and net O2 exchange, decreased during NO3 assimilation. In maize, NO3 assimilation was insensitive to changes in intercellular CO2 concentration (Ci); nonetheless, ΔΟ2 at low Ci values was significantly higher in NO3‐fed than in NH4+‐fed plants. Changes in O2 consumption during NO3 assimilation may involve one or more of the following processes: (a) Mehler ascorbate peroxidase (MAP) reactions; (b) photorespiration; or (c) mitochondrial respiration. The data presented here indicates that in wheat, the last process, mitochondrial respiration, is decreased during NO3 assimilation. In maize, NO3 assimilation appears to stimulate mitochondrial respiration when photosynthetic rates are limiting.  相似文献   

18.
Gametophores of mosses Mnium undulatum and Polytrichum commune were submerged in distilled water or in calcium chloride solution (0.9 mM Ca2+) to induce hypoxia. The net photosynthetic (PN) and dark respiration rate (RD) were measured in the air containing 300–400 μmol(CO2)·mol−1(air) and 0.21 mol(O2)·mol−1(air). PN of M. undulatum gametophores decreased to 58 % of the control after 1-h submersion in water, whereas to 80 % of the control in P. commune gametophores. A smaller decrease in PN was observed when the gametophores were immersed in CaCl2 solution. In hypoxia, RD in the tested mosses species was a little higher than in the control.  相似文献   

19.
Carbon dioxide exchange was measured, using the eddy covariance technique, during a one and a half year period in 1994 and 1995. The measurements took place over a former true raised bog, characterized by a shallow peat layer and a vegetation dominated by Molinia caerulea. The growing season extended from May until late October, with a maximum LAI in August of 1.7. The carbon balance shows a net release of 97 g C m–2 y–1 (265 kg C ha–1 y–1) from the peat bog ecosystem to the atmosphere. During June, July and August there is net consumption of CO2, while during the rest of the year there is net production of CO2. The average daytime assimilation rates ranged between – 0.2 and – 0.5 mg CO2 m–2 s–1 (– 45 and –11.3 μmol CO2 m–2 s–1), in a period where the LAI ranged between 1 and 1.7. A high vapour pressure deficit (> 15 hPa) corresponding with high temperatures was found to reduce the assimilation rate by on average 50%. Apart from these factors, LAI and the soil temperature codetermine the net exchange of CO2. The total nocturnal respiration during the growing season lies within the same order as the average daytime net assimilation rate. Temperature was found to be the main factor controlling soil respiration, with a Q10 of 4.8.  相似文献   

20.
CO2 exchange components of a temperate semi-desert sand grassland ecosystem in Hungary were measured 21 times in 2000–2001 using a closed IRGA system. Stand CO2 uptake and release, soil respiration rate (R s), and micrometeorological values were determined with two types of closed system chambers to investigate the daily courses of gas exchange. The maximum CO2 uptake and release were –3.240 and 1.903 mol m–2 s–1, respectively, indicating a relatively low carbon sequestration potential. The maximum and the minimum R s were 1.470 and 0.226 mol(CO2) m–2 s–1, respectively. Water shortage was probably more effective in decreasing photosynthetic rates than R s, indicating water supply as the primary driving variable for the sink-source relations in this ecosystem type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号