首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A 1,4-disubstituted dibenzofuran derivative of 1,4,7,10-tetraazacyclododecane (cyclen), L1, has been prepared by the direct reaction of cyclen and chloroacetyldibenzofuran and the mono-substituted derivative, L2, by reaction of chloroacetyldibenzofuran and 1,4,7-tris(t-butoxycarbonyl)-1,4,7,10-tetraazacyclododecane followed by deprotection with trifluoroacetic acid. The ligands were characterized by 1H and 13C NMR spectroscopy, IR spectroscopy and mass spectrometry. The reaction of the 1,4-disubstituted dibenzofuran cyclen, L1, with Cu(ClO4)2·6H2O in methanol yielded crystals of [CuL1](ClO4)2·MeOH·1/2H2O that were suitable for single crystal structural analysis. The X-ray structure confirmed that the 1,4-disubstituted dibenzofuran cyclen had been formed. The copper(II) coordination sphere in the complex cation, [CuL1]2+, is occupied by four nitrogen atoms from the macrocycle and an amide oxygen donor from one dibenzofuran pendant group. As is typical for copper(II)-cyclen complexes, the Cu(II) centre sits above the plane of the macrocycle nitrogen towards the oxygen donor, in this case by 0.5 Å. Fluorescence emission studies indicate that coordination of the macrocycle to either copper(II) or zinc(II) results in a decrease in emission with respect to the emission of the pure ligand.  相似文献   

2.
We describe an improved gel-based method with an additive Zn2+-cyclen complex (cyclen, 1,4,7,10-tetraazacyclododecane), Zn2+-cyclen–PAGE, for mutation detection in DNA fragments by PCR that contain more than 65% Ade/Thy bases and fewer than 100 base pairs (bp). Existing techniques have a problem in analyzing such short Ade/Thy-rich fragments because the duplexes are disrupted and are not detectable due to binding of Zn2+-cyclen to Thy bases. In this strategy using a PCR primer with a Gua/Cyt-lined sequence attached at its 5′-end, we successfully detected a mutation in an 86-bp Ade/Thy-rich region of the BRCA1 gene from formalin-fixed paraffin-embedded breast cancer-tissue sections.  相似文献   

3.
Three new fluorescent ligands derived from 2-(9-anthrylmethylamino)ethyl-appended cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) intended for future use as metal ion activated molecular receptors have been synthesised and characterised. The new ligands, 1,4,7-tris[(2″S)-acetamido-2″-(methyl-3″-phenylpropionate)]-10-(2-N-(9-anthrylmethylamino)ethyl-1,4,7,10-tetraazacyclododecane, 1,4,7-tris[(2″S)-acetamido-2″-(methyl-3″-phenylpropionate)]-10-(2-N-(9-anthrylmethylamino)ethyl-N-[(2″S)-acetamido-2″-(methyl-3″-phenylpropionate])-1,4,7,10-tetraazacyclododecane and 1,4,7-tris[2-hydroxyethyl]-10-(2-N-(9-anthrylmethylamino)ethyl)-N-(2-hydroxyethyl))-1,4,7,10-tetraazacyclododecane, provide the opportunity to investigate the consequences of alkylating the 2-(9-anthrylmethylamino)ethyl fluorophore at the anthrylamine. It was discovered that by doing this the basicity of this amine is lowered and in consequence the pH range over which the PeT induced fluorescence quenching extends is increased by about 1 pH unit. Formation constants were determined in 20% aqueous methanol for the first two ligands with Cd(II) and Cu(II). This demonstrated that alkylation of the anthrylamine significantly increases the stability of the metal complexes.  相似文献   

4.
The stability constants of magnesium and lithium complexes of 1,4,7,10-tetraazacyclododecane (cyclen) have been determined in 0.5 M KNO 3 at 25 °C by means of potentiometric titration, as KMgL = 1.77 × 10 2 and KLi L < 10 −2, respectively. Ab initio calculations on the protonated species of the cyclen ligand have been performed in order to obtain a better understanding of experimental protonation constants, and to compare them to previous calculations on the investigated metal complexes.  相似文献   

5.
We report here the synthesis, characterization and kinetic studies of cis-[RuCl2(cyclen)]+ in aqueous solution, where cyclen is the macrocyclic ligand 1,4,7,10-tetraazacyclododecane. The complex releases one Cl producing cis-[RuCl(OH)(cyclen)]+ in aqueous solution at pH 4.60. The product of this reaction was characterized by Ultraviolet-Visible (UV-Vis) spectrum in comparison to the synthesized cis-[RuCl(OH)(cyclen)](BF4)·2H2O. The electrochemical data showed that Epc of the Ru(III/II) peak increases as the macrocycle ring size decreases and also when the trans conformation is changed to cis. The chloride affinity of Ru(III) depends on the macrocycle ring size since cis-[RuCl2(cyclam)]+ (cyclam=1,4,8,11-tetraazacyclotetradecane) does not release chloride for at least 12 h. The overall effect between cyclam and cyclen reflects the fact that the electron involved in the reduction enters a nonbonding π-d orbital and its energy is affected by the macrocyclic ligand.  相似文献   

6.
The analysis of single nucleotide polymorphisms (SNPs) is increasingly utilized in the study of various genetic determinants. Here, we introduce a simple, rapid, low-cost and accurate procedure for the detection of SNPs by polyacrylamide gel electrophoresis (PAGE) with a novel additive, the Zn2+– cyclen complex (cyclen = 1,4,7,10-tetraazacyclododecane). The method is based on the difference in mobility of mutant DNA (in the same length) in PAGE, which is due to Zn2+–cyclen binding to thymine bases accompanying a total charge decrease and a local conformation change of target DNA. Various nucleotide substitutions (e.g. AT to GC) in DNA fragments (up to 150 bp) can be visualized with ethidium bromide staining. Furthermore, heteroduplex and homoduplex DNAs are clearly separated as different bands in the gel. We demonstrate the analysis of single- and multiple-nucleotide substitutions in a voltage-dependent sodium channel gene by using this novel procedure (Zn2+–cyclen–PAGE).  相似文献   

7.
We previously reported a method for the detection of single-nucleotide polymorphisms by polyacrylamide gel electrophoresis (PAGE) with an additive Zn2+–cyclen complex (cyclen = 1,4,7,10-tetraazacyclododecane), called Zn2+–cyclen–PAGE. The method is based on the difference in mobility of mutant DNA (in the same length) in PAGE that is due to Zn2+–cyclen binding to thymine bases accompanying a total charge decrease and a local conformation change of target DNA. In combination with a heteroduplexing technique, the method is more accurate, as shown by clear gel-shifting bands. However, the question remains as to whether the Gua/Cyt-to-Cyt/Gua mutation, which is far apart from the Thy/Ade base (i.e., in a Gua/Cyt-lined sequence), can be detected by this Thy-dependent method. In this study, we determined the potency of Zn2+–cyclen–PAGE for the detection of the Gua/Cyt-to-Cyt/Gua single substitutions in some artificial Gua/Cyt-lined sequences derived from a human cardiac sodium channel gene, SCN5A. All Gua/Cyt-to-Cyt/Gua substitutions in the 28-set samples tested, which are 1 to 10 bases away from the nearest Thy/Ade, were successfully detected by designing DNA fragments of the appropriate length.  相似文献   

8.
Pseudotripeptide ligands with 4 different N-functionalized glycine residues were qualitatively, semiquantitatively and quantitatively tested for their complexation of the bivalent transition metal ions Zn2+, Cu2+, Co2+, Ni2+ and Mn2+. The functional side chains have different length and different groups available for complexation. MALDI-MS and ESI-MS were used for more qualitative or semiquantitative estimation of the complex formation tendencies. The found ranking differs by these two methods only for Zn2+ and Ni2+. For one of the pseudotripeptide ligands, the ligand L1, complex formation with certain transition metal was estimated quantitatively by potentiometric titration. The Zn-complex of that ligand polarizes bound water strongly, resulting in a low pKa-value. Complexes of pseudotripeptide ligand L1 with certain metal ions were tested for their hydrolytic activity. The pseudo first order rate constants of the hydrolysis of the substrates 4-nitrophenyl acetate and bis(4-nitrophenyl)phosphate were compared to complexes with the same metal ions formed with a very well studied ligand from the literature, the 1,4,7,10-tetraaza cyclododecane (cyclen). The hydrolysis of the phosphate ester occurs very slowly compared to the acetate ester. No correlation exists between the estimated pKa values of complexes formed from ligand L1 with different metal ions and the phosphate ester hydrolysis. The Ni ions give totally different hydrolytic activities for pseudotripeptide ligand L1 and cyclen. With one exception, the Ni-cyclen complex, all other complexes have only a low or moderate catalytic activity.  相似文献   

9.
A peptide nucleic acid (PNA) oligomer and a series of PNA conjugates featuring covalently attached pendant 1,4,7,10-tetraazacyclododecane (cyclen) or bis((pyridin-2-yl)methyl)amine (DPA) moieties have been synthesized that are complementary to regions of the HIV-1 TAR messenger RNA stem-loop. Thermal denaturation studies, in conjunction win with native gel shift assays, suggest that the PNAs “invade” TAR to produce a mixture of two 1:1 PNA–TAR adducts, tentatively assigned as an “open-duplex” structure, in which the TAR stem-loop dissociates and the PNA hybridizes with its RNA complement via Watson–Crick base-pairing, and a triplex-type structure, in which the initially displaced RNA segment is bound to the PNA:RNA duplex through Hoogsteen base-pairing. Thermal denaturation experiments with the TAR sequence and single-stranded RNA and DNA oligonucleotides, both in the presence and in the absence of Zn2+ ions, show that the introduction of cyclen or DPA ligand arms into the PNA oligomer leads to a small but reproducible increase in the T m values. This is attributed to hydrogen-bonding and/or electrostatic interactions between protonated forms of cyclen/DPA and the cognate RNA or DNA oligonucleotide targets. Contrary to expectations, the addition of Zn2+ ions did not further enhance duplex formation through binding of Zn(II)–cyclen or Zn(II)–DPA moieties to the complementary RNA or DNA. Native gel shift assays further confirmed the stability increase of the metal-free cyclen- and DPA-modified PNA hybrids as compared with a control PNA sequence. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Summary Pseudotripeptide ligands with 4 different N-functionalized glycine residues were qualitatively, semiquantitatively and quantitatively tested for their complexation of the bivalent transition metal ions Zn2+, Cu2+, Co2+, Ni2+ and Mn2+. The functional side chains have different length and different groups available for complexation. MALDI-MS and ESI-MS were used for more qualitative or semiquantitative estimation of the complex formation tendencies. The found ranking differs by these two methods only for Zn2+ and Ni2+. For one of the pseudotripeptide ligands, the ligand L1, complex formation with certain transition metal was estimated quantitatively by potentiometric titration. The Zn-complex of that ligand polarizes bound water strongly, resulting in a low pK a -value. Complexes of pseudotripeptide ligand L1 with certain metal ions were tested for their hydrolytic activity. The pseudo first order rate constants of the hydrolysis of the substrates 4-nitrophenyl acetate and bis(4-nitrophenyl)phosphate were compared to complexes with the same metal ions formed with a very well studied ligand from the literature, the 1,4,7,10-tetraaza cyclododecane (cyclen). The hydrolysis of the phosphate ester occurs very slowly compared to the acetate ester. No correlation exists between the estimated pK a values of complexes formed from ligand L1 with different metal ions and the phosphate ester hydrolysis. The Ni ions give totally different hydrolytic activities for pseudotripeptide ligand L1 and cyclen. With one exception, the Ni-cyclen complex, all other complexes have only a low or moderate catalytic activity. Dedicated to Professor Dr. Ernst-Gottfried Jaeger on occasion of his 65th birthday.  相似文献   

11.
Colicin endonucleases (DNases) are bound and inactivated by immunity (Im) proteins. Im proteins are broadly cross-reactive yet specific inhibitors binding cognate and non-cognate DNases with Kd values that vary between 10− 4 and 10− 14 M, characteristics that are explained by a ‘dual-recognition’ mechanism. In this work, we addressed for the first time the energetics of Im protein recognition by colicin DNases through a combination of E9 DNase alanine scanning and double-mutant cycles (DMCs) coupled with kinetic and calorimetric analyses of cognate Im9 and non-cognate Im2 binding, as well as computational analysis of alanine scanning and DMC data. We show that differential ΔΔGs observed for four E9 DNase residues cumulatively distinguish cognate Im9 association from non-cognate Im2 association. E9 DNase Phe86 is the primary specificity hotspot residue in the centre of the interface, which is coordinated by conserved and variable hotspot residues of the cognate Im protein. Experimental DMC analysis reveals that only modest coupling energies to Im9 residues are observed, in agreement with calculated DMCs using the program ROSETTA and consistent with the largely hydrophobic nature of E9 DNase-Im9 specificity contacts. Computed values for the 12 E9 DNase alanine mutants showed reasonable agreement with experimental ΔΔG data, particularly for interactions not mediated by interfacial water molecules. ΔΔG predictions for residues that contact buried water molecules calculated using solvated rotamer models met with mixed success; however, we were able to predict with a high degree of accuracy the location and energetic contribution of one such contact. Our study highlights how colicin DNases are able to utilise both conserved and variable amino acids to distinguish cognate from non-cognate Im proteins, with the energetic contributions of the conserved residues modulated by neighbouring specificity sites.  相似文献   

12.
13.
Background: Colicin E7 (ColE7) is one of the bacterial toxins classified as a DNase-type E-group colicin. The cytotoxic activity of a colicin in a colicin-producing cell can be counteracted by binding of the colicin to a highly specific immunity protein. This biological event is a good model system for the investigation of protein recognition.Results: The crystal structure of a one-to-one complex between the DNase domain of colicin E7 and its cognate immunity protein Im7 has been determined at 2.3 Å resolution. Im7 in the complex is a varied four-helix bundle that is identical to the structure previously determined for uncomplexed Im7. The structure of the DNase domain of ColE7 displays a novel α/β fold and contains a Zn2+ ion bound to three histidine residues and one water molecule in a distorted tetrahedron geometry. Im7 has a V-shaped structure, extending two arms to clamp the DNase domain of ColE7. One arm (α11–loop12–α21; where 1 represents helices in Im7) is located in the region that displays the greatest sequence variation among members of the immunity proteins in the same subfamily. This arm mainly uses acidic sidechains to interact with the basic sidechains in the DNase domain of ColE7. The other arm (loop 23–α31–loop 34) is more conserved and it interacts not only with the sidechain but also with the mainchain atoms of the DNase domain of ColE7.Conclusions: The protein interfaces between the DNase domain of ColE7 and Im7 are charge-complementary and charge interactions contribute significantly to the tight and specific binding between the two proteins. The more variable arm in Im7 dominates the binding specificity of the immunity protein to its cognate colicin. Biological and structural data suggest that the DNase active site for ColE7 is probably near the metal-binding site.  相似文献   

14.
A fast and direct method for the monitoring of enzymatic DNA hydrolysis was developed using electrospray ionization mass spectrometry. We incorporated the use of a robotic chip-based electrospray ionization source for increased reproducibility and throughput. The mass spectrometry method allows the detection of DNA fragments and intact non-covalent protein–DNA complexes in a single experiment. We used the method to monitor in real-time single-stranded (ss) DNA hydrolysis by colicin E9 DNase and to characterize transient non-covalent E9 DNase–DNA complexes present during the hydrolysis reaction. The mass spectra showed that E9 DNase interacts with ssDNA in the absence of a divalent metal ion, but is strictly dependent on Ni2+ or Co2+ for ssDNA hydrolysis. We demonstrated that the sequence selectivity of E9 DNase is dependent on the ratio protein:ssDNA or the ssDNA concentration and that only 3′-hydroxy and 5′-phosphate termini are produced. It was also shown that the homologous E7 DNase is reactive with Zn2+ as transition metal ion and that this DNase displays a different sequence selectivity. The method described is of general use to analyze the reactivity and specificity of nucleases.  相似文献   

15.
The Zn2+ and Cu2+ complexes of L1 and L2 ligands (L1: 1-(benzimidazol-2-ylmethyl)-1,4,7,10-tetraazacyclododecane, L2: 1,7-bis(benzimidazol-2-ylmethyl)-1,4,7,10-tetraazacyclododecane) were synthesised and characterised by means of NMR, EPR, and UV-Vis spectroscopies, X-ray determination and molecular modelisation (HF-DFT(B3LYP)/LANL2DZ). These studies showed that the 1:1 complexes were formed in which the benzimidazole arm(s) are coordinated to the metal ion. On addition of successive amounts of Zn2+ in CH3CN, the fluorescence emission of L1 increased linearly by a factor of 50 and the one of L2 by a factor of 5 while on addition of successive amounts of Cu2+ in CH3CN, the fluorescence emission of L2 decreased linearly to 80% of its initial value.  相似文献   

16.
Synthesis and characterisation of the new macrocyclic ligand 1,7-dimethyl-4,10-di(methylcarbamoylmethy)-1,4,7,10-tetraazacyclododecane (L) are reported. The ligand, based on cyclen (1,4,7,10-tetraazacyclododecane), has been functionalised by the insertion of two methyl groups and two amidic pendant arms linked to the amine nitrogens. The interaction of L with H+, Na(I), Ca(II), Cu(II), Zn(II), Pb(II), and Gd(III) ions has been studied by potentiometric titrations, microcalorimetric and 1H NMR measurements in 0.1 mol dm−3 Me4NCl aqueous solution at 298.1±0.1 K. The thermodynamic data suggest that the N4 moiety is the binding site for Cu(II) and Zn(II), while in the case of Pb(II) also the pendant arms are coordinated to the metal ion. The crystal structure of [PbL](ClO4)2 (space group P21/a, a=12.883(2) Å, b=12.259(3) Å, c=17.275(5) Å, β=108.65(2)°, V=2585.0(11) Å3, Z=4, R=0.0660, RW 2=0.1467) shows the metal ion hexa-coordinated by the four nitrogen atoms of the cyclic tetra-amine and by the two amidic oxygens of the pendant arms.  相似文献   

17.
The analysis of single nucleotide polymorphisms (SNPs) is increasingly utilized in the study of various genetic determinants. Here, we introduce a simple, rapid, low-cost and accurate procedure for the detection of SNPs by polyacrylamide gel electrophoresis (PAGE) with a novel additive, the Zn2+- cyclen complex (cyclen = 1,4,7,10-tetraazacyclododecane). The method is based on the difference in mobility of mutant DNA (in the same length) in PAGE, which is due to Zn2+-cyclen binding to thymine bases accompanying a total charge decrease and a local conformation change of target DNA. Various nucleotide substitutions (e.g. AT to GC) in DNA fragments (up to 150 bp) can be visualized with ethidium bromide staining. Furthermore, heteroduplex and homoduplex DNAs are clearly separated as different bands in the gel. We demonstrate the analysis of single- and multiple-nucleotide substitutions in a voltage-dependent sodium channel gene by using this novel procedure (Zn2+-cyclen-PAGE).  相似文献   

18.
The activity of bovine DNase, but not that of porcine DNase, is inhibited by antisera against bovine DNase, and vice versa. Inhibition of DNase is found in the immunoglobulin G-containing fractions, as shown by ion exchange chromatography. Inactive DNase, carboxymethylated specifically at the active site His134, competes with active DNase and reverses the antisera inhibition of DNase, suggesting that the epitode responsible for inhibition does not contain the active site His134. Alignment of the sequences of DNase of these two species shows that the greatest variation occurs between residues 153 and 163, within which are three consecutive peptide bonds, Lys-Trp-His-Leu, that are readily cleaved by trypsin, chymotrypsin, or thermolysin. The 8-hr digest of DNase by each of these three proteases has lost the ability to reverse antisera inhibition. The degree of antisera inhibition varies with the metal ion used as the activator for DNase-catalyzed reactions. When Mn2+, Co2+, or Mg2+ plus Ca2+ are used as activators, inhibition is approximately 50%. When pBR322 plasmid is used as substrate, gel electrophoresis shows that the DNase-catalyzed DNA hydrolysis produces a significant amount of double-strand cuts with Mn2+, Co2+, or Mg2+ plus Ca2+ as activators and antisera inhibit DNase action only on double-strand cuts. With only Mg2+ as the activator no double-strand cuts are observed, either in the presence or absence of antisera, and the DNase activity is not significantly inhibited. We conclude that antisera inhibition is due to antibody binding of the DNase polypeptide chain within residues 153 and 163. These residues are not crucial for catalysis, but are required for DNA binding, which results in double-strand cuts.  相似文献   

19.
Magnetic Resonance Imaging (MRI) is a noninvasive radiology technique used to examine the internal organs of human body. It is useful for the diagnosis of structural abnormalities in the body. Contrast agents are used to increase the sensitivity of this technique. 1,4,7,10-Tetraazacyclododecane (cyclen) is a macrocyclic tetraamine. Its derivatives act as useful ligands to produce stable complexes with Gd3+ ion. Such chelates are investigated as MRI contrast agents. Free Gd3+ ion is extremely toxic for in vivo use. Upon complexation with a cyclen-based ligand, it is trapped in the preformed central cavity of the ligand resulting in the formation of a highly stable Gd3+-chelate. Better kinetic and thermodynamic stability of cyclen-based MRI contrast agents decrease their potential toxicity for in vivo use. Consequently, such agents have proved to be safest for clinical applications. Relaxivity is the most important parameter used to measure the effectiveness of a contrast agent. A number of factors influence this parameter. This article elucidates detailed strategies to increase relaxivity of cyclen-based MRI contrast agents. 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) are two key ligands derived from cyclen. They also act as building blocks for the synthesis of novel ligands. A few important methodologies for the synthesis of DOTA and DO3A derivatives are described. Moreover, the coordination geometry of chelates formed by these ligands and their derivatives is discussed as well. Novel ligands can be developed by the appropriate derivatization of DOTA and DO3A. Gd3+-chelates of such ligands prove to be useful MRI contrast agents of enhanced relaxivity, greater stability, better clearance, lesser toxicity and higher water solubility.  相似文献   

20.
This report demonstrates that transition metal ions and selenite affect the arsenite methylation by the recombinant human arsenic (+3 oxidation state) methyltransferase (hAS3MT) in vitro. Co2+, Mn2+, and Zn2+ inhibited the arsenite methylation by hAS3MT in a concentration-dependent manner and the kinetics indicated Co2+ and Mn2+ to be mixed (competitive and non-competitive) inhibitors while Zn2+ to be a competitive inhibitor. However, only a high concentration of Fe2+ could restrain the methylation. UV-visible, CD and fluorescence spectroscopy were used to study the interactions between the metal ions above and hAS3MT. Further studies showed that neither superoxide anion nor hydrogen peroxide was involved in the transition metal ion or selenite inhibition of hAS3MT activity. The inhibition of arsenite methylating activity of hAS3MT by selenite was reversed by 2 mM DTT (dithiothreitol) but neither by cysteine nor by β-mercaptoethanol. Whereas, besides DTT, cysteine can also prevent the inhibition of hAS3MT activity by Co2+, Mn2+, and Zn2+. Free Cys residues were involved in the interactions of transition metal ions or selenite with hAS3MT. It is proposed that the inhibitory effect of the ions (Co2+, Mn2+, and Zn2+) or selenite on hAS3MT activity might be via the interactions of them with free Cys residues in hAS3MT to form inactive protein adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号