首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation, crystal structure and variable temperature-magnetic investigation of three 2-(2′-pyridyl)imidazole-containing chromium(III) complexes of formula PPh4[Cr(pyim)(C2O4)2]·H2O (1), AsPh4[Cr(pyim)(C2O4)2]·H2O (2) and [Cr2(pyim)2(C2O4)2(OH2)2]·2pyim · 6H2O (3) [pyim = 2-(2′-pyridyl)imidazole, , and ] are reported herein. The isomorphous compounds are made up of discrete [Cr(pyim)(C2O4)2] anions, cations [X = P (1) and As (2)] and uncoordinated water molecules. The chromium environment in 1 and 2 is distorted octahedral with Cr-N and Cr-O bond distances varying in the ranges 2.040(3)-2.101(3) and 1.941(3)-1.959(3) Å, respectively. The angle subtended by the chromium(III) ion by the two didentate oxalate ligands cover the range 82.49(12)-82.95(12)°, values which are somewhat greater than those concerning the chelating pyim molecule [77.94(13) (1) and 78.50(13)° (2)]. Complex 3 contains discrete centrosymmetric [Cr2(pyim)2(C2O4)2(OH)2] neutral units where the two chromium(III) ions are joined by a di-μ-hydroxo bridge, the oxalate and pyim groups acting as peripheral didentate ligands. Uncoordinated water and pyim molecules are also present in 3 and they contribute to the stabilization of its structure by extensive hydrogen bonding and π-π type interactions. The values of the intramolecular chromium-chromium separation and angle at the hydroxo bridge in 3 are 2.9908(12) Å and 99.60(16)°, respectively. Magnetic susceptibility measurements of 1-3 in the temperature range 1.9-300 K show the occurrence of weak inter- (1 and 2) and intramolecular (3) antiferromagnetic couplings. The magnetic properties of 3 have been interpreted in terms of a temperature-dependent exchange integral, small changes of the angle at the hydroxo bridge upon cooling being most likely responsible for this peculiar magnetic behavior.  相似文献   

2.
Four novel isostructural lanthanide phosphonate compounds with formula Ln2(O2CCH2PO3)2(H2O)3 · H2O [Ln = La (1), Pr (2), Nd (3), Sm (4)] have been prepared through hydrothermal reactions of phosphonoacetate acid and lanthanide nitrates. All show layered structures made up of {LnO9} polyhedra and {CPO3} tetrahedra with the lattice water molecules locating between the layers. Within the layer, chains of edge-sharing {LnO9} polyhedra are connected via corner-sharing by phosphonate oxygens forming a two-dimensional -Ln-O- linkage. Thermal analyses and XRD measurements reveal that the framework structures can be maintained up to 400 °C.  相似文献   

3.
The nickel arsenatotungstate K10[As2W19(H2O){Ni(H2O)}2O67]·18H2O (1) has been synthesized. Due to its instability in water, attempts to obtain crystals of 1 suitable for X-ray diffraction have failed. The stabilization of the [As2W19(H2O){Ni(H2O)}2O67]10− core has been reached by synthesizing the analogue mixed {CsK} salt. The crystal structure of Cs6K2[Ni(H2O)6][As2W19(H2O){Ni(H2O)}2O67]·17H2O (2) has been resolved. It consists of two [α-AsW9O33]9− sub-units linked via a belt containing a tungsten and two nickel cations. Comparison of infrared and electronic absorption spectroscopic data for 1 and 2 has confirmed the structure proposed for 1. The instability of 1 led us to investigate the behavior of 1 in water. UV-Vis spectroscopy revealed that the formation of this complex is a multi-step reaction. An intermediate, the complex K8[Ni(H2O)6]1.5[As2W19(H2O){K(H2O)}{Ni(H2O)4}O67]·21H2O (3), has been isolated and characterized by elemental analysis, UV-Vis and infrared spectroscopies, and X-ray diffraction. In 3, the two vacant sites of the [As2W19O67]14− anion are occupied by a nickel and a potassium, forming a {WNiK} belt. It follows that the stability of 2 in water is due to the large ionic radius of Cs+, which prevents the inclusion of the alkaline cation into the cavity of the [As2W19O67]14− anion. The complex 3 represents a unique example of a fully characterized intermediate leading to the formation of a sandwich-type polyoxometalate.  相似文献   

4.
The reactions of the Keplerate super cluster [Mo132O372(CH3CO2)30(H2O)72]42− with a Cu(II) source and an organonitrogen donor in methanol/DMF solutions yielded a series of bimetallic organic-inorganic oxide hybrid materials, including the molecular species [Cu(phen)2MoO4] (1) and [{Cu(terpy)}2(MoO4)2] (2) and a series of materials constructed from the tetranuclear building block {Mo4O10(OMe)6}2−: the molecular [{Cu2(phen)2(O2CCH3)2 (MeOH)}Mo4O10(OMe)6] (3), [{Cu(terpy)(O2CCH3)}2Mo4O10(OMe)6] (4) and [{Cu(terpy)Cl}2Mo4O10(OMe)6] (5), the one-dimensional phases [{Cu(bpy)(HOMe)2}Mo4O10(OMe)6] (6), [{Cu(bpy)(DMF)2}Mo4O10(OMe)6] (7), [{Cu(bpa)(DMF)2}Mo4O10(OMe)6] (8), [{Cu(phen)(DMF)2}Mo4O10(OMe)6] (9) and [{CuCl(dpa)}2Mo4O10(OMe)6] (10), and the two-dimensional material [{Cu2(DMF)2(pdpa)}{Mo4O10(OMe)6}2] (11). When methanol is replaced by the tridentate alkoxide tris-methoxypropane (trisp), the {Mo2O4(trisp)2}2− cluster building block is observed for [Cu(phen)Mo2O4(trisp)2] (12), [Cu(bpa)(DMF)Mo2O4(trisp)2] (13) and [{Cu(bpy)(NO3)}2Mo2O4(trisp)2] (14).  相似文献   

5.
A series of malonato complexes of molybdenum(V) was prepared by reacting (PyH)5[MoOCl4(H2O)]3Cl2 or (PyH)n[MoOBr4]n with malonic acid (H2mal) or a half-neutralized acid, hydrogen malonate (Hmal), at ambient conditions: (PyH)3[Mo2O4Cl42-Hmal)] · CH3CN (1), (PyH)3[Mo2O4Br42-Hmal)] · CH3CN (2), (PyH)2[Mo2O4Cl(η2-mal)(μ2-Hmal)Py] (3), (3,5-LutH)2(H3O) [Mo2O42-mal)22-Hmal)] (4), (PyH)[Mo2O4Cl22-Memal)Py2] (5), (3,5-LutH)[Mo2O4Cl22-Memal)(3,5-Lut)2] (6), (PyH)[Mo2O4Cl22-Etmal)Py2] (7), (3,5-LutH)[Mo2O4Cl22-Prmal)(3,5-Lut)2] (8) and [{Mo2O42-Memal)Py2}22-OCH3)2] (9) (where Py = pyridine, C5H5N; PyH+ = pyridinium cation, C5H5NH+; 3,5-Lut = 3,5-lutidine, C7H9N; 3,5-LutH+ = 3,5-lutidinium cation, C7H9NH+; mal2− = malonate, OOCCH2COO; Memal = monomethyl malonate, OOCCH2COOCH3; Etmal = monoethyl malonate, OOCCH2COOC2H5 and Prmal = monopropyl malonate, OOCCH2COOC3H7). The complex anions of compounds 1-8 have a common structural feature: a dinuclear, singly metal-metal bonded {Mo2O4}2+ core with the carboxylate moiety of the malonato ligand coordinated in a syn-syn bidentate bridging manner to the pair of metal atoms. The remaining four coordination sites of the {Mo2O4}2+ core are occupied with halides in 1 and 2, with halides/pyridine ligands in 5-8, with a pair of bidentate malonate ions in 4 and with the combination of all in 3. The neutral molecules of 9 consist of two {Mo2O4}2+ cores linked with a pair of methoxide ions into a chain-like, tetranuclear cluster. An esterification of malonic acid was observed to take place in the reaction mixtures containing alcohols. Solvothermal reactions with malonic acid carried out at 115 °C produced anionic acetato complexes as found in (PyH)[Mo2O4Cl22-OOCCH3)Py2] · Py (10), (PyH)[Mo2O4Cl22-OOCCH3)Py2] (11), (3,5-LutH)[Mo2O4Cl22-OOCCH3)(3,5-Lut)2] (12) and (4-MePyH)3[Mo2O4Cl22-OOCCH3)(4-MePy)2]2Cl (13) (4-MePy = 4-methylpyridine, C6H7N). The acetate coordinated in the syn-syn bidentate bridging mode in all. Reactions of (PyH)5[MoOCl4(H2O)]3Cl2 with succinic acid (H2suc) at ambient conditions resulted in a complex with a half-neutralized acid, (PyH)[Mo2O4Cl22-Hsuc)Py2] · Py (14) (Hsuc = hydrogen succinate, OOC(CH2)2COOH), while those carried out at 115 °C in a tetranuclear succinato complex, (4-MePyH)2[{Mo2O4Cl2(4-MePy)2}24-suc)] (15) (suc2− = succinate, OOC(CH2)2COO). The tetranuclear anion of 15 consists of two {Mo2O4}2+ cores covalently linked with a tetradentate succinato ligand. The compounds were fully characterized by infrared vibrational spectroscopy, elemental analyses and X-ray diffraction studies.  相似文献   

6.
Hydrothermal reactions were used in the preparation of a series of bimetallic organic-inorganic hybrid materials of the M(II)/VxOy/organonitrogen ligand class. Compound 1, [{Cu2(bpa)2(C2O4)}2V4O12]·H2O, is molecular, while [{Cu(terpy)}2V6O17] (2), [Cu2(bpyrm)V4O12] (4) and [{Cu(phen)(H2O)2}VOF4(H2O)]·2H2O (5) are two-dimensional, three-dimensional and one-dimensional, respectively (bpa = 2,2′-bipyridylamine; terpy = 2,2′:6,2″-terpyridine; bpyrm = 2,2′-bipyrimidine; phen = 1,10-phenanthroline). In contrast to the 2-D structure of 2, the Ni(II) analogue [{Ni(terpy)}2V4O12]·2H2O (3) is one-dimensional. The {V4O12}4− cluster is a building block of structures 1, 3, and 4 while 2 is constructed from {V6O17}4− rings.  相似文献   

7.
A series of Ni(II) and Cu(II) complexes of the hexaaza macrocycles, 3,6,9,17,20,23-hexaazatricyclo[23.3.1.111,15]triaconta-1(29),11(30),12,14,25,27-hexaene (L1) and 3,6,9,16,19,22-hexaazatricyclo[22.2.2.211,14]triaconta-1(26),11(29),12,14(30),24(28),25-hexaene (L2), have been prepared and the crystal structures determined for [Ni2L1(O2CCH3)2(H2O)2](ClO4)2 (1), [Ni2L2(DMF)6](ClO4)4 · 2H2O (2), {[Cu2L2Br(O2CCH3)](ClO4)2}n (3), [Cu2L2(μ-CO3)(H2O)2]2(ClO4)4 · 8H2O (4), [Cu2L2(O2CCH3)2](BF4)2 (5), and [Cu2L1(μ-imidazolate)Br]2Br4 · 6H2O (6). In these complexes, two metal centers are bound per ligand; in 1 and 3-6, the N3 subunits of L1 or L2 coordinate meridionally to the metal centers, whilst in 2, each N3 subunit in L2 adopts a facial mode of coordination. The binuclear cations in 1 and 2 have chair-like conformations, with the distorted octahedral Ni(II) coordination spheres completed by terminal water and a bidentate acetate ligand in 1 and three DMF ligands in 2. The Cu(II) centers in 3-6 generally reside in square planar environments, although a weakly binding ligand enters the coordination sphere in some cases, generating a distorted square pyramidal geometry. The binuclear [Cu2L2]4+ units in 3, 4 and 5 adopt similar bowl-shaped conformations, stabilized by H-bonding interactions between pairs of amine groups from L2 and a perchlorate or tetrafluoroborate anion. In 3, the binuclear units are linked through acetate groups, bridging in a syn-anti fashion, to produce a zig-zag polymeric chain structure, whilst 4 incorporates a tetrameric cation consisting of two binuclear units linked via a pair of carbonate bridges. Compound 6 features an imidazolate bridge between the two Cu(II) centers bound by L1. Pairs of [Cu2L1(μ-imidazolate)]3+ units are then weakly linked through a pair of bromide anions.  相似文献   

8.
The synthesis of palladacyclopentadiene derivatives with the mixed-donor bidentate ligands o-Ph2PC6H4CHNR (NP) has been achieved. The new complexes of general formula [Pd{C4(COOMe)4}(o-Ph2PC6H4CHNR)] [R=Me (1), Et (2), iPr (3), tBu (4), NHMe (5)] have been prepared by reaction between the precursor [Pd{C4(COOMe)4}]n and the corresponding iminophosphine. The polymer complex [Pd{C4(COOMe)4}]n also reacts with pyridazine (C4H4N2) to give the insoluble dinuclear complex [Pd{C4(COOMe)4}(μ-C4H4N2)]2 (6), which has been successfully employed as precursor in the synthesis of pyridazine-based palladacyclopentadiene complexes. The reaction of 6 with tertiary phosphines yielded complexes containing an N,P-donor setting of formula [Pd{C4(COOMe)4}(C4H4N2)(L)] (L=PPh3 (7), PPh2Me (8), P(p-MeOC6H4)3 (9), P(p-FC6H4)3 (10)). The new complexes were characterized by partial elemental analyses and spectroscopic methods (IR, 1H, 19F and 31P NMR). The molecular structure of complex 3 has been determined by a single-crystal diffraction study, showing that the iminophosphine acts as chelating ligand with coordination around the palladium atom slightly distorted from the square-planar geometry.  相似文献   

9.
The preparation of a series of 1,2-phenylenedioxoborylcyclopentadienyl-metal complexes is described. These are of formula [M{η5-C5H4(BX)}Cl3] [M = Ti and X = CAT (2a), CATt (2b) or CATtt (2c); X = CATtt and M = Zr (4a) or Hf (4b)], [M{η5-C5H4(BX)}2Cl2] [M = Zr, X = CAT (3a) or CATt (3c); or M = Hf, X = CAT (3b) or CATt (3d)], [M{(μ-η5-C5H3BCAT)2 SiMe2}Cl2] [M = Zr (5a) or Hf (5b)], [M{η5-C5H3(BCAT)2}Cl3] [M = Zr (6a) or Hf (6b)], [M{η5-C5H4BCAT}3(THF)] [M = La (7a), Ce (7b) or Yb (7c)], [Sn{η5-C5 H4(BCATt)}Cl](8) and [Fe{η5-C5H4(BCATt)}2] (9). The abbreviations refer to BO2C6H4-1,2 (BCAT) and the 4-But (BCATt) and the (BCATtt) analogues. The compounds 2a-9 have been characterised by microanalysis, multinuclear NMR and mass spectra. The single crystal X-ray structure of the lanthanum compound 7a is presented.  相似文献   

10.
Rhodium(II) complexes [Rh2(μ-OAc)2(OAc)(bpy)(H2O)2]PF6 (1), [Rh2(μ-OAc)2(OAc)(phen)(H2O)2](PF6)·H2O (2), [Rh2(μ-OOCCH3)3(OOCCH3)(phen)] (3) and [Rh2(μ-O2CCH3)3(O2CCH3)(Ph2phen)] (4) (Ph2phen = 4,7-diphenyl-1,10-phenanthroline) have been synthesized and characterized by means of NMR, IR and UV-Vis spectroscopic methods. X-ray structure of complex 4·1.5(CH3COCH3) has been determined and its geometry and electronic structure has been elucidated using OPBE and B3LYP DFT methods. The compounds are active cytostatic agents against tumor cells.  相似文献   

11.
Six 2D and 3D supramolecular complexes [Cu(L1)(O2CCH3)2] · H2O (1), [Cu2(L2)22-O2CCH3)2](BF4)2 (2), [Cu2(L1)2(BDC)(NO3)2] · 0.5H2O (3) [Cu2(L2)2(BDC)(NO3)2] (4), [Cu2(L3)2(BDC)(NO3)2] · 0.5H2O (5) and [Cu2(L2)2(BDC)(H2O)2](BDC) · 8H2O (6) (L1 = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, L2 = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine, L3 = 4′-phenyl-2,2′:6′,2″-terpyridine, BDC = 1,4-benzenedicarboxylate), have been prepared and structurally characterized by X-ray diffraction crystallography. In complexes 1, 3, and 4, 1D channels are formed through C-H?O and C-H?N hydrogen-bonding interactions, and further linked into 3D structure via C-H?O and O-H?O interactions. Complex 2 is a 2D layer constructed from intermolecular C-H?F and π-π stacking interactions. In the structure of 6, the BDC2− ions and solvent water molecules form a novel 2D layer containing left- and right-handed helical chains via hydrogen-bonds, and an unusual discrete water octamer is formed within the layer. In 2, 4, 6 and [Ag2(L2)2](PF6)2 (7) the bonding types of pendent pyridines of L2 depending on the twist about central pyridines are involved in intramolecular (2 and 4), intermolecular (6) or coordination bonds (7) in-twist-order of 5.8°, 3.7°, 28.2° and 38.0°, respectively. Differently, the pendent pyridines of L1 in 1 and 3 form intermolecular hydrogen bonds despite of distinct corresponding twist angles of 25.1° (1) and 42.6°(3). Meanwhile, π-π stacking interactions are present in 1-6 and responsible for the stabilization of these complexes.  相似文献   

12.
Three metal-organic frameworks, [Mn(HL)(N3)] (1), [Mn(HL)Cl(H2O)] (2) and [Zn2(L)2(H2O)] (3) where H2L = 3-amino-4-(5-tetrazolyl)-1H-pyrazole, have been yielded through in situ hydrothermal reactions of manganese(II) or zinc(II) salts, NaN3 and 3-amino-4-cyano-1H-pyrazole (HACP). The crystal structure analysis reveals that 1-3 have different dense 3D frameworks with Schläfli symbols of {3·42·52·6}{32·43·54·66} for 1 which is an unprecedented (4,6)-connected framework, {4·122}2{42·124} for 2 which is a typical sqc519 structure, and {42·6}2{44·62·88·10} for 3 which is a typical ant/anatase structure, respectively. The ligand takes three different coordination modes in 1-3 as 3- or 4-connector. In addition, the photoluminescence of complex 3 was studied in solid state at room temperature, together with its thermal analysis.  相似文献   

13.
The paper describes the reactivity of calix[4]arene dialkyl- or -silylethers H2R2calix, R=Me (1), Bz (2), or SiMe3 (3) (p-tert.butyl-calix[4]arene=H4calix), towards the iron(III) complex [FeCl(NSiMe3)2(thf)] 4. Bis(silylation) of H4calix was achieved using a mixture of NEt3 and Me3SiCl as silylating agent, which is probably the most convenient and cheapest way for the preparation of H2(Me3Si)2calix 3. [FeCl(N{SiMe3}2)2(thf)] 4 has been obtained from the reaction of [FeCl3] and commercially available K[N(SiMe3)2] in THF. The reactions of 4 with H2Me2calix and H2Bz2calix afford mononuclear iron(III) chloro compounds [FeCl(R2calix)] 5 (R=Me) and 6 (R=Bz). The usage of calix[4]arene silyl ether 3 leads to a dinuclear complex [Fe2({Me3Si}calix)2] 7, presumably under Me3SiCl cleavage of a mononuclear calixarene iron(III) chloro complex. The calix[4]arene ether stabilized iron(III) chloro complexes are susceptible to nucleophilic substitution reactions, as exemplified by the reaction of 5 with sodium azide yielding an azido complex [Fe(N3)(Me2calix)] 8. The molecular structures of 4, 5, 6, 7, and 8 in the solid state have been determined by X-ray diffraction.  相似文献   

14.
The new pyridine-based NNN tridentate ligand 2,6-C5H3N(CMe2NH2)2 (1) was synthesized by the treatment of 2,6-pyridinedicarbonitrile with an excess of the organocerium reagent in situ generated from CeCl3 and methyllithium in THF. The reaction of 1 with [RuCl2(PPh3)3] in THF at ambient conditions afforded (OC-6-23)-[RuCl{2,6-C5H3N(CMe2NH2)2}(PPh3)2]Cl (2). The corresponding dimethyl sulfoxide complex [RuCl{2,6-C5H3N(CMe2NH2)2}{S(O)Me2}2]Cl (3) was isolated as a mixture of the (OC-6-23) and (OC-6-32) stereoisomers 3a and 3b from the reaction between 1 and (OC-6-22)-[RuCl2{S(O)Me2}3(OSMe2)] in toluene at 80 °C. A prolonged interaction in toluene at reflux temperature gave isomerically pure 3a. The metal trichloride hydrates MCl3 · xH2O (M = Ru, Rh, Ir; x ≅ 2-4) produced mer-[RuCl3{2,6-C5H3N(CMe2NH2)2}] (M = Ru: 4; Rh: 5; Ir: 6), when combined with 1 in refluxing ethanol. The crystal structures of the following compounds were determined: ligand 1 and complexes 2-5 as addition compounds 2 · CH2Cl2, 3a · C7H8, 4 · EtOH and .  相似文献   

15.
The germanium(II) aryloxide complexes (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{NH3}] (1) and [Ge(OC6H3Ph2-2,6)2] (2) react with either ButI or MeI to yield the corresponding germanium(IV) compounds (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{But}{I}] (3), (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{Me}{I}] (4), [Ge(OC6H3Ph2-2,6)2(But)(I)] (5), and [Ge(OC6H3Ph2-2,6)2(Me)(I)] (6). Compound 6 reacts with 2,6-diphenylphenol to yield [Ge(OC6H3Ph2-2,6)3(Me)] (7), while 3-5 do not. The X-ray crystal structures of 3-5 and 7 were determined, and 3-5 represent the first structurally characterized germanium(IV) species having germanium bound to both oxygen and iodine.  相似文献   

16.
Using a phosphorus based Mannich condensation reaction the new pyridylphosphines {5-Ph2PCH2N(H)}C5H3(2-Cl)N (1-Cl) and {2-Ph2PCH2N(H)}C5H3(5-Br)N (1-Br) have been synthesised in good yields (60% and 88%, respectively) from Ph2PCH2OH and the appropriate aminopyridine. The ligands 1-Cl and 1-Br display variable coordination modes depending on the choice of late transition-metal complex used. Hence P-monodentate coordination has been observed for the mononuclear complexes AuCl(1-Cl) (2), AuCl(1-Br) (3), RuCl2(p-cymene)(1-Cl) (4), RuCl2(p-cymene)(1-Br) (5), RhCl2(Cp)(1-Cl) (6), RhCl2(Cp)(1-Br) (7), IrCl2(Cp)(1-Cl) (8), IrCl2(Cp)(1′-Cl) (8′), IrCl2(Cp)(1-Br) (9), cis-/trans-PdCl2(1-Cl)2 (10), cis-/trans-PdCl2(1-Br)2 (11), cis-PtCl2(1-Cl)2 (12) and cis-PtCl2(1-Br)2 (13). Reaction of Pd(Me)Cl(cod) (cod = cycloocta-1,5-diene) with either 1 equiv. of 1-Br or the known pyridylphosphines 1′-Cl, 1-OH or 1-H gave the P/N-chelate complexes Pd(Me)Cl(1-Br-1-H) (14)-(17). All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 4, 5, 10 and 16 · (CH3)2SO have been elucidated by single crystal X-ray crystallography. A crystal structure of the dinuclear metallocycle trans,trans-[PdCl2{μ-P/N-{Ph2PCH2N(H)}C5H4N}]2 · CHCl3, 18 · CHCl3, has also been determined. Here 1-H bridges, using both P and pyridyl N donors, two dichloropalladium centres affording a 12-membered ring with the PdCl2 units adopting a head-to-tail arrangement.  相似文献   

17.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

18.
A series of pyrazole-bridged heterometallic 3d-4f complexes, [CuDy(ipdc)2(H2O)4] · (2H2O)(H3O+) (1) and [CuLn(pdc)(ipdc)(H2O)4] · H3O+ (Ln = Ho (2), Er (3), Yb (4); H3ipdc = 4-iodo-3,5-pyrazoledicarboxylic acid; H3pdc = 3,5-pyrazoledicarboxylic acid), {[Cu3Ln4(ipdc)6(H2O)16] · xH2O}n (Ln = Sm (5), x = 8.5; Ln = Eu (6), x = 7; Ln = Gd (7), Tb (8), x = 9), have been synthesized and structurally characterized. Ligand H3ipdc was in situ obtained by iodination of ligand H3pdc. Complexes 1-4 are pyrazole-bridged heterometallic dinuclear complexes, and 2-4 are isostructural. Complexes 5-8 are isostructural and comprised of an unusual infinite one-dimensional tape-like chain based on pyrazole-bridged heterometallic dinuclear units. The magnetic properties of compounds 1-4, 7 and 8 have been investigated through the magnetic measurement over the temperature range of 1.8-300 K.  相似文献   

19.
Short-bite aminobis(phosphonite) containing olefinic functionalities, PhN{P(OC6H3(OMe-o)(C3H5-p))2}2 (1) was synthesized by reacting PhN(PCl2)2 with eugenol in the presence of triethylamine. The ligand 1 acts as a bidentate chelating ligand toward metal complexes [M(CO)4(C5H10NH)2] forming [M(CO)42-PhN{P(OC6H3(OMe-o)(C3H5-p))2}2}] (M = Mo, 2; W, 3). The reaction between 1 and [CpFe(CO)2]2 leads to the cleavage of one of the P-N bonds due to the metal assisted hydrolysis to give a mononuclear complex [CpFe(CO){P(O)(OC6H3(OMe-o)(C3H5-p))2}{PhN(H)(P(OC6H3(OMe-o)(C3H5-p))2)}] (4). Treatment of 1 with gold(I) derivative, [AuCl(SMe2)] resulted in the formation of a dinuclear complex, [(AuCl)2{PhN{P(OC6H3(OMe-o)(C3H5-p))2}2}] (5) with a Au···Au distance of 3.118(2) Å indicating the possibility of aurophilic interactions. An equimolar reaction between 1 and [Ru(η6-p-cymene)Cl2]2 afforded a tri-chloro-bridged bimetallic complex [(η6-p-cymene)Ru(μ-Cl)3Ru{PhN(P(OC6H3(OMe-o)(C3H5-p))2)2}Cl] (6). The crystal structures of 1-3 and 5 were established by single crystal X-ray diffraction studies.  相似文献   

20.
The preparation and variable temperature-magnetic investigation of three squarate-containing complexes of formula [Fe2(OH)2(C4O4)2(H2O)4]·2H2O (1) [Cr2(OH)2(C4O4)2(H2O)4]·2H2O (2) and [Co(C4O4)(H2O)4]n (3) [H2C4O4 = 3.4-dihydroxycyclobutene-1,2-dione (squaric acid)] together with the crystal structures of 1 and 3 are reported. Complex 1 contains discrete centrosymmetric [Fe2(OH)2(C4O4)2(H2O)4] diiron(II) units where the iron pairs are joined by a di-μ-hydroxo bridge and two squarate ligands acting as bridging groups through adjacent oxygen atoms. Two coordinated water molecules in cis position complete the octahedral environment at each iron atom in 1. The iron-iron distance with the dinuclear unit is 3.0722(6) Å and the angle at the hydroxo bridge is 99.99(7)°, values which compare well with the corresponding ones in the isostructural compound 2 (2.998 Å and 99.47°) whose structure was reported previously. The crystal structure of 3 contains neutral chains of squarato-O1,O3-bridged cobalt(II) ions where four coordinated water molecules complete the six-coordination at each cobalt atom. The cobalt-cobalt separation across the squarate bridge is 8.0595(4) Å. A relatively important intramolecular antiferromagnetic coupling occurs in 1 whereas it is very weak in 2, the exchange pathway being the same [J = −14.4 (1) and −0.07 cm−1 (2), the spin Hamiltonian being defined as ]. A weak intrachain antiferromagnetic interaction between the high-spin cobalt(II) ions occurs in 3 (J = −0.30 cm−1). The magnitude and nature of these magnetic interactions are discussed in the light of their respective structures and they are compared with those reported for related systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号