首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the use of sequential batch reactors under oxygen limitation to improve and maintain consortium ability to biodegrade hydrocarbons. Air-agitated tubular reactors (2.5 L) were operated for 20 sequential 21-day cycles. Maya crude oil-paraffin mixture (13,000 mg/L) was used as the sole carbon source. The reactors were inoculated with a consortium from the rhizosphere of Cyperus laxus, a native plant that grows naturally in weathered, contaminated soil. Oxygen limitation was induced in the tubular reactor by maintaining low oxygen transfer coefficients (k(L)a < 20.6 h(-1)). The extent and biodegradation rates increased significantly up to the fourth cycle, maintaining values of about 66.33% and 460 mg x L(-1) x d(-1), respectively. Thereafter, sequential batch reactor operation exhibited a pattern with a constant general trend of biodegradation. The effect of oxygen limitation on consortium activity led to a low biomass yield and non-soluble metabolite (0.45 g SS/g hydrocarbons consumed). The average number of hydrocarbon-degrading microorganisms increased from 6.5 x 10(7) (cycles 1-3) to 2.2 x 10(8) (cycles 4-20). Five bacterial strains were identified: Achromobacter (Alcaligenes) xylosoxidans, Bacillus cereus, Bacillus subtilis, Brevibacterium luteum, and Pseudomonas pseudoalcaligenes. Asphaltene-free total petroleum hydrocarbons, extracted from a weathered, contaminated soil, were also biodegraded (97.1 mg x L(-1) x d(-1)) and mineralized (210.48 mg CO2 x L(-1) x d(-1)) by the enriched consortium without inhibition. Our results indicate that sequential batch reactors under oxygen limitation can be used to produce consortia with high and constant biodegradation ability for industrial applications of bioremediation.  相似文献   

2.
Methyl tert-butyl ether (MTBE) degradation by a microbial consortium   总被引:3,自引:0,他引:3  
The widespread use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in a large number of cases of groundwater contamination. Bioremediation is often proposed as the most promising alternative after treatment. However, MTBE biodegradation appears to be quite different from the biodegradation of usual gasoline contaminants such as benzene, toluene, ethyl benzene and xylene (BTEX). In the present paper, the characteristics of a consortium degrading MTBE in liquid cultures are presented and discussed. MTBE degradation rate was fast and followed zero order kinetics when added at 100 mg l(-1). The residual MTBE concentration in batch degradation experiments ranged from below the detection limit (1 microg l(-1)) to 50 microg l(-1). The specific activity of the consortium ranged from 7 to 52 mgMTBE g(dw)(-1) h(-1) (i.e. 19-141 mgCOD g(dw) (-1) h(-1)). Radioisotope experiments showed that 79% of the carbon-MTBE was converted to carbon-carbon dioxide. The consortium was also capable of degrading a variety of hydrocarbons, including tert-butyl alcohol (TBA), tert-amyl methyl ether (TAME) and gasoline constituents such as benzene, toluene, ethylbenzene and xylene (BTEX). The consortium was also characterized by a very slow growth rate (0.1 d(-1)), a low overall biomass yield (0.11 gdw g(-1)MTBE; i.e. 0.040 gdw gCOD(-1)), a high affinity for MTBE and a low affinity for oxygen, which may be a reason for the slow or absence of MTBE biodegradation in situ. Still, the results presented here show promising perspectives for engineering the in situ bioremediation of MTBE.  相似文献   

3.
A microbial consortium that efficiently degrades 2,4,6-TCP (2,4,6-trichlorophenol), as the sole source of carbon and energy under aerobic conditions was selected from municipal activated sludge. Six bacterial strains, designated S(1), S(2), S(3), S(4), S(5) and S(6), were isolated from the selected consortium and five were identified as Sphingomonas paucimobilis (S(2), S(3)), Burkholderia cepacia(S(4)), Chryseomonas luteola (S(5)) and Vibrio metschnikovii (S(6)). After prolonged cultivation followed by successive transfers, the consortium's degradation ability was improved and reached a specific degradation rate of 34 mg 2,4,6-TCP g(-1) dry weight h(-1) (about 51 mg 2,4,6-TCP g(-1) cell protein h(-1)). The soluble chemical oxygen demand, chloride and oxygen uptake balance data clearly indicate the complete dechlorination and mineralization of 2,4,6-TCP. The consortium's activity was not inhibited by 2,4,6-TCP concentrations 相似文献   

4.
Carbon tetrachloride (CT) is an important groundwater pollutant which is only subject to biotransformation in the absence of oxygen. The anaerobic biotransformation of CT is influenced by electron shuttling compounds. The purpose of this study was to evaluate the impact of redox active vitamins on CT (100 M) metabolism in a methanogenic sludge consortium (0.5 g VSSl-1) supplied with volatile fatty acids as electron donor (0.2 g CODl-1). The redox active vitamins, tested at concentrations ranging from 0.5 to 20 M, were riboflavin (RF) and two forms of vitamin B12, cyanocobalamin (CNB12) and hydroxycobalamin (HOB12), and these were compared with a redox mediating quinone, anthraquinone-2,6-disulfonate (AQDS). Substoichiometric concentrations of RF, CNB12, HOB12 at molar ratios of vitamin:CT as low as 0.005 significantly increased rates of CT-bioconversion. These are the lowest molar ratios of vitamin B12 reported having an impact on dechlorination. Additionally, this study constitutes the first report of RF having a role in reductive dechlorination. At molar ratios of 0.1 vitamin:CT, RF, CNB12, HOB12 increased the first order rate constant of CT bioconversion by 4.0-, 13.3-and 13.6-fold, respectively. The redox active vitamins also enhanced the rates of abiotic CT conversion in heat killed sludge treatments, but the rates were approximately 4- to 5-fold lower than the corresponding vitamin enhanced rates of biological CT conversion. The addition of CNB12 or HOB12 to the live methanogenic sludge consortium increased the yield of inorganic chloride (Cl-) from CT-converted. Chloroform was a transient intermediate in CNB12 or HOB12 supplemented cultures. In contrast, the addition of RF increased the yield of chloroform from CT-converted. Taken as a whole the results clearly demonstrate that very low concentrations of redox active vitamins could potentially play an important role in accelerating the anaerobic the bioremediation of CT as well as influencing the proportions of biotransformation products formed.  相似文献   

5.
A methanogenic consortium was used to degrade phenol and ortho- (o-) cresol from a specific effluent of a petrochemical refinery. This effluent did not meet the local environmental regulations for phenolic compounds (178 mg/L), oils and greases (61 mg/L), ammoniacal nitrogen (75 mg/L) or sulfides (3.2 mg/L). The consortium, which degrades phenol via its carboxylation to benzoic acid, was progressively adapted to the effluent. Despite the very high effluent toxicity (EC50 of 2% with Microtox), the adapted consortium degraded 97% of 156 mg/L phenol in the supplemented effluent after 13 days in batch cultures (serum bottle). The addition of proteose peptone to the effluent is essential for phenol degradation. o-cresol was also transformed but not meta- or para-cresols. A continuous flow fixed-film anaerobic bioreactor was developed with the consortium. Treating the effluent with the bioreactor reduced phenol and phenolic compounds concentrations by 97 and 83%, respectively, for a hydraulic residence time of 6 h. This treatment also reduced by about half the effluent toxicity. Oils and greases and ammoniacal nitrogen were not affected. Similar microbiological forms were observed in serum bottles and in the bioreactors with or without the petrochemical effluent. These results indicate that this methanogenic consortium can treat efficiently the phenolic compounds in this specific petrochemical effluent.  相似文献   

6.
Ammonia is a metabolic product in the decomposition of protein wastes, and has a recognized inhibitory effect on methanogenesis; this effect has been slightly quantified on methanogenic biofilms and particularly those populated by methanogenic Archaea which produce ammonia as a catabolic product from methylated amines. This paper presents studies on the effect of ammonia on maximum methanogenic activity of anaerobic biofilms enriched by methylaminotrophic methane producing Archaea (mMPA). The effect of unionized free ammonia on the specific maximum methanogenic activity of a mMPA enriched biofilm was studied, using 250 mL flasks containing ceramic rings colonized by 30 day-old experimental biofilm and adding 48.8 (control system), 73.8, 98.8, 148.8, 248.8, 448.8 and 848.8 mg NH(3)-N/L. The systems were maintained for ten days at a pH of 7.5 and temperature of 37 degrees C. The results showed that at 848.8 mg NH(3)-N/L, biofilm methane production required 36 h adaptation period, prior to entering into maximum production phase. The highest maximum methanogenic activity reached a value of 2.337+/-0.213 g COD methane/g VSS *day when 48.8 mg NH(3)-N/L was added, and inhibition was clearly observed in those systems above 148.8 mg NH(3)-N/L, producing under 1.658+/-0.185 g COD methane/g VSS *day. The lowest methanogenic activity reached was 0.639+/-0.162 g COD methane/g VSS *day at the system added with 848.8 mg NH(3)-N/L. When applying the Luong and non-competitive inhibition models, the best fit was obtained with the non-competitive model, which predicted 50% inhibition of methanogenic activity at 365.288 mg NH(3)-N/L.  相似文献   

7.
Long-chain fatty acids (LCFA) associated with anaerobic sludge by mechanisms of precipitation, adsorption, or entrapment can be biodegraded to methane. The mineralization kinetics of biomass-associated LCFA were established according to an inhibition model based on Haldane's enzymatic inhibition kinetics. A value around 1,000 mg COD-LCFA..g VSS(-1) was obtained for the optimal specific LCFA content that allowed the maximal mineralization rate. For sludge with specific LCFA contents of 2,838 +/- 63 and 4,571 +/- 257 mg COD-LCFA..g VSS(-1), the specific methanogenic activities in the presence of acetate, butyrate, and H(2)/CO(2) were significantly enhanced after the mineralization of the biomass-associated LCFA. For sludge with a specific LCFA content near the optimal value defined by the kinetic model, the effect of adding VFA to the medium was studied during the mineralization of the biomass-associated LCFA. Different patterns were obtained for each individual substrate. Acetate and butyrate were preferentially consumed by the consortium, but in the case of propionate no evidence of a sequential consumption pattern could be withdrawn. It was concluded that LCFA do not exert a bactericidal neither a permanent toxic effect toward the anaerobic consortia. A discussion is addressed to the relative roles of a reversible inhibitory effect and a transport limitation effect imposed by the LCFA surrounding the cells.  相似文献   

8.
A fluidized bed bioreactor (FBBR) was operated for more than 1000 days under two regimes, Methanogenic (M) and Methanogenic-Aerobic (M-A), to remove 2,4,6-trichlorophenol (TCP) and phenol (Phe) from a synthetic wastewater, containing different amounts of TCP and Phe, using different aeration flow-rates (0, 2.13, and 1.06 NL O(2)/L.day). M conditions (80:20 mg/L of TCP:Phe, 0 NL O(2)/L.day) showed similar TCP and Phe removal (>95%). Nevertheless accumulation of 4-chlorophenol (4CP) up to 16 mg/L and Phe up to 4 mg/L was observed, while in M-A conditions (80:20 mg/L of TCP:Phe, 2.13 NL O(2)/L.day) TCP and Phe removal achieved 99.9(+)% and after 70 days no accumulation of intermediates were detected. The increase of TCP and Phe in the influent under M-A conditions from 80:20 to 120:30 mg/L of TCP:Phe did not negatively affect the removal of TCP, intermediates and Phe; in fact, they were similar to those in previous M-A conditions. The decrease in the oxygen flow rate from 2.13 to 1.06 NL O(2)/L.day had no negative effect on pollutant removals, which were as high as in previous two M-A conditions. The specific methanogenic activity of bioparticles of the fluidized bed decreased with long-term partial aeration, starting from 1.097 mmol CH(4)/h.g(TKN) in the M regime (day 60) to <0.02 mmolCH(4)/h.g(TKN) at day 1050, suggesting aerobic regime in the bioreactor rather than an M-A regime. In conclusion, complete removal of TCP and less chlorinated intermediates could be achieved in an initially methanogenic FBBR under conditions of partial aeration, although long-term operation seemed to negatively affect the methanogenic activity of biomass. It is also likely that after extended aeration the microbial community was finally enriched with strains with the ability to attack 2,4,6-TCP under aerobic conditions. This report represents the first evidence of a long exposure to oxygen of an anaerobic microbial consortium that efficiently remove TCP.  相似文献   

9.
Biodegradation of methyl tert-butyl ether (MTBE) by cometabolism has shown to produce recalcitrant metabolic intermediates that often accumulate. In this work, a consortium containing Pseudomonads was studied for its ability to fully degrade oxygenates by cometabolism. This consortium mineralized MTBE and TBA with C3-C7 n-alkanes. The highest degradation rates for MTBE (75 +/- 5 mg g(protein) (-1) h(-1)) and TBA (86.9 +/- 7.3 mg g(protein) (-1) h(-1)) were obtained with n-pentane and n-propane, respectively. When incubated with radiolabeled MTBE and n-pentane, it converted more than 96% of the added MTBE to (14)C-CO(2). Furthermore, the consortium degraded tert-amyl methyl ether, tert-butyl alcohol (TBA), tert-amyl alcohol, ethyl tert-butyl ether (ETBE) when n-pentane was used as growth source. Three Pseudomonads were isolated but only two showed independent MTBE degradation activity. The maximum degradation rates were 101 and 182 mg g(protein) (-1) h(-1) for Pseudomonas aeruginosa and Pseudomonas citronellolis, respectively. The highest specific affinity (a degrees (MTBE)) value of 4.39 l g(protein) (-1) h(-1) was obtained for Pseudomonas aeruginosa and complete mineralization was attained with a MTBE: n-pentane ratio (w/w) of 0.7. This is the first time that Pseudomonads have been reported to fully mineralize MTBE by cometabolic degradation.  相似文献   

10.
The ability of a microbial consortium eluted from dioxin-contaminated Passaic River sediments to dechlorinate polychlorinated dibenzo-p-dioxins (PCDDs) was investigated under methanogenic conditions. Aged 2,3,7,8-tetraCDD, which had partitioned into the microbial consortium from sediments, was stoichiometrically converted to tri- and monoCDD congeners. During dechlorination, dominant microbial activity within the consortium shifted from methanogenic to nonmethanogenic activity. Freshly spiked octaCDD was converted to hepta-, hexa-, penta-, tetra-, tri-, di-, and monochlorinated isomers, but the reaction stoichiometry was not determined. No methanogenic activity was observed, and the maximum yield of protein coincided with the production of less-chlorinated DD congeners. Two distinct pathways of dechlorination were observed: the peri-dechlorination pathway of 2,3,7,8-substituted hepta- to pentaCDDs, resulting in the production of 2,3,7,8-tetraCDD, and the peri-lateral dechlorination pathway of non-2,3,7,8-substituted congeners. Direct evidence of further lateral dechlorination of 2,3,7,8-tetraCDD was obtained from the historically contaminated incubations; no isomer-specific identification of triCDDs in spiked incubations was determined. Pasteurized cells exhibited no peri-dechlorination pathway, and triCDDs were the least-chlorinated congeners produced in these treatments. These results demonstrate that (i) both freshly spiked and aged PCDDs are available to microbial reductive dechlorination, (ii) the peri and triCDD dechlorinations are attributed to activities of nonmethanogenic, non-spore-forming microbial subpopulations, and (iii) the 2,3,7,8-residue patterns in historically contaminated sediments are likely affected by microbial activity.  相似文献   

11.
Recovery of 97.5% of the pentachlorophenol (PCP) in contaminated wood powder was obtained after extraction with 0.1% KOH solution at 60 degrees C for 75 min. Extraction with NaOH and Na2CO3 was less effective than KOH. The neutralized extract was treated using a methanogenic consortium in an upflow anaerobic fixed-film reactor. The reactor was operated at 29 degrees C for over 600 d. The best performance of the reactor was observed when the PCP liquor was supplemented with glucose and formate. Complete dechlorination of PCP and phenol removal was obtained for a PCP loading rate of 13.3-18.0 mg l(-1) of reactor volume d(-1) with recirculation of the effluent and a hydraulic retention time (HRT) of 0.5-0.6 d.  相似文献   

12.
Pyridine and pyridine based products are of major concern as environmental pollutants due to their recalcitrant, persistent, toxic and teratogenic nature. In this study, we describe biodegradation of pyridine by an isolated consortium/strain under aerobic condition. Batch experiment results reveal that at lower initial pyridine concentrations (1-20 mg l(-1)), almost complete degradation was observed whereas at higher concentration (30-50 mg l(-1)), the degradation efficiency was dropped significantly. This may be due to inhibitory effect of pyridine at higher concentrations. The value of decay and yield coefficient was also determined. Furthermore, the bio-augmentation of isolated consortium/strain into the activated sludge consortium in different quantity has been also done and the effect of bio-augmentation on degradation has been studied. The results reveal that as the quantity of bio-augmentation increases, the degradation of pyridine increases. At 25% bio-augmentation, complete degradation of 20 mg l(-1) of pyridine can be achieved within 96 h of incubation. Thus, the study concluded that the bio-augmentation of the isolated consortium/strain into the sludge enhances the pyridine degradation efficiency of the biomass.  相似文献   

13.
Anaerobic digestion of wastewater from a distillery industry having very high COD (1,10,000-1,90,000 mg/L) and BOD (50,000-60,000 mg/L) was studied in a continuously fed, up flow fixed film column reactor using different support materials such as charcoal, coconut coir and nylon fibers under varying hydraulic retention time and organic loading rates. The seed consortium was prepared by enrichment with distillery spent wash in a conventional type reactor having working capacity of 3 L and was used for charging the anaerobic column reactor. Amongst the various support materials studied the reactor having coconut coir could treat distillery spent wash at 8d hydraulic retention time with organic loading rate of 23.25 kg COD m(-3)d(-1) leading to 64% COD reduction with biogas production of 7.2 m3 m(-3)d(-1) having high methane yield without any pretreatment or neutralization of the distillery spent wash. This study indicates fixed film biomethanation of distillery spent wash using coconut coir as the support material appears to be a cost effective and promising technology for mitigating the problems caused by distillery effluent.  相似文献   

14.
Abstract A defined 3-chlorobenzoate-degrading methanogenic consortium was constructed by recombining key organisms isolated from a 3-chlorobenzoate-degrading methanogenic sludge enrichment. The organisms comprise a three-tiered food chain which includes: (1) reductive dechlorination of 3-chlorobenzoate; (2) oxidation of benzoate to acetate, H2 and CO2; (3) removal of H2 plus CO2 by conversion into methane. The defined consortium, consisting of a dechlorinating organism (DCB-1), a benzoate degrader (BZ-1) and a lithotrophic methanogen ( Methanospirillum strain PM-1) grew well in a basal salts medium supplemented with 3-chlorobenzoate (3.2 mM) as the sole energy source. The chlorine released from the aromatic ringe was recovered in stoichiometric amounts as the chloride ion. The reducing power required for reductive dechlorination was obtained from the hydrogen produced in the acetogenic oxidation of benzoate. One-third of the benzoate-derived hydrogen was recycled via the reductive dechlorination of 3-chlorobenzoate, indicating that the consortium operated as a food web rather than a food chain.  相似文献   

15.
Swine manure contains diverse groups of aerobic and anaerobic bacteria. An anaerobic bacterial consortium containing sulfate-reducing bacteria (SRB) and acetate-utilizing methanogenic bacteria was isolated from swine manure. This consortium used phenol as its sole source of carbon and converted it to methane and CO2. The sulfate-reducing bacterial members of the consortium are the incomplete oxidizers, unable to carry out the terminal oxidation of organic substrates, leaving acetic acid as the end product. The methanogenic bacteria of the consortium converted the acetic acid to methane. When a methanogen inhibitor was used in the culture medium, phenol was converted to acetic acid by the SRB, but the acetic acid did not undergo further metabolism. On the other hand, when the growth of SRB in the consortium was suppressed with a specific SRB inhibitor, namely, molybdenum tetroxide, the phenol was not degraded. Thus, the metabolic activities of both the sulfate-reducing bacteria and the methanogenic bacteria were essential for complete degradation of phenol. Received: 31 January 1997 / Accepted: 7 March 1997  相似文献   

16.
The microbially mediated reductive dehalogenation of aromatic compounds is potentially important in removal of chlorinated aromatic compounds from the environment. Thermodynamic data are presented which show that the reductive dechlorination of 3-chlorobenzoate to benzoate is exergonic, which led to the hypothesis that reductive elimination of chlorine from 3-chlorobenzoate yields biologically useful energy. In the present paper this hypothesis is tested. Experimental data were obtained with a defined 3-chlorobenzoate degrading methanogenic consortium. These data showed that (i) the molar growth yield of a defined 3-chlorobenzoate degrading consortium increased from 4.9 g protein per mol benzoate metabolized to 6.8 g protein per mol 3-chlorobenzoate when 3-chlorobenzoate replaced benzoate as energy source, and that (ii) the ATP level in starved consortium cells was twice as high when the cells were fed 3-chlorobenzoate than when fed benzoate. These observations show that the electrochemical potential between the redox partners of the H+/H2 (electron-donating) and 3-chlorobenzoate/benzoate (electron-accepting) couples is a potential source of energy and are consistent with the hypothesis that reductive dechlorination of aromatic compounds is coupled to a novel type of microbial chemotrophy.  相似文献   

17.
Summary The anaerobic degradation of propionate to acetate and methane by a defined sulfidogenic syntrophic co-culture consisting of Syntrophobacter wolinii and Desulfovibrio G11, and a new thermophilic, methanogenic consortium T13 was studied. Tracer experiments using (14C) propionate produced evidence for the generally accepted biochemical pathway involving methylmalonyl-CoA as an intermediate in the degradation of propionate. The degradation of (1-14C) propionate led exclusively to the formation of 14CO2 by S. wolinii/D. G11 and to the formation of 14CH4 by the methanogenic consortium T13. The conversion of either (2-14) or (3-14) propionate by S. wolinii/D. G11 resulted in uniform labelled acetate as the endproduct. The methanogenic consortium formed (U-14C) acetate from (2-14) and (3-14) propionate as an intermediary product followed by aceticlastic splitting to yield equivalent amounts of 14CO2 and 14CH4.  相似文献   

18.
Tetrachloroethylene (PCE) is a toxic compound essentially used as a degreasing and dry-cleaning solvent. A methanogenic and sulfate-reducing consortium that dechlorinates and mineralizes high concentrations of PCE was derived from anaerobically digested sludge obtained from a waste water treatment plant (Bourg-en-Bresse, France). A methanogenic bacterium, strain FR, was isolated from this acclimated consortium. On the basis of morphological and physiological characteristics, strain FR was classified in the genus of Methanosarcina. Phylogeny analysis with the 16S rRNA gene sequence revealed that strain FR is highly related to Methanosarcina mazei and Methanosarcina frisia (99.6 and 99.5% identity, respectively). High concentrations (50-87 microM) of PCE were completely dechlorinated by strain FR cultures at the rate of 76 nM-mg protein(-1).day(-1). PCE dechlorination produced a nonidentified compound. The tracer experiments with [13C]PCE revealed that the product was nonchlorinated. Dechlorination of PCE to trichloroethylene was still active in the presence of boiled cell extract of the strain FR. However, no further dechlorination was observed. This result suggests that a cofactor rather than an enzymatic system is responsible for the first dechlorination of PCE. Dechlorination-active fractions purified from cell extracts on a XAD-4 column revealed the presence of F(420), F(430), and cobamides cofactors. This is the first report of the isolation of a methanogenic bacterium with the ability to dechlorinate high concentrations of PCE to a nonchlorinated product.  相似文献   

19.
Long Y  Lao HM  Hu LF  Shen DS 《Bioresource technology》2008,99(8):2787-2794
The effects of in situ nitrogen removal on degradation of municipal solid waste (MSW) in bioreactor landfill system were investigated. The in situ nitrogen removal bioreactor landfill (NBL) consisted of fresh-refuse filled, methanogenic and nitrifying reactors was operated. The two-phase bioreactor landfill (BL) comprised of fresh-refuse filled and methanogenic reactors was used as control. The methanogenic and nitrifying reactors were all loaded with aged refuse whose placement time was 6-7 yr. Furthermore, the nitrifying reactor was in situ aerated. The results showed that the degradation of fresh-refuse was delayed and CH4 production also was reduced in the in situ nitrogen removal bioreactor landfill. It was feasible to perform in situ ammonia nitrification in aged refuse. Moreover, the efficiency of oxygen utility was high during the in situ nitrification because of the porous characteristic of aged refuse. Supplementing only 8.5mg O2 mg(-1)Nd(-1) to aged refuse could make ammonia removed completely. However, aeration did not accelerate the further stabilization of aged refuse.  相似文献   

20.
We found that the levels of bioactive products from wheat can be increased dramatically by manipulating germination conditions and taking advantage of the activity of endogenous enzymes. The yield of phytic acid (IP(6)) from wheat germinated in the presence of high, controlled levels of dissolved oxygen (188 +/- 28 mg/100 g wheat) was almost three times greater than that from wheat germinated with no supplemental oxygen (74 +/- 10 mg/100 g wheat). The yield of gamma-aminobutyric acid (GABA) from wheat germinated in the presence of uncontrolled levels of dissolved oxygen was 18 +/- 3 times greater than that from nonsupplemented wheat (1 mg/100 g wheat). The concentration of GABA was much greater in wheat germ than in whole wheat, and the yield of GABA from wheat germ processed with supplemental water (163 +/- 7 mg/100 g wheat germ) was notably greater than that from wheat germ processed with no supplemental water (100 +/- 2 mg/100 g wheat germ). In contrast, IP(6) was more concentrated in wheat bran, and the yield of IP(6) from wheat bran processed with supplemental water (3100 +/- 12 mg/100 g wheat bran) was notably higher than that from wheat bran processed with no supplemental water (2420 +/- 13 mg/100 g wheat bran). We conclude that the large amount of GABA extracted from wheat germ is likely due to high glutamate decarboxylase activity and low aminotransferase activity and that the large amount of IP(6) extracted from wheat bran is likely due to high levels of tyrosinase activity. Our findings indicate that bioactive molecules such as GABA and IP(6) can be successfully mass-produced by taking advantage of endogenous enzymatic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号