首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of [Cu(NCCH3)4]BF4 with 2,6-(dicyclohexylphosphinomethyl)pyridine and 2-(diisopropylphosphinomethyl)-1-methylimidazole afford Cu(I) species that convert slowly to the Cu(II) complexes [CuCl{Cy2P(O)CH2pyCH2P(O)Cy2}(H2O)]BF4 and [Cu{MelmCH2P(O)Pri2}2](BF4)2, respectively, when their solutions are exposed to air. The structures of the Cu(II) complexes have been established by X-ray crystallography.  相似文献   

2.
Reaction of 2-(diphenylphosphinomethyl)pyridine (PMP-21) with the silver(I) salts of tetrafluoroborate , triflate (Otf), and trifluoroacetate (tfa) affords dinuclear complexes (2-4), where the ligand bridges the two silver centers, and the anions interact with the metal centers to varying degrees. Further reaction of AgBF4 and AgOtf with reaction solutions containing PMP-21 and either the bidentate 5,5′-dimethyl-2,2′-bipyridine or 4,4′-bipyridine ligands produce dimeric and bridged structural motifs. The ability of 5,5′-dimethyl-2,2′-bipyridine to chelate and the 4,4′-bipyridine to serve as a connector between metal centers, allows the construction of coordinative structures where the effect of ligand ratio and either interacting or non interacting anions influence the silver coordination environment, allowing it to take on several geometries including trigonal bipyramidal, 5, both T-shaped and tetrahedral in a single structure, 6 and 8, trigonal pyramidal, 7, and trigonal planar, 9. Structures 2, 3, and 4 display comparable Ag-Ag contacts ranging from 2.7979(10) to 3.0538(4) Å, with a corresponding weakening of the metallophilic interaction when a bipyridine ligand is coordinated. Low-temperature luminescence spectra were collected for all compounds and are compared.  相似文献   

3.
The quadruply bonded molybdenum(II)-molybdenum(II) complex, tetrachlorotetrakis(1,3,5-triaza-7-phosphaadamantane) dimolybdenum(II), Mo2Cl4(PTA)4, was synthesized by reaction of 1,3,5-triaza-7-phosphaadamantane (PTA) with K4[Mo2Cl8] in refluxing methanol. The complex was characterized using 1H and 31P NMR, and UV-Vis spectroscopy, X-ray crystallography, and cyclic voltammetry. The Mo-Mo separation in the solid state structure is 2.13 Å, with the PTA and chloride ligands in an eclipsed arrangement with a P-Mo-Mo-Cl twist angle of 1.75(3)°. The 31P NMR spectrum contains a single peak at −62.8 ppm, and the 1H NMR spectrum exhibits two singlets of equal height at 4.60 and 4.33 ppm. The UV-Vis spectrum contains three absorbance features at 615, 363, and 231 nm, with the absorbance at 615 nm due to the δ → δ* transition. The one electron oxidation of Mo2Cl4(PTA)4 is reported at E1/2 = 0.91 V relative to Ag/Ag+ in CH2Cl2. Also discussed is the reactivity of the molybdenum complex with CN, H2O, and HCl.  相似文献   

4.
The tridentate ligand 2,6-bis(pyrazol-3-yl)pyridine (dPzPy) renders coordination compounds with halide, nitrate and tetrafluoroborate salts of copper. The complexes, which have the form [Cu(dPzPy)X2] with X=Br and Cl, [Cu(dPzPy)(NO3)2](H2O), and [Cu(dPzPy)2](BF4)(SiF6)0.5(MeOH)3 have been characterized by elemental analysis and by IR, EPR and ligand field spectroscopy. The single-crystal X-ray structure of [Cu(C11H9N5)Br2] shows the copper(II) ion to be coordinated by three N atoms of 2,6-bis(pyrazol-3-yl)pyridine and two bromides in a geometry exactly in between a trigonal-bipyramid and a square-pyramid. Each molecule lies on a crystallographic C2-symmetry axis. They are coupled to one another by a two-dimensional network through NH to Br hydrogen bonds. The crystal structure of [Cu(C11H9N5)Cl2] is analogous to the bromide. The single-crystal X-ray structure of [Cu(dPzPy)2](BF4)(SiF6)0.5(MeOH)3 shows the copper ion to be in a Jahn-Teller distorted octahedral N6 environment of two mer-oriented tridentate ligands.  相似文献   

5.
Ruthenium complexes with a terpyridine-analogous ligand, 2,6-bis(2-naphthyridyl)pyridine (bnp), have been synthesized and their chemical and electrochemical properties investigated. The structures of [Ru(bnp)(tpy)](PF6)2 (1) and [Ru(bnp)2](PF6)2 (2) were determined by the X-ray structure analysis. The bnp localized redox potentials of 1 and 2 showed significant positive shift by 260-290 mV relative to the analogous Ru-terpyridine complexes.  相似文献   

6.
Three new coordination complexes [Mn(L)(H2O)2](1,4-BDC)·2H2O (1), [Mn(L)0.5(1,4-BDC)]CH3OH·H2O (2) and [Mn(L)(H2O)2](1,2-HBDC)2·2H2O (3) were synthesized by solvothermal reactions of 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene (L) and 1,4-benzenedicarboxylic acid (1,4-H2BDC) or 1,2-benzenedicarboxylic acid (1,2-H2BDC) with Mn(II) salt, and characterized by single crystal X-ray diffraction, IR, thermogravimetric and elemental analyses. In complexes 1 and 3, each ligand L links four Mn(II) atoms to form two-dimensional (2D) cationic network with non-coordinated 1,4-BDC2− and 1,2-HBDC anions lying in the voids between the two adjacent layers, respectively. The 2D layers are further connected together by hydrogen bonds to give three-dimensional (3D) supramolecular structures. However, the 1,4-BDC2− in 2 acts not only as counteranion, but also as bridging ligand leading to the formation of 2-fold interpenetrated 3D framework with pcu (primitive cubic unit) topology. The Mn(II) atoms bridged by carboxylate groups in 2 show antiferromagnetic interactions.  相似文献   

7.
The reaction of Mo2(μ-O2CCH3)4 with 2-pyridyl(diisopropylphosphino)methane (NP) affords the dimolybdenum(V) complex Mo2(μ-O)2O2Cl22-NP)2 (1). Complexes of the related 2-pyridylbis(diisopropylphosphino)methane ligand (NP2) have been isolated, namely, a mixed bromo/chloro complex of composition PdBr1.09Cl0.912-NP2) (2) and the dicopper(I) complex [Cu2(μ-η3-NP2)2](BF4)2 (3). The structures of 1, 2 and 3 have been established by X-ray crystallography.  相似文献   

8.
The reactions between the copper (II) salts [CuXL]PF6 (L: 2,6-[1-(2,6-diisopropylphenylimino)ethyl]pyridine) (X = Cl 1, X = Br 2) and LiTCNQ, in a DMF/water mixture, or Et3NH(TCNQ)2, in acetone, produced the new complexes [CuXL(TCNQ)] (X = Cl 3, X = Br 4). For both compounds, crystallographic studies have clearly evidenced the existence of dimeric complexes [{CuClL}(TCNQ)]2 owing to π-π overlap between two adjacent TCNQ radical anions. Compound 1 reacted with Et4N(C10N7) to afford the mononuclear derivative [CuClL(C10N7)] (5), while its reaction with K2C10N6 produced the dinuclear complex [(CuClL)2(C10N6)] (6). The crystal structures of complexes 5 and 6 have been determined by X-ray crystallography. Magnetic studies have revealed that compound 6 displays weak antiferromagnetic interactions between the two metal centres, conversely compounds 3 and 5 exhibit purely paramagnetic behaviours.  相似文献   

9.
Two new mononuclear spin-crossover iron(II) complexes, [FeL2(NCS)2] · H2O (1) and [FeL2(NCSe)2] (2), have been synthesized from the reaction of the versatile ligand 4,5-bis(2-cyanoethylthio)-2-bis(2-pyridyl)methylene-1,3-dithiole (L), Fe(ClO4)2, and KNCX (X = S/Se). Reactions of L with CuII or CoII salts afford one mononuclear complex [CuL(hfac)2] · CH3OH (hfac = hexafluoroacetylacetonate) (3), one dinuclear complex [(CuLCl)2(μ-Cl)2] · CH3OH (4), and two 1D chain species, [CuL2]n(BF4)2n (5) and [CoL2]n(ClO4)2n · 2nCH2Cl2 (6). The crystal structures of complexes 1 and 3-6 have been determined by X-ray crystallography. Short intermolecular S?S contacts between neighboring 1D arrays are observed in 5 and 6, which lead to the formation of the 2D structure. The magnetic properties are studied, and antiferromagnetic couplings between the CuII centers across the chloride bridges have been found in 4 (J = 2.04 cm-1). Spin-crossover behaviors between high and low spin states are observed at T1/2 = 80 K for 1 and T1/2 = 300 K for 2, respectively.  相似文献   

10.
Reaction of bis(2-hydroxybenzyl)-1,3-diaminopropane (H2bhbd) with copper(II) perchlorate and copper(II) chloride in methanol, respectively, leads to linear trinuclear clusters, namely [Cu3(bhbd)2(CH3OH)2(ClO4)2] (1) and [Cu3(bhbd)2Cl2](CH3OH)4 (2). These coordination compounds were characterized by X-ray crystallography, UV-Vis, IR and EPR spectroscopy, and magnetic susceptibility measurements. Both complexes have a linear trinuclear array of copper ions bridged by means of phenolato O atoms and separated by a distance of 2.985(4) Å (1) and 2.937(4) Å (2). Strong antiferromagnetic interactions between these adjacent CuII ions govern the magnetochemistry of 1 (J = −303(1) cm−1) and 2 (J = −482(3) cm−1) resulting in S = 1/2 ground states fully populated below 150 K. A correlation between the interaction parameter J and the angles within the trinuclear clusters is proposed.  相似文献   

11.
Reactions between Hdpa (2,2′-dipyridylamine) and either RuCl3 · xH2O and Ru2(OAc)4Cl produce mono-, di-, and tri-ruthenium complexes under various conditions. The ligand Hdpa and RuCl3 · xH2O react in boiling DMF to form the ionic species [Ru(Hdpa)2Cl2]Cl (1). Reaction of Ru2(OAc)4Cl with molten Hdpa leads to scission of the Ru-Ru bond and formation of the vertex-sharing bioctahedral complex Ru2(dpa)3(OAc)0.64Cl1.36 (2). A mixture of both of these species results from the reaction of Ru2(OAc)4Cl with Hdpa and LiCl in refluxing o-dichlorobenzene/EtOH mixtures. This mixture of compounds reacts further with KOBut and n-butanol in refluxing naphthalene to give low yields of the extended metal atom chain (EMAC) complex Ru3(dpa)4Cl2 (I).  相似文献   

12.
By deprotonation reaction of the rhenium(I) tricarbonyl complex, ClRe(CO)3(H2bpydt) (2, H2dpydt = 2-(di(2-pyridyl)methylene)-1,3-dithiole-4,5-dicarboxylic acid, our previous work in J. Organomet. Chem. 694 (2009) 763), complex 3, [Bu4N][ClRe(CO)3(Hbpydt)], is synthesized and characterized. Using 3 as the starting material, two trinuclear heterometallic complexes M(MeOH)4[ClRe(CO)3(Hbpydt)]2·2MeOH (M = Cu, 4; M = Mn, 5) are obtained. The crystal structures of 2-5 have been determined by X-ray crystallography. Complexes 4 and 5 are isostructural. Their absorption and emission properties are studied. The magnetic properties of complexes 4 and 5 have also been investigated.  相似文献   

13.
Two new complexes, [Cu(mamba)2] and [Mn(mamba)2] (mamba, N-(2-methylpyridine)-2-aminomethyl benzoate) were synthesized and characterized by X-ray crystallography. Whereas the [Cu(mamba)2] complex crystallizes in a monoclinic P21/c space group, the [Mn(mamba)2] complex crystallizes in a triclinic space group. The nature of the metal ion greatly influences the lattices and the molecular structures of the compounds. In the crystal lattice of the copper complex are four cocrystallized methanol solvent, which are all involved in building six strong H-bonds with the complex. However, the lattice for the manganese complex contain only one cocrystallized methanol, along with one NaClO4, that is also involved in making one H-bond with the [Mn(mamba)2] unit. Nevertheless, the sodium ion is coordinated to the ClO4, the methanol and two [Mn(mamba)2] to form a stable extended chain metal complex. Electrochemical studies indicated that both complexes undergo quasi reversible one electron reduction in acetonitrile.  相似文献   

14.
The complexes [CuIN2(SMe)2](ClO4) (1) and [CuIIN2(SMe)2(CF3SO3)2] (2) in both CuI and CuII redox states from N2(SMe)2 ligand (N,N-(2-pyridylmethyl)bis(2-methyl-thiobenzyl)amine) have been synthesized and structurally characterized by X-ray crystallography. Electrochemical studies show that the two complexes interconvert during the one electron transfer. Comparison with another complex with tBu instead Me groups on the thioether ligand shows detectable changes in X-ray structures and in redox properties. Theoretical calculations on the different steps of the redox process have been performed. Values underline steric constraints induced by the substitutions on thioether alkyl groups.  相似文献   

15.
The coordination chemistry of the 2-His-1-carboxylate facial triad mimics 3,3-bis(1-methylimidazol-2-yl)propionate (MIm(2)Pr) and 3,3-bis(1-ethyl-4-isopropylimidazol-2-yl) propionate (iPrEtIm(2)Pr) towards ZnCl(2) was studied both in solution and in the solid state. Different coordination modes were found depending both on the stoichiometry and on the ligand that was employed. In the 2:1 ligand-to-metal complex [Zn(MIm(2)Pr)(2)], the ligand coordinates in a tridentate, tripodal N,N,O fashion similar to the 2-His-1-carboxylate facial triad. However, the 1:1 ligand-to-metal complexes [Zn(MIm(2)Pr)Cl(H(2)O)] and [Zn(iPrEtIm(2)Pr)Cl] were crystallographically characterized and found to be polymeric in nature. A new, bridging coordination mode of the ligands was observed in both structures comprising N,N-bidentate coordination of the ligand to one zinc atom and O-monodentate coordination to a zinc second atom. A rather unique transformation of pyruvate into oxalate was found with [Zn(MIm(2)Pr)Cl], which resulted in the isolation of the new, oxalato bridged zinc coordination polymer [Zn(2)(MIm(2)Pr)(2)(ox)].6H(2)O, the structure of which was established by X-ray crystal structure determination.  相似文献   

16.
A potentially heptadentate ligand H3L (N,N-bis(2-hydroxybenzyl)-1,3-bis[(2-aminoethyl)amino]-2-propanol) and its two Ni(II) complexes, [Ni(H2L)H2O](H2O)3ClO4 (1) and [Ni(H2L)(H2O)](H2O)Cl (2) were prepared and characterized. X-ray structural analyses indicate that complex 1 has a distorted octahedral coordination geometry, with four amine N atoms of H2L defining the equatorial plane, one aqua O atom and one phenoxo O atom of the ligand occupying two axial positions, respectively. The Ni(II) center of 2 has coordination geometry similar to that of 1. IR and electronic spectra of 1 and 2 are in agreement with their crystal structural features. Approximately along the ab plane, 2D supramolecular structure of 1 is assembled through multiple hydrogen bonds between hydroxy groups of the ligands, coordinated and crystal lattice H2O and π-π stacking interactions between adjacent phenyl rings of the ligands, while for that of 2, probably along the a axis, 1D chain structure is also formed by multiple hydrogen bonds, but lack of π-π stacking interactions.  相似文献   

17.
The reduction of the Re2 5+ core in 1,2,7-Re2Cl5(PR3)3 molecules, followed by addition of 1 equiv. of a different phosphine ligand, PR3 ′, allows the preparation of the mixed monodentate phosphine compounds of the Re2 4+ type, namely 1,2,7,8-Re2Cl4(PR3)3(PR3 ′). The stereochemistry of the starting materials dictates the stereochemistry of the final products. The one-electron reduction of the 1,2,7-isomer of Re2Cl5(PMe2Ph)3 with KC8 to the corresponding anion, [1,2,7-Re2Cl5(PMe2Ph)3] (1), followed by non-redox substitution of one chloride ion by one diethylphosphine, PEt2H, afforded the first mixed monodentate phosphine compound of the dirhenium(II) core, Re2Cl4(PMe2Ph)3(PEt2H) (2), in good yield. Crystal structure determination as well as other physical methods and elemental analysis unambiguously confirmed the formation of 2. The related system 1,2,7-Re2Cl5(PMe3)3---Co(C5H5)2---PEt2H leads to several products, one of which is 1,2,7,8-Re2Cl4(PMe3)3(PEt2H) (3).  相似文献   

18.
The metal complexation properties of a functionalized N3O2 donor ligand H2L2, where H2L2 stands for 2,6-diacetyl-4-carboxymethyl-pyridine bis(benzoylhydrazone), are investigated by structural and spectroscopic (IR, ESI-MS and EPR) characterization of its Mn(II) and Co(II) complexes. The ligand H2L2 is observed to react essentially in the same fashion as its unmodified parent H2L1 producing mixed-ligand [M(H2L2)(Cl2)] complexes (M = MnII (1), CoII (3)) upon treatment with MCl2. Complexes [M(HL2)(H2O)(EtOH)]BPh4 (M = Mn 2, M = Co 4), incorporating the supporting ligand in the partially deprotonated form (HL2), are formed by salt elimination of the [M(H2L2)(Cl2)] compounds with NaBPh4. Compounds 2 and 4 are isostructural featuring distorted pentagonal-bipyramidal coordinated MnII and CoII ions, with the H2O and EtOH ligands bound in axial positions. Intermolecular hydrogen bonding interactions of the type M-OH2?O-M involving the H2O ligands and the carbonyl functions of the supporting ligand assembles the complexes into dimers. Temperature-dependent magnetic susceptibility measurements (2-300 K) show a substantially paramagnetic Curie behavior for the Mn2+ compound (2) influenced by zero-field splitting and significant orbital angular momentum contribution for 4 (high-spin CoII). The exchange coupling across the MnII-OH2?O-MnII bridges in 2 was found to be less than 0.1 cm−1, suggesting that no significant intradimer exchange coupling occurs via this path.  相似文献   

19.
The interaction of diethyl 2-pyridylmethylphosphonate (2-pmpe) ligand with CuX2 salts unexpectedly leads to the formation of compounds of the formula Cu(2-pca)2 [X=Cl (1), CH3COO (3)], and Cu(2-pca)Cl [X=Cl (2)] (2-pca=pyridine-2-carboxylate ion). The diethyl 2-quinolylmethylphosphonate ligand (2-qmpe) reacts with CuX2 salts to similarly yield compounds of stoichiometry Cu(2-qca)2 · H2O (X=ClO4 − (4)], and for X=Cl Cu(2-qca)2 · H2O (5) and Cu(2-qca)Cl (6), (2-qca=quinoline-2-carboxylate ion). These compounds are products of a novel oxidative P-dealkylation reaction, which takes place on 2-pmpe and 2-qmpe ligands under the used conditions. The compounds were characterized by infrared, ligand field, EPR spectroscopy and magnetic studies. Cu(2-pca)2 exists in two crystalline forms, a blue form (1) and a violet form (3). For 3 the single-crystal structure was determined. The copper atom is four-coordinated in a square-planar geometry. The stack between related (and hence parallel) pca moieties involves interatomic distances of 3.27 Å. Cu(2-qca)2 · H2O also exists in two forms, a green (4) and a blue-green (5). Both these complexes are five coordinated, involve the same CuN2O3 chromophore and are examples of the distortion isomers. Variable-temperature magnetic susceptibility measurements (1.9-300 K) have shown that the antiferromagnetic coupling observed is much stronger in 6 than in 1, 3, 4 and 5. For 2 a ferromagnetic exchange occurs.  相似文献   

20.
A new pyrazole-based ligand, namely 1,3-bis(3,5-dimethylpyrazol-1-yl)-2-butanoic acid (Hbdmpb) was synthesised together with its copper complex Na[Cu(bdmpb)2(OOCCH3)H2O] · 4H2O. Both the free ligand and its Cu compound were fully characterised and their crystal structures were determined by X-ray analysis. The free-ligand molecular structure is uneventful. The Cu compound is highly unusual, as the pyrazole nitrogen atoms do not bind to the Cu ion. The copper(II) ion is coordinated by four nearly coplanar oxygen atoms from two dehydronated ligands bdmpb (CuO(1a) 1.942(4), CuO(1b) 1.933(4) Å), a monodentate acetate group (CuO(1) 1.927(3) Å) and a water molecule (CuO(1w) 1.937(4) Å). The nitrogen atoms of the pyrazole rings do not coordinate to the metal center, but instead are involved in strong intramolecular hydrogen bonds. The coordinated water molecule is strongly H-bonded to two pyrazole N atoms from two bdmpb ligands (N(12a) ? HO(1w) 2.762(7), N(12b) ? HO(1w) 2.774(7) Å). The other two pyrazole N atoms with a lone pair are hydrogen-bonded to water molecules in the lattice (N(22a) ? HO(2w) 2.763(7), N(22b) ? HO(6w) 2.892(7) Å). The sodium ion is six-coordinated by the oxygen atom O(2) of the acetato ligand and by five water molecules. The EPR spectrum recorded in the solid state shows a characteristic signal for an axial anisotropic S = 1/2 species. The spectrum recorded in methanol glass confirms the absence of the coordination of pyrazole nitrogen atoms to the copper centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号