首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reaction of pyridine-2,6-dicarboxylic acid (dipicH2) with ammonium ceric nitrate and Cu(II) salts yielded three heterometallic compounds all of which contain [Ce(dipic)3]2− linked to aquo-Cu(II) complex units. Part of the Ce(IV) gets reduced by solvent during the reaction leading to [(Ce(dipic)3Ce(H2O)8)2Cu(H2O)4][Ce(dipic)3]2·12H2O (1). Other lanthanide(III) ions could take the place of Ce(III) as demonstrated by the preparation of [(Ce(dipic)3La(H2O)8)2Cu(H2O)4][Ce(dipic)3]2·12H2O (4), which is isomorphous with compound 1. [Ce(dipic)3Cu(H2O)4]·8H2O (2) is a one-dimensional coordination polymer in which two types of aquo-Cu(II) complex units which differ in the orientation of the tetragonal axis alternate along the chain. The central Cu(H2O)22+ unit in the trinuclear anion of [Cu(H2O)6][Ce(dipic)3Cu(H2O)2Ce(dipic)3]·8H2O (3) is chelated by two carboxylate groups in trans positions in off-axis mode. In all the four complexes, the Cu(II) centres are magnetically isolated leading well-resolved EPR spectra in polycrystalline samples.  相似文献   

2.
Six 2D and 3D supramolecular complexes [Cu(L1)(O2CCH3)2] · H2O (1), [Cu2(L2)22-O2CCH3)2](BF4)2 (2), [Cu2(L1)2(BDC)(NO3)2] · 0.5H2O (3) [Cu2(L2)2(BDC)(NO3)2] (4), [Cu2(L3)2(BDC)(NO3)2] · 0.5H2O (5) and [Cu2(L2)2(BDC)(H2O)2](BDC) · 8H2O (6) (L1 = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, L2 = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine, L3 = 4′-phenyl-2,2′:6′,2″-terpyridine, BDC = 1,4-benzenedicarboxylate), have been prepared and structurally characterized by X-ray diffraction crystallography. In complexes 1, 3, and 4, 1D channels are formed through C-H?O and C-H?N hydrogen-bonding interactions, and further linked into 3D structure via C-H?O and O-H?O interactions. Complex 2 is a 2D layer constructed from intermolecular C-H?F and π-π stacking interactions. In the structure of 6, the BDC2− ions and solvent water molecules form a novel 2D layer containing left- and right-handed helical chains via hydrogen-bonds, and an unusual discrete water octamer is formed within the layer. In 2, 4, 6 and [Ag2(L2)2](PF6)2 (7) the bonding types of pendent pyridines of L2 depending on the twist about central pyridines are involved in intramolecular (2 and 4), intermolecular (6) or coordination bonds (7) in-twist-order of 5.8°, 3.7°, 28.2° and 38.0°, respectively. Differently, the pendent pyridines of L1 in 1 and 3 form intermolecular hydrogen bonds despite of distinct corresponding twist angles of 25.1° (1) and 42.6°(3). Meanwhile, π-π stacking interactions are present in 1-6 and responsible for the stabilization of these complexes.  相似文献   

3.
Preparation, crystal structures and magnetic properties of new heterodinuclear CuIIGdIII (1) and CuIITbIII (2) complexes [CuLn(L)(NO3)2(H2O)3MeOH]NO3·MeOH (where Ln = Gd, Tb) with the hexadentate Schiff-base compartmental ligand N,N′-bis(5-bromo-3-methoxysalicylidene)propylene-1,3-diamine (H2L = C19H20N2O4Br2) (0) have been described. Crystal structure analysis of 1 and 2 revealed that they are isostructural and form discrete dinuclear units with dihedral angle between the O1Cu1O2 and O1Gd1/Tb1O2 planes equal to 2.5(1)° and 2.6(1)°, respectively. The variable-temperature and variable-field magnetic measurements indicate that the metal centers in 1 and 2 are ferromagnetically coupled (J = 7.89 cm−1 for 1). Crystal and molecular structure of the Schiff base ligand (0) has been also reported. The complex formation changes the conformation of Schiff base ligand molecule.  相似文献   

4.
A new type of multidentate ligand with both acetylacetonate and bis(2-pyridyl) units on the 1,3-dithiole moiety, 3-[2-(dipyridin-2-yl-methylene)-5-methylsulfanyl-[1,3]dithiol-4-ylsulfanyl]-pentane-2, 4-dione (L), has been prepared. Through reactions of the ligand with Re(CO)5X (X = Cl, Br), new rhenium(I) tricarbonyl complexes ClRe(CO)3(L) (2) and BrRe(CO)3(L) (3), have been obtained. With the use of 2 or 3 as the precursors, the further reactions with (TpPh2)Co(OAc)(HpzPh2) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate); HpzPh2 = 3,5-diphenyl-pyrazole) or M(OAc)2(M = Mn, Zn), afford four new heteronuclear complexes: ClRe(CO)3(L)Co(TpPh2) (4), BrRe(CO)3(L)Co(TpPh2) (5), [ClRe(CO)3(L)]2Mn(CH3OH)2 (6) and [ClRe(CO)3(L)]2Zn(CH3OH)2 (7), respectively. Crystal structures of complexes 2 and 4-7 have been determined by X-ray diffraction. Their absorption spectra, photoluminescence and magnetic properties have been studied.  相似文献   

5.
The preparation, crystal structure and variable temperature-magnetic investigation of three 2-(2′-pyridyl)imidazole-containing chromium(III) complexes of formula PPh4[Cr(pyim)(C2O4)2]·H2O (1), AsPh4[Cr(pyim)(C2O4)2]·H2O (2) and [Cr2(pyim)2(C2O4)2(OH2)2]·2pyim · 6H2O (3) [pyim = 2-(2′-pyridyl)imidazole, , and ] are reported herein. The isomorphous compounds are made up of discrete [Cr(pyim)(C2O4)2] anions, cations [X = P (1) and As (2)] and uncoordinated water molecules. The chromium environment in 1 and 2 is distorted octahedral with Cr-N and Cr-O bond distances varying in the ranges 2.040(3)-2.101(3) and 1.941(3)-1.959(3) Å, respectively. The angle subtended by the chromium(III) ion by the two didentate oxalate ligands cover the range 82.49(12)-82.95(12)°, values which are somewhat greater than those concerning the chelating pyim molecule [77.94(13) (1) and 78.50(13)° (2)]. Complex 3 contains discrete centrosymmetric [Cr2(pyim)2(C2O4)2(OH)2] neutral units where the two chromium(III) ions are joined by a di-μ-hydroxo bridge, the oxalate and pyim groups acting as peripheral didentate ligands. Uncoordinated water and pyim molecules are also present in 3 and they contribute to the stabilization of its structure by extensive hydrogen bonding and π-π type interactions. The values of the intramolecular chromium-chromium separation and angle at the hydroxo bridge in 3 are 2.9908(12) Å and 99.60(16)°, respectively. Magnetic susceptibility measurements of 1-3 in the temperature range 1.9-300 K show the occurrence of weak inter- (1 and 2) and intramolecular (3) antiferromagnetic couplings. The magnetic properties of 3 have been interpreted in terms of a temperature-dependent exchange integral, small changes of the angle at the hydroxo bridge upon cooling being most likely responsible for this peculiar magnetic behavior.  相似文献   

6.
Dimethyl platinum(II) complexes [PtMe2(NN)] {NN = bu2bpy (4,4′-di-tert-butyl-2,2′-bipyridine) (1a), bpy (2,2′-bipyridine) (1b), phen (1,10-phenanthroline) (1c)} reacted with commercial 3-bromo-1-propanol in the presence of 1,3-propylene oxide to afford cis, trans- [PtBrMe2{(CH2)3OH}(NN)] (NN = bu2bpy (2a), bpy (2b), phen (2c)). On the other hand, [PtMe2(NN)] (1a)-(1b) reacted with the trace of HBr in commercial 3-bromo-1-propanol to give [PtBr2(NN)] (NN = bu2bpy (3a), bpy (3b)). The reaction pathways were monitored by 1H NMR at various temperatures. Treatment of 1a-1b with a large excess of 3-bromo-1-propanol at −80 °C gave the corresponding methyl(hydrido)platinum(IV) complexes [PtBr(H)Me2(NN)] (NN = bu2bpy (4a), bpy (4b)) via the oxidative addition of dimethyl platinum(II) complexes with HBr. The complexes [PtBr(H)Me2(NN)] decomposed by reductive elimination of methane above −20 °C for bu2bpy and from −20 to 0 °C for bpy analogue to give methane and platinum(II) complexes [PtBrMe(NN)] (5a)-(5b) and then decomposed at about 0 °C to yield [PtBr2(NN)] and methane. When the reactions were performed at a molar ratio of Pt:RX/1:10, the corresponding complexes [PtBrMe(NN)] (5a)-(5b) were also obtained. The crystal structure of the complex 3b shows that platinum adopts square planar geometry with a twofold axis through the platinum atom. The Pt…Pt distance (5.164 Å) is considerably larger than the interplanar spacing (3.400 Å) and there is no platinum-platinum interaction.  相似文献   

7.
The alkoxo-bridged dinuclear copper(II) complexes [Cu2(ap)2(NO2)2] (1), [Cu2(ap)2(C6H5COO)2] (2) and [Cu2(ap)2μ-1,3-C6H4(COO)2(dmso)2]·dmso (3) (ap = 3-aminopropanolato and dmso = dimethyl sulfoxide) have been synthesized via self-assembly from copper(II) perchlorate, 3-aminopropanol as main chelating ligand and nitrite and isophthalate anions as spacers and benzoate anion as auxiliary ligand. Complexes 1 and 3 crystallize as 2D and 1D coordination polymers, respectively, and their structures consist of dinuclear [Cu2(ap)2]2+ units connected with nitrite and isophthalate ligands. The adjacent dinuclear units of 2 and 1D polymers of 3 are further connected by hydrogen bonds resulting in the formation of 2D layers. The variable temperature crystallographic measurements of 1 at 100, 173 and 293 K indicate the static Jahn-Teller distortion with librational disorder in the nitrite group. Experimental magnetic studies showed that complexes 1-3 exhibit strong antiferromagnetic couplings. The values of the magnetic exchange coupling constant for 1-3 are well reproduced by the theoretical calculations.  相似文献   

8.
Diruthenium compounds supported by carboxylate or mixed carboxylate/carbonate bridging ligands were found to be active catalysts for aerobic oxygenation of organic sulfides. Ru2(OAc)3(CO3) (A), Ru2(O2CCF3)3(CO3) (B) and Ru2(OAc)4Cl (C) promote the conversion of organic sulfide to sulfoxide, and subsequently sulfone in an oxygen atmosphere at ca. 90 °C. The order of catalytic activity is A > B ? C. Catalytic reactions are operative in a number of 1:1 co-solvent-H2O combinations, and the highest reactivity was found in aqueous media.  相似文献   

9.
Using a phosphorus based Mannich condensation reaction the new pyridylphosphines {5-Ph2PCH2N(H)}C5H3(2-Cl)N (1-Cl) and {2-Ph2PCH2N(H)}C5H3(5-Br)N (1-Br) have been synthesised in good yields (60% and 88%, respectively) from Ph2PCH2OH and the appropriate aminopyridine. The ligands 1-Cl and 1-Br display variable coordination modes depending on the choice of late transition-metal complex used. Hence P-monodentate coordination has been observed for the mononuclear complexes AuCl(1-Cl) (2), AuCl(1-Br) (3), RuCl2(p-cymene)(1-Cl) (4), RuCl2(p-cymene)(1-Br) (5), RhCl2(Cp)(1-Cl) (6), RhCl2(Cp)(1-Br) (7), IrCl2(Cp)(1-Cl) (8), IrCl2(Cp)(1′-Cl) (8′), IrCl2(Cp)(1-Br) (9), cis-/trans-PdCl2(1-Cl)2 (10), cis-/trans-PdCl2(1-Br)2 (11), cis-PtCl2(1-Cl)2 (12) and cis-PtCl2(1-Br)2 (13). Reaction of Pd(Me)Cl(cod) (cod = cycloocta-1,5-diene) with either 1 equiv. of 1-Br or the known pyridylphosphines 1′-Cl, 1-OH or 1-H gave the P/N-chelate complexes Pd(Me)Cl(1-Br-1-H) (14)-(17). All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 4, 5, 10 and 16 · (CH3)2SO have been elucidated by single crystal X-ray crystallography. A crystal structure of the dinuclear metallocycle trans,trans-[PdCl2{μ-P/N-{Ph2PCH2N(H)}C5H4N}]2 · CHCl3, 18 · CHCl3, has also been determined. Here 1-H bridges, using both P and pyridyl N donors, two dichloropalladium centres affording a 12-membered ring with the PdCl2 units adopting a head-to-tail arrangement.  相似文献   

10.
Three novel heterometallic complexes [Cu(en)2Cr(NCS)4(NH3)2][Cr(NCS)4(NH3)2] · 6dmf (1), [Cu(en)2Cr(NCS)4(NH3)2](OAc) (2) and [{Cu(en)2}3{Cr(NCS)4(NH3)2}2(NCS)2](NCS)2 (3) have been synthesized in a one-pot reaction from copper powder, Reineckes salt, NH4X [X = OAc (2), NCS (3)] in a dmf (1) or CH3CN (2, 3) solution of ethylenediamine (en). X-ray studies showed that 1 and 2 consist of cationic polymeric chains, formed by and building blocks that bridged through thiocyanate anions. In both complexes, distinct hydrogen bonds are present and serve to increase the dimensionality of the compound from one to two (in 1) or three (in 2). The main structural feature of 3 is the pentanuclear Cu3Cr2 cation which is H-bonded with uncoordinated thiocyanate groups generating a 3D supramolecular assembly. The shortest Cu?Cr distances are 5.840(1) Å for 1, 5.856(1) and 6.018(3) Å for 2 and 6.009(9) and 6.465(9) Å for 3. Compounds 1 and 2 are essentially paramagnets whereas compound 3 shows a weak antiferromagnetic coupling. The magnetic properties are simulated and discussed in terms of the structural features.  相似文献   

11.
Five new complexes [Cu2(L1)I2] (1), [Cu(L2)I]2 (2), {[Cu2(L2)I2](CH3CN)3} (3), [Cu2(L3)I2] (4) and {[Cu(L3)I](CH3CN)}2 (5) have been obtained by reacting three structurally related ligands, 2,3-bis(n-propylthiomethyl)quinoxaline (L1), 2,3-bis(tert-butylthiomethyl)quinoxaline (L2) and 2,3-bis[(o-aminophenyl)thiomethyl]quinoxaline (L3) with CuI, respectively, at different temperatures. Single crystal X-ray analyses show that 1, 3, 4 possess 1D chain structures, while 2 and 5 are discrete dinuclear molecules. It is interesting that the reactions of CuI with L1 at room temperature and 0 °C, respectively, only afforded same structure of 1 (1a and 1b), while using L2 (or L3) instead, two different frameworks 2 and 3 (or 4 and 5) have been obtained. The structural changes mainly resulted from the different conformations that L2 or L3 adopted at different temperatures. Our research indicates that terminal groups of ligands take an essential role in the framework formation, and the reaction temperature also has important effect on the construction of such Cu(I) coordination architectures. Furthermore, the influence of hydrogen bonds on the conformation of ligands and the supramolecular structures of these complexes have also been explored. The luminescence properties of complexes 1, 2, and 4 have been studied in solid state at room temperature.  相似文献   

12.
The new mononuclear bis(oxamato) complex [n-Bu4N]2[Cu(obbo)] (1) (obbo=o-benzyl-bis(oxamato)) has been synthesized as a precursor for trinuclear oxamato-bridged transition metal complexes. Starting from 1 the homotrinuclear complexes [Cu3(obbo)(pmdta)2(NO3)](NO3)·CH2Cl2·H2O (2) and [Cu3(obbo)(tmeda)2(NO3)2(dmf)] (3) have been prepared, where pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine, tmeda = N,N,N′,N′-tetramethylethylenediamine and dmf = dimethylformamide. The crystal structures of 1-3 were solved. The magnetic properties of 2 and 3 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter values of −111 cm−1 (2) and −363 cm−1 (3) were obtained.  相似文献   

13.
The reaction of Ni(ClO4)2·6H2O with 3,5-dichloro-2-hydroxy-benzylaminoacetic acid (H2dchaa), NaN3 and triethylamine in methanol solution or water solution under solvothermal methods leads to the formation of two completely different NiII compounds: [HN(C2H5)3]8·[Ni4(dchaa)4(N3)4]2 (1) and [HN(C2H5)3]2·[Ni3(dchaa)4(H2O)4]2·(H2O)2 (2). The complexes 1 and 2 have been characterized by elemental analyses, IR spectra and single-crystal X-ray diffraction. Structure analyses reveal that complex 1 is a cubane cluster, while the complex 2 is a linear trinuclear cluster. The magnetic investigation shows that complexes 1 and 2 exhibit a ferromagnetic coupling between NiII ions. Ac susceptibilities of 1 and 2 reveal no frequency-dependent out-of-phase signals and the corresponding magnetic properties were discussed.  相似文献   

14.
A series of pyrazole-bridged heterometallic 3d-4f complexes, [CuDy(ipdc)2(H2O)4] · (2H2O)(H3O+) (1) and [CuLn(pdc)(ipdc)(H2O)4] · H3O+ (Ln = Ho (2), Er (3), Yb (4); H3ipdc = 4-iodo-3,5-pyrazoledicarboxylic acid; H3pdc = 3,5-pyrazoledicarboxylic acid), {[Cu3Ln4(ipdc)6(H2O)16] · xH2O}n (Ln = Sm (5), x = 8.5; Ln = Eu (6), x = 7; Ln = Gd (7), Tb (8), x = 9), have been synthesized and structurally characterized. Ligand H3ipdc was in situ obtained by iodination of ligand H3pdc. Complexes 1-4 are pyrazole-bridged heterometallic dinuclear complexes, and 2-4 are isostructural. Complexes 5-8 are isostructural and comprised of an unusual infinite one-dimensional tape-like chain based on pyrazole-bridged heterometallic dinuclear units. The magnetic properties of compounds 1-4, 7 and 8 have been investigated through the magnetic measurement over the temperature range of 1.8-300 K.  相似文献   

15.
Two novel tetranuclear compounds with an unprecedented mode of a hydrogenphosphato bridge, [Cu4(dpyam)443-HPO4)2(μ-X)2]2+ (in which dpyam = di-2-pyridylamine and X = Cl (1), Br (2)) have been synthesised and characterised structurally and magnetically. The Cu(II) ions in the structures each display a square-pyramidal geometry, with two tridentate hydrogenphosphato groups bridging four copper atoms in a μ43 coordination mode which is rarely found in hydrogenphosphate metal compounds. Each (different) pair of Cu(II) ions is additionally bridged by halide ions, with relatively long Cu-X distances (2.551(3)-2.604(3) Å for 1 and 2.707(1)-2.766(2) Å for 2) and subsequently also a small Cu-X-Cu angle (65.7(1)° and 65.1(1)° for 1 and 61.6(1)° and 62.4(1) for 2) and a large Cu-X-Cu angle (95.5(1)° and 96.5(1)° for 1 and 91.1(1)° and 92.6(1)° for 2). Cu?Cu distances in the tetranuclear units varies from 2.802(3) to 5.232(3) Å for 1 and from 2.834(1) to5.233(1) Å in 2. The lattice structures are stabilised by extensive intermolecular hydrogen bonds. The magnetic susceptibility measurements down to 5 K revealed a weak ferromagnetic interaction between the outer pairs of Cu(II) ions which vary from 22 to 46 cm−1 in 1 and 12 to 33 cm−1 in 2 and a moderately strong antiferromagnetic interaction between the inner Cu(II) ions of −79 cm−1 in 1 and −83 cm−1 in 2, via the Cu-O-P-O-Cu pathway.  相似文献   

16.
Reactions of 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L1), 2-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L2), 2-(3,5-di-tert-butylpyrazol-1-ylmethyl)pyridine (L3) and 2-(3-p-tolylpyrazol-1-ylmethyl)pyridine (L4) with K2[PtCl4] in a mixture of ethanol and water formed the dichloro platinum complexes [PtCl2(L1)] (1), [PtCl2(L2)] (2), [PtCl2(L3)] (3) and [PtCl2(L4)] (4). Complex 1, [PtCl2(L1)], could also be prepared in a mixture of acetone and water. Performing the reactions of L2 and L3 in a mixture of acetone and water, however, led to C-H activation of acetone under mild conditions to form the neutral acetonyl complexes [Pt(CH2COCH3)Cl(L2)] (2a) and [Pt(CH2COCH3)Cl(L3)] (3a). The same ligands reacted with HAuCl4 · 4H2O in a mixture of ethanol and water to form the gold salts [AuCl2(L1)][AuCl4] (5) [AuCl2(L2)][Cl] (6) [AuCl2(L3)][Cl] (7) and [AuCl2(L4)][AuCl4] (8); however, with the pyrazolyl unit in the para position of the pyridinyl ring in 4-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L5), 4-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L6) neutral gold complexes [AuCl3(L5)] (9) and [AuCl2(L6)] (10) were formed; signifying the role the position of the pyrazolyl group plays in product formation in the gold reactions. X-ray crystallographic structural determination of L6, 2, 33a, 8 and 10 were very important in confirming the structures of these compounds; particularly for 3a and 8 where the presence of the acetonyl group confirmed C-H activation and for 8 where the counter ion is . Cytotoxicity studies of L2, L4 and complexes 1-10 against HeLa cells showed the Au complexes were much less active than the Pt complexes.  相似文献   

17.
The heteronuclear water-soluble and air-stable compounds [M(H2O)5M′(dipic)2] · mH2O (M/M′ = CuII/CoII (1), CuII/NiII (2), CuII/ZnII (3), ZnII/CoII (4), NiII/CoII (5), m = 2-3; H2dipic = dipicolinic acid) have been prepared by self-assembly synthesis in aqueous solution at room temperature, and characterized by IR, UV-Vis and atomic absorption spectroscopies, elemental and X-ray diffraction single crystal (for 1 and 2) analyses. 1-5 represent the first examples of heteronuclear dipicolinate compounds with 3d metals. Extensive H-bonding interactions involving all aqua ligands, dipicolinate oxygens and lattice water molecules further stabilize the dimetallic units by linking them to form three-dimensional polymeric networks.  相似文献   

18.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

19.
Three cluster-based coordination polymers, namely [Zn3(bpy)3(hip)2] · 5H2O (1), [Co3(bpy)3(hip)2] · 5H2O (2) and [Cd3(bpy)3(hip)2] (3) (bpy=2,2-bipyridine, hip=4-hydroxyl-isophthalate) were synthesized and structurally characterized. X-ray single-crystal structural analyses revealed that both 1 and 2 crystallize in the chiral space group P21, while 3 crystallizes in the centric space group Pccn. Compounds 1 and 2 are isomorphous and both have (4,4) topological layered structures constructed from trinuclear metal clusters. Compound 3 also shows layered structure of (4,4) topology constructed from trinulear Cd(II) cores. The layers are stacked in a staggered ?ABAB? fashion in 1 and 2 but in an overlapped ?AAA? fashion in 3. There are two types of coordination modes of hip ligand in 1 and 2 but only one in 3. The structural difference between 1 (or 2) and 3 may be attributed to the difference of metal ion nature such as the ionic radius and coordination preference, resulting in the different orientation fashions of the auxiliary bpy ligands, stacking fashions of the layers, as well as chirality of the crystals. The chiral structures of 1 and 2 were also confirmed by measurements of powder second-harmonic-generation (SHG) measurements, which show that 1 and 2 have SHG intensity of 0.50 and 0.02 relative to that of urea, respectively.  相似文献   

20.
The facile reaction of [CpCr(CO)3]2 (1) with an equivalent of 2,4-bis(phenyl)-1,3-diselenadiphosphetane-2,4-diselenide or Woollins’ Reagent (WR) at ambient temperature gave mainly [CpCr(CO)2]2Se (3) as the main product. A similar reaction with an excess of 1 gave 3 (58%) and trans-[CpCr(CO)2(SePPh)]2 (5, 25%). However reaction with an equivalent of the triply bonded congener Cp2Cr2(CO)4 (2) at 60 °C took 3 h to complete and led to the isolation of trans-[CpCr(CO)2(SePPh)]2 (5, 3%), CpCr(CO)2(SeP(H)Ph) (4, 18%) and [CpCr(Se2P(O)Ph)]2 (6, 2%). The ring-opening reaction of WR via an initial homolytic P-Se bond cleavage by CpCr(CO)n· (n = 2 (2A) or 3 (1A)) depicts a new approach to coordination chemistry involving P-Se based ligands. A mechanistic pathway was proposed according to the evidences obtained from thermolysis, NMR and mass spectra studies. All the products of 4, 5 and 6 have been structurally characterized by single-crystal X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号