首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
When the complexes [Cu(L1)(H2O)](ClO4)21, where L1 = 4-methyl-1-(pyrid-2-ylmethyl)-1,4-diazacycloheptane, and [Cu(L2)Cl2] 2, where L2 = 4-methyl-1-(quinol-2-ylmethyl)-1,4-diazacycloheptane are interacted with one/two equivalents of bis(p-nitrophenylphosphate, (p-NO2Ph)2PO2, BNP), no hydrolysis of BNP is observed. From the solution the adducts of copper(II) complexes [Cu2(L1)2((p-NO2Ph)2PO2)2]-(ClO4)23 and [Cu(L2)((p-NO2Ph)2PO2)2]·H2O 4 have been isolated and structurally characterised. The X-ray crystal structure of 3 contains two Cu(L1) units bridged by two BNP molecules. The Cu···Cu distance (5.1 Å) reveals no Cu-Cu interaction. On the other hand, the complex 4 is mononuclear with Cu(II) coordinated to the 3N ligand as well as BNP molecules through phosphate oxygen. The trigonality index (τ, 0.37) observed for 4 is high suggesting the presence of significant trigonal distortion in the coordination geometry around copper(II). The complexes are further characterized by spectral and electrochemical studies.  相似文献   

2.
The metal ion coordinating properties of the ligands N,N-bis(2-methylquinoline)-2-(2-aminoethyl)pyridine (DQPEA) and N,N-bis(2-methylquinoline)-2-(2-aminomethyl)pyridine (DQPMA) are presented. DQPEA and DQPMA differ only in that DQPEA forms six-membered chelate rings that involve the pyridyl group, whereas DQPMA forms analogous five-membered chelate rings.These two ligands illustrate the application of a ligand design principle, which states that increase of chelate ring size in a ligand will result in increase in selectivity for smaller relative to larger metal ions. The formation constants (log K1) of DQPEA and DQPMA with Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) are reported. As expected from the applied ligand design principle, small metal ions such as Ni(II) and Zn(II) show increases in log K1 with DQPEA (six-membered chelate ring) relative to DQPMA (five-membered chelate ring), while large metal ions such as Cd(II) and Pb(II) show decreases in log K1 when the chelate ring increases in size. In order to further understand the steric origin of the destabilization of complexes of metal ions of differing sizes by the six-membered chelate ring of DQPEA, the structures of [Zn(DQPEA)H2O](ClO4)2 (1) [triclinic, , a = 9.2906(10), b = 10.3943(10), c = 17.3880(18) Å, α = 82.748(7)°, β = 88.519(7)°, γ = 66.957(6)°, Z = 4, R = 0.073] and [Cd(DQPEA)(NO3)2] (2) [monoclinic, C2/c, a = 22.160(3), b = 15.9444(18), c = 16.6962(18) Å, β = 119.780(3)°, Z = 8, R = 0.0425] are reported. The Zn in (1) is five-coordinate, with a water molecule completing the coordination sphere. The Cd(II) in (2) is six-coordinate, with two unidentate nitrates coordinated to the Cd. It is found that the bonds to the quinaldine nitrogens in the DQPEA complexes are considerably stretched as compared to those of analogous TPyA (tri(pyridylmethyl)amine) complexes, which effect is attributed to the greater steric crowding in the DQPEA complexes. The structures are analyzed for indications of the origins of the destabilization of the complex of the large Cd(II) ion relative to the smaller Zn(II) ion. A possible cause is the greater distortion of the six-membered chelate ring in (2) than in (1), as evidenced by torsion angles that are further away from the ideal values in (2) than in (1). Fluorescence properties of the DQPMA and DQPEA complexes of Zn(II) and Cd(II) are reported. It is found that the DQPEA complex of Zn(II) has increased fluorescence intensity compared to the DQPMA complex, while for the Cd(II) complex the opposite is found. This is related to the greater strain in the six-membered chelate ring of the Cd(II) DQPEA complex as compared to the Zn(II) complex, with resulting poorer overlap in the Cd-N bond, and hence greater ability to quench the fluorescence in the Cd(II) complex.  相似文献   

3.
The role of relativistic effects (RE) in the structures of Cd(II) complexes with crown ethers, and the reason the ‘soft’ Cd(II) strongly prefers to bind to SCN through N, are considered. The synthesis and structures of [Cd(18-crown-6)(thiourea)2] (ClO4)2.18-crown-6 (1) and [Cd(Cy2-18-crown-6)(NCS)2] (2) are reported. (18-crown-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane; Cy2-18-crown-6 = cis-anti-cis-2,5,8,15,18,21-hexaoxatricylo[20.4.0.0(9,14)]hexacosane). In 1 Cd is coordinated in the plane of the crown which has close to D3d symmetry, with long Cd-O bonds averaging 2.688 Å. The two thiourea molecules form relatively short Cd-S bonds that average 2.468 Å, with an S-Cd-S angle of 164.30°. This structure conforms with the idea that Cd(II) can adopt a near-linear structure involving two covalently-bound donor atoms (the S-donors) with short Cd-S bonds, which resembles gas-phase structures for species such as CdCl2. The structure of 2 is similar, with the two SCN ligands N-bonded to Cd, with short Cd-N bonds of 2.106 Å, and N-Cd-N angle of 180°. The crown in 2 forms long Cd-O bonds that average 2.698 Å. Molecular mechanics calculations suggest that a main reason Cd(II) prefers to bind to SCN through N is that when bound through S, the small Cd-S-C angle, which is typically close to 100°, brings the ligand into close contact with other ligands present, and causes steric destabilization. In contrast, the Cd-N-C angles for SCN coordinated through N are much larger, being 171.4° in 2, which keeps the SCN groups well clear of the crown ether. DFT (density functional theory) calculations are used to generate the structures of [Cd(18-crown-6)(H2O)2]2+ (3) and [Cd(18-crown-6)Cl2] (4). In 3, the Cd(II) is bound to only three O-donors of the macrocycle, with Cd-O bonds averaging 2.465 Å. The coordinated waters form an O-Cd-O angle of 139.47°, with Cd-O bonds of 2.295 Å. In contrast, for 4, the Cd is placed centrally in the cavity of the D3d symmetry crown, with long Cd-O bonds averaging 2.906 Å. The Cl groups form a Cl-Cd-Cl angle of 180°, with short Cd-Cl bonds of 2.412 Å. With ionically bound groups on the axial sites of[Cd(18-crown-6)X2] complexes, such as with X = H2O in 3, the Cd(II) does not adopt linear geometry involving the two X groups, with long Cd-O bonds to the O-donors of the macrocycle. With covalently-bound X = Cl in 4, short Cd-Cl bonds and a linear [Cl-Cd-Cl] unit results, with long Cd-O bonds to the crown ether.  相似文献   

4.
The molecular and electronic structure, along with the magnetic properties of a dinuclear complex in which two copper ions interact through a phenoxo oxygen atom and an oximato group are presented. The complex [CuL3Cu(O2CCH3)]3H2O ·  0.5CH3OH (3) crystallizes in the monoclinic space group Cc, with a=28.432(2) Å, b=12.305(1) Å, c=13.159(1) Å and β=99.580(9)°. The X-ray molecular structure shows that the core of the molecule comprising the two metal ions and the seven neighboring donors is nearly planar. The copper(II) ions were found to be antiferromagnetically coupled with a singlet-triplet splitting of 764(4) cm−1. Density Functional Theory (DFT) showed that the magnetic orbitals are largely delocalized towards the bridging area, and an antiferromagnetic interaction in good agreement with the experimental data was computed using the Broken Symmetry (BS) formalism to obtain the energy of the singlet state.  相似文献   

5.
Two polymorphic crystal structures of the title compound, dibromo[(−)-sparteine-N,N]copper(II), 1, were determined. The structures of two isomorphs of 1, 1a [orthorhombic, P212121, a=11.0463(9) Å, b=11.9839(15) Å and c=12.7835(19) Å] and 1b [orthorhombic, P212121, a=7.6779(9) Å, b=12.0927(14) Å and c=18.090(2) Å], are composed of the same basic structural unit, Cu(C15H26N2)Br2. The bond distances in the molecular structures of 1a and 1b are identical to each other within the esds. However, there are slight differences in the bond angles around the Cu(II) center and considerable differences in their packing structure. Crystal 1a exhibits weak anti-ferromagnetism (J=−1.89 cm−1) as opposed to the magnetically isolated paramagnetism observed for the analogous dichloro[(−)-sparteine]copper(II), 2. The results of a magneto-structural investigation of 1a and 2, and other supporting evidence, suggest that the pathway for the weak antiferromagnetic super-exchange in 1a might be through a Cu-Br ? Br-Cu contact.  相似文献   

6.
Synthesis and characterisation of the new macrocyclic ligand 1,7-dimethyl-4,10-di(methylcarbamoylmethy)-1,4,7,10-tetraazacyclododecane (L) are reported. The ligand, based on cyclen (1,4,7,10-tetraazacyclododecane), has been functionalised by the insertion of two methyl groups and two amidic pendant arms linked to the amine nitrogens. The interaction of L with H+, Na(I), Ca(II), Cu(II), Zn(II), Pb(II), and Gd(III) ions has been studied by potentiometric titrations, microcalorimetric and 1H NMR measurements in 0.1 mol dm−3 Me4NCl aqueous solution at 298.1±0.1 K. The thermodynamic data suggest that the N4 moiety is the binding site for Cu(II) and Zn(II), while in the case of Pb(II) also the pendant arms are coordinated to the metal ion. The crystal structure of [PbL](ClO4)2 (space group P21/a, a=12.883(2) Å, b=12.259(3) Å, c=17.275(5) Å, β=108.65(2)°, V=2585.0(11) Å3, Z=4, R=0.0660, RW 2=0.1467) shows the metal ion hexa-coordinated by the four nitrogen atoms of the cyclic tetra-amine and by the two amidic oxygens of the pendant arms.  相似文献   

7.
Two complexes of the formula [MH3L](ClO4)2 [M = Cu(II) (1), Ni(II) (2)] have been prepared by the reaction of M(ClO4)2 · 6H2O with the ligand (H3L) formed by the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 4-methyl-5-imidazolecarboxaldehyde and structurally and magnetically characterized. The structures of 1 and 2 are isomorphous with each other and with the iron(II) complex of H3L which has been reported previously. The ligand, while potentially heptadentate, forms six coordinate complexes with both metal centers forming three M-Nimine and three M-Nimidazole bonds. The tren central N atom is at a nonbonded distance from M of 3.261 Å for 1 and 3.329 Å for 2. The neutral complex CuHL 3 was prepared by reaction of H3L with Cu(OCH3)2 and the ionic complex Na[NiL] 4 was prepared by deprotonation of 2 with aqueous sodium hydroxide. Magnetic measurements of 1-3 are consistent with the spin-only values expected for S = 1/2 (d9, Cu(II)) and S = 1 (d8, Ni (II)) systems.  相似文献   

8.
A new ligand, 1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)-N-(thiophen-3-ylmethyl)methanamine, ThDPA, was synthesized, as a new example of an N3S donor. Cu(II) complexes of this ligand were isolated. When Cu(NO3)2 was used as the metal source, a homobinuclear complex with the formula [CuThDPA(NO3)2]2·H2O, 1, with two different types of nitro coordination was isolated. 1 crystallizes in the monoclinic P21/n space group with a = 15.193, b = 8.181, c = 32.827 Å, β = 103.3° and V = 3971.9 Å3. In the case of CuSO4 as the source of copper(II), uncommon sulfato-bridged structures were isolated. The homobinuclear complex crystallized in two different lattices, depending on the solvent evaporation rate. Compound 2, with the formula [CuThDPA(SO4)]2·3H2O, crystallizes with 3 water molecules per binuclear structure in the monoclinic space group P21/c with a = 10.143, b = 17.013, c = 11.793 Å, β = 97.18° and V = 2019.1 Å3, and 3, [CuThDPA(SO4)]2·4H2O, crystallizes with 4 water molecules per binuclear structure in the triclinic space group, with a = 9.2906, b = 10.7297, c = 12.7236 Å, α = 79.66, β = 72.18, γ = 67.1° and V = 1109.7 Å3.  相似文献   

9.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

10.
New ruthenium(II) complexes with cyanamide ligands, cis-[Ru(bpy)2(Ipcyd)2] (1) and [Ru(bpy)2(OHpcyd)2] (2) (bpy = 2,2′-bipyridine, Ipcyd = 4-iodophenylcyanamide anion, OHpcyd = 4-(3-hydroxy-3-methylbut-1-ynil)phenylcyanamide), have been prepared and characterized by UV-Vis, IR and 1H NMR spectroscopies as well as electrochemical technique (CV). The complex cis-[Ru(bpy)2(Ipcyd)2] (1) crystallized with empirical formula of C34H24I2N8Ru in a monoclinic crystal system and space group of P21/c with a = 11.769(7) Å, b = 24.188(12) Å, c = 11.623(2) Å, β = 91.63(3)°, V = 3308(3) Å3 and Z = 4.  相似文献   

11.
Two new binuclear copper complexes, [Cu2(oxpn)(bpy)(pic)(H2O)](pic) (1) and [Cu2(oxpn)(Me2bpy)(pic)](pic) (2) [H2oxpn = N,N′-bis(3-aminopropyl)oxamide; Hpic = 2,4,6-trinitrophenol; bpy = 2,2′-bipyridine; Me2bpy = 4,4′-dimethyl-2,2′-bipyridine], have been synthesized and characterized by elemental analyses, conductivity measurements, IR, UV-visible spectroscopy and single crystal X-ray analyses. Both complexes have similar molecular structures. In complex 1, the central two Cu(II) atoms are bridged by cis-oxpn2− with the Cu1-Cu2 separation of 5.221 Å and the polyhedron of each copper atom is a square-pyramid. Similarly, complex 2 is a cis-oxpn2−-bridged binuclear complex with the Cu1-Cu2 separation of 5.196 Å. Cu1(II) central atom situated in a tetrahedral geometry is four-coordinated and Cu(II) atom situated in a square-pyramidal geometry is five-coordinated. Hydrogen bonding interactions and π-π stacking interactions link the binuclear copper complex 1 or 2 into a 2D infinite network. The antibacterial assays indicate that the two complexes showed better activities than their ligands. The interactions of the two binuclear complexes with herring sperm DNA (HS-DNA) have been studied by UV absorption titration, fluorescence titration and viscosity measurements. The results suggest that the two binuclear complexes bind to HS-DNA via an intercalative mode.  相似文献   

12.
A dinickel(II) complex [Ni2(sym-hmp)2](BPh4)2·3.5DMF·0.5(2-PrOH) (1) was synthesized with a dinucleating ligand, 2,6-bis[(2-hydroxyethyl)methylaminomethyl]-4-methyl-phenol [H(sym-hmp)]. The complex 1 (C90H118.50B2N7.50Ni2O10) crystallized in the triclinic space group with dimensions = 14.7446(4) Å, = 15.4244(4) Å, = 18.7385(6) Å, α = 86.9495(9)°, β = 76.7263(10)°, γ = 86.5370(8)°, and = 4136.8(2) Å3 and with = 2; this is isomorphous to a previous cobalt(II) complex [Co2(sym-hmp)2](BPh4)2. Single-crystal X-ray analysis revealed a bis(μ-phenoxo)dinickel(II) core structure containing two distorted octahedral nickel(II) ions of C2 symmetry. The order of the coordination bond lengths is Ni-O(phenoxo) < Ni-O(hydroxy) < Ni-N. The electronic spectrum of 1 was typical for the octahedral nickel(II) complexes, but the axial elongation and the C2-twist of the equatorial plane were found after a detailed analysis. The bond angles obtained by the electronic spectrum agreed with the crystallographically obtained bond angles within 2.3°. The order of the AOM parameters was eσ,O(phenoxo) > eσ,O(hydroxy) > eσ,N, which was consistent with the order of the coordination bond lengths. Magnetic susceptibility data for 1 were fitted well with the parameters 2= −69.7 cm−1, = 0.00 cm−1, = 2.17, and TIP = 265 × 10−6 cm3 mol−1. The result indicates significant antiferromagnetic exchange interaction and negligible zero-field splitting, while the isostructural cobalt(II) complex showed an anisotropic behavior.  相似文献   

13.
A copper(I) complex [Cu(CETH)2Cl] (Ia), where CETH = cuminaldehyde-4-ethyl-3-thiosemicarbazone (I), is prepared and structurally characterised. The complex crystallizes in orthorhombic space group pna2(1) with the unit cell parameters; a = 9.8598(14) Å, b = 15.411(2) Å, c = 0.817(3) Å, V = 2055.9(4) Å3 and Z = 4. The neutral complex has the copper(I) centre bonded to two thioketonic sulphur donor in η1-S bonding mode and one chloride giving ‘Y’ shape geometry. The complex is diamagnetic and exhibits a copper to ligand charge transfer bands at 351 and 398 nm in dimethylformamide. The complex shows quasireversible cyclic voltammetric response at 0.41 V (ΔEp = 300 mV) at 50 mVS−1 in DMF for the Cu(II)/Cu(I) oxidation couple. Complex Ia shows marginal nuclease activity with pUC18 DNA in the presence of reducing agent (Dithiotretal) and hydrogen peroxide.  相似文献   

14.
One hetero-bimetallic Cu(II)/Cd(II) compound, [CdII(H2O)2][CuII(mal)2(H2O)2]n (1) (H2mal = malonic acid) has been synthesized and characterized using single crystal X-ray crystallography, thermogravimetric (TG) studies and X-ray powder diffraction (XRPD) measurements. The compound crystallizes in orthorhombic Pbcn space group having cell dimensions a = 6.6260(12) Å, b = 13.958(2) Å and c = 13.052(2) Å. The solid state structure of compound 1 demonstrates a 3D pillared layered coordination network generated through the simultaneous bridging as well as chelating mode of malonate towards the Cd(II) and Cu(II), respectively. TG analysis reveals relatively high thermal stability for the compound (decomposition temperature ∼320 °C). The thermal study also reveals that the coordinated waters attached to both the metal centers (Cd(II) and Cu(II)) are reversibly lost and gained and this behavior is also corroborated by XRPD studies.  相似文献   

15.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

16.
The crystal structure of the title compound [Fe(bpz)3](ClO4)2 · H2O (bpz=2,2-bipyrazine) has been determined by a single crystal X-ray diffraction study at 293(2) K. The complex is monoclinic, P21/c, a=17.263(3), b=9.983(2), c=17.921(4) Å, β=107.94(3)°, V=2938.3(10) Å3, Z=4, R=0.073 and Rw=0.118. The structure is made up of tris-chelated [Fe(bpz)3]2+ cations, uncoordinated perchlorate anions and crystallization water molecules. The iron atom exhibits a FeN6 distorted octahedral geometry with average Fe-N bond length and N-Fe-N bidentate angle of 1.962(5) Å and 81.6(2)°. The value of the Fe-N bond distance and that of the room temperature magnetic moment are in agreement with a singlet 1A1 ground state. The structure of 1 is compared to those of other tris-chelated iron(II) complexes with bidentate nitrogen heterocycles.  相似文献   

17.
A tetranuclear copper(II) complex [Cu4(NSI)4] · 2C2H5OH · 2H2O (NSI=hydroxethylsalicydeneimine) has been synthesized and characterized by X-ray diffraction analysis. The compound crystallizes in the monoclinic system, space group P2(1), a=9.494(3) Å, b=18.687(5) Å, c=13.149(4) Å, β=110.162(5)°, Z=2, R1=0.0482 and wR2=0.0978. The crystal structure contains a tetranuclear pseudo-cubane core based on an approximately cubane array of alternating copper and oxygen atoms. Each copper atom resides in a distorted square planar coordination environment with one nitrogen and three oxygen atoms from two NSI ligands. The tetranuclear units are linked in the crystal by O-H?O hydrogen bonds and weak Cu?O co-ordination bonds into one-dimensional structure. Variable temperature (5-300 K) magnetic measurements indicate the existence of ferromagnetic interactions among copper atoms. The IR and ESR spectra have also been investigated.  相似文献   

18.
A 2D grid-like copper(II) complex [Cu(N3)2(pyz)](pyz = pyrazine) (1) has been synthesized and characterized by single crystal X-ray analysis and magnetic measurements. The 2D grid-like network of 1 consists of 1D chain of Cu-pyz units connected by end-on azido bridge. 1 crystallizes in the monoclinic space group C2 with a = 15.148(6) Å, b = 6.877(2) Å, c = 3.4591(12) Å and Z = 2. The magnetic investigation showed the presence of an antiferromagnetic interaction between the copper(II) ions mainly mediated through pyrazine bridge.  相似文献   

19.
The molecular structure of copper(II) chloride complex with acrylamide (AAmCH2CHCONH2), [Cu(AAm)4Cl2], was determined using X-ray diffraction analysis. The complex crystallizes in the cubic space group I-43d with a = 17. 8310(2) Å, β = 90°, and V = 5669.27(11) Å3 for Z = 12. The acrylamide molecules bind to the metal center via the carbonyl oxygen atom (Cu-O 1.996 Å). The coordination geometry of the metal center in the complex involves a tetragonally distorted octahedral structure with four O-donor atoms of acrylamide bonded in the equatorial positions and two chlorides in the apical positions. Comparison of crystal structure data of acrylamide and metal acrylamide complexes of those formed with divalent transition metal chlorides has been summarized.  相似文献   

20.
《Inorganica chimica acta》1986,115(2):153-161
In the reaction of the tetradentate ligand 3,3′-(1,4- butanediyldiamino) bis (3-methyl-2-butanone)-dioxime (BnAO) with nickel(II) and copper(II), the monomeric [Ni(BnAO-H)]I·H2O and a mixed monomer/dimer salt [Cu(BnAO-H)H2O]2[(Cu(BnAO-H))2](ClO4)4, respectively, are formed, and all complexes have an intramolecular hydrogen bond between cis oxime groups. The OHO bonds give the characteristic infrared absorptions as well as the downfield proton-NMR signal (Ni complex). [Ni(BnAO-H)]I·H2O crystallizes in space group P21/a with a=13.511(2), b=10.599(2), c=14.096(2) Å, β=97.52°, Z=4 and Dc=1.623 g/cm3. The structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares techniques to a final R of 0.021 for 2124 reflections with I 2σ(I). The nickel(II) atom in the complex has slightly distorted square planar geometry with an intramolecular O···O contact of 2.417(7) Å. The copper(II) complex crystallizes in space group P21/c with a =13.425(2), b=21.446(3), c=14.349(4) Å, β= 104.4(5)°, Z=8 (monomers) and Dc=1.485 g/cm3. The final R value for this complex was 0.053 for 3033 reflections with I 2σ(I). This structure contains a monomeric [Cu(BnAO-H)H2O]+ ion and a dimeric [(Cu(BnAO-H))2]2+ ion, having intramolecular O···O hydrogen bonds of 2.421(5) and 2.531(5) Å, respectively. The copper(II) ions have square-pyramidal coordination with the axial positions occupied by an oxygen of the water of hydration in the monomer and by an oxime oxygen atom in the dimer. A center of symmetry relates the two halves of the dimer. The copper atom in each case is out of the plane of the four nitrogen atoms toward the axial site. The copper(II) complex is unusual in that the crystal contains both a monomer and a dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号