首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and structural characterization of the two novel unsolvated heteroleptic ytterbium compounds DanipYb(TpMe,Me)Cl (1) and DanipYb(TpMe,Me)CH2SiMe3 (2) by simple salt metathesis reaction is reported [Danip = 2,6-di(o-anisol)phenyl); TpMe,Me = hydrotris(3,5-dimethyl-pyrazolyl)borate]. In the molecular structure of 2 a flexible bonding mode of the donor-functionalized terphenylic ligand is observed.  相似文献   

2.
The paper describes the reactivity of calix[4]arene dialkyl- or -silylethers H2R2calix, R=Me (1), Bz (2), or SiMe3 (3) (p-tert.butyl-calix[4]arene=H4calix), towards the iron(III) complex [FeCl(NSiMe3)2(thf)] 4. Bis(silylation) of H4calix was achieved using a mixture of NEt3 and Me3SiCl as silylating agent, which is probably the most convenient and cheapest way for the preparation of H2(Me3Si)2calix 3. [FeCl(N{SiMe3}2)2(thf)] 4 has been obtained from the reaction of [FeCl3] and commercially available K[N(SiMe3)2] in THF. The reactions of 4 with H2Me2calix and H2Bz2calix afford mononuclear iron(III) chloro compounds [FeCl(R2calix)] 5 (R=Me) and 6 (R=Bz). The usage of calix[4]arene silyl ether 3 leads to a dinuclear complex [Fe2({Me3Si}calix)2] 7, presumably under Me3SiCl cleavage of a mononuclear calixarene iron(III) chloro complex. The calix[4]arene ether stabilized iron(III) chloro complexes are susceptible to nucleophilic substitution reactions, as exemplified by the reaction of 5 with sodium azide yielding an azido complex [Fe(N3)(Me2calix)] 8. The molecular structures of 4, 5, 6, 7, and 8 in the solid state have been determined by X-ray diffraction.  相似文献   

3.
Reactions of [PtMe3(bpy)(Me2CO)][BF4] (2) with the thionucleobases 2-thiouracil (s2Ura), 4-thiouracil (s4Ura) and 2,4-dithiouracil (s2s4Ura) resulted in the formation of complexes of the type [PtMe3(bpy)(L-κS)][BF4] (L = s2Ura, 3; s4Ura, 4; s2s4Ura, 5). The complexes were characterized by NMR spectroscopy (1H, 13C, 195Pt), IR spectroscopy as well as microanalyses. The coordination through the C4S groups (4, 5) was additionally confirmed by DFT calculations, where it was shown that these complexes [PtMe3(bpy)(L-κS4)]+ (L = s4Ura, s2s4Ura) are about 5.8 (4b) and 3.3 kcal/mol (5b), respectively, more stable than the respective complexes, having thiouracil ligands bound through the C2X groups (X = O, 4a; S, 5a). For [PtMe3(bpy)(s2Ura-κS2)][BF4] (3) no preferred coordination mode could be assigned solely based on DFT calculations. Analysis of NMR spectra showed the κS2 coordination. In vitro cytotoxic studies of complexes 3−5 on nine different cell lines (8505C, A253, FaDu, A431, A549, A2780, DLD-1, HCT-8, HT-29) revealed in most cases moderate activities. However, 3 and 5 showed significant activity towards A549 and A2780, respectively, possessing IC50 values comparable to those of cisplatin. Cell cycle perturbations and trypan blue exclusion test on cancer cell line A431 using [PtMe3(bpy)(s2s4Ura-κS4)][BF4] (5) showed induction of apoptotic cell death. Furthermore, the reaction of [PtMe3(OAc-κ2O,O′)(Me2CO)] (6) with 4-thiouracil yielded the dinuclear complex [(PtMe3)2(μ-s4Ura-H)2] (7), which has been characterized by microanalysis, NMR (1H, 13C, 195Pt) and IR spectroscopy as well as ESI mass spectrometry. X-ray diffraction analysis of crystals yielded in an isolated case exhibited the presence of a hexanuclear thiouracilato platinum(IV) complex, possessing each three different kinds of methyl platinum(IV) moieties and 4-thiouracilato ligands. This exhibited the ability of 4-thiouracil platinum(IV) complexes to form multinuclear complexes.  相似文献   

4.
The synthesis and characterization of (TptBu,Me)Yb(BH4)(THF)n (n = 0, 3; n = 1, 4) complexes are reported. The compounds represent rare examples of lanthanide (II) tetrahydroborate complexes. The X-ray crystal structure of complex 4 has been determined and it shows a monomeric, formally seven coordinate ytterbium center, bearing one κ3 bonded TptBu,Me ligand, a tetrahydroborate ligand and a coordinated THF molecule. The tetrahydroborate ligand binds in a κ3 fashion, via three bridging hydrogen atoms. IR spectroscopy data are consistent with the solid-state structure and the corresponding BD4 analog of 4 shows the expected IR isotope shifts. The 1H NMR spectra of 3 and 4 shows one set of resonances each for the BH4 and the pyrazolylborate ligands indicating dynamic solution behavior. For complex 3, although X-ray quality crystals could not be obtained, the IR and NMR data are consistent with its formulation as the solvent-free analog of complex 4 with κ3-bonded BH4 ligand.  相似文献   

5.
The synthesis of a series of rhodium and iridium complexes bearing bulky cyclopentadienyl or hydro(trispyrazolyl)borate ligands is described. The rhodium cyclopentadienyl and hydrotris(pyrazolyl)borate diene compounds, [(η5-C5Me4But)Rh(η4-2,3-MeRC4H4] (R = H, 1; Me, 2) and TpMsRh(η4-2,3-MeRC4H4) (R = H, 3; Me, 4; TpMs is hydrotris(3-mesitylpyrazol-1-yl)borate), respectively, have been prepared from the corresponding Rh(I) diene precursors and Zn(C5Me4But)2 (for 1 and 2), or TlTpMs (for 3 and 4), as effective C5Me4But or TpMs transfer reagents. In contrast with these results, attempts to obtain a bis(ethylene) derivative of the TptolIr(I) unit (Tptol stands for hydrotris(3-p-tolylpyrazol-1-yl)borate) have provided instead the Ir(III) complex [(κ4-N,N′,N″,C-Tptol)-Ir(C2H5)(C2H4)] (5), whose formation requires C-H bond activation of a molecule of ethylene and of one of the Tptolp-tolyl substituents. In refluxing toluene 5 experiences metalation of a second p-tolyl substituent to give [(κ5-N,N′,N″,C,C′-Tptol)-Ir(C2H4)] (6), which features unusual κ5-Tptol coordination. The latter compound reacts with carbon monoxide to yield the corresponding carbonyl, 7.  相似文献   

6.
The germanium(II) aryloxide complexes (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{NH3}] (1) and [Ge(OC6H3Ph2-2,6)2] (2) react with either ButI or MeI to yield the corresponding germanium(IV) compounds (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{But}{I}] (3), (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{Me}{I}] (4), [Ge(OC6H3Ph2-2,6)2(But)(I)] (5), and [Ge(OC6H3Ph2-2,6)2(Me)(I)] (6). Compound 6 reacts with 2,6-diphenylphenol to yield [Ge(OC6H3Ph2-2,6)3(Me)] (7), while 3-5 do not. The X-ray crystal structures of 3-5 and 7 were determined, and 3-5 represent the first structurally characterized germanium(IV) species having germanium bound to both oxygen and iodine.  相似文献   

7.
A new type of multidentate ligand with both acetylacetonate and bis(2-pyridyl) units on the 1,3-dithiole moiety, 3-[2-(dipyridin-2-yl-methylene)-5-methylsulfanyl-[1,3]dithiol-4-ylsulfanyl]-pentane-2, 4-dione (L), has been prepared. Through reactions of the ligand with Re(CO)5X (X = Cl, Br), new rhenium(I) tricarbonyl complexes ClRe(CO)3(L) (2) and BrRe(CO)3(L) (3), have been obtained. With the use of 2 or 3 as the precursors, the further reactions with (TpPh2)Co(OAc)(HpzPh2) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate); HpzPh2 = 3,5-diphenyl-pyrazole) or M(OAc)2(M = Mn, Zn), afford four new heteronuclear complexes: ClRe(CO)3(L)Co(TpPh2) (4), BrRe(CO)3(L)Co(TpPh2) (5), [ClRe(CO)3(L)]2Mn(CH3OH)2 (6) and [ClRe(CO)3(L)]2Zn(CH3OH)2 (7), respectively. Crystal structures of complexes 2 and 4-7 have been determined by X-ray diffraction. Their absorption spectra, photoluminescence and magnetic properties have been studied.  相似文献   

8.
The coordination chemistry and reactivity of zinc(II) complexes supported by monoanionic hydrotris(pyrazolyl)borate ligands substituted by 3,3,3-mesityl groups (TpMs) and 3,3,5-mesityl groups (TpMs∗) have been investigated. Salt metathesis of ZnCl2, ZnEt2, and Zn(OAc)2 with Tl[TpMs] or Tl[TpMs∗] cleanly afforded the corresponding compounds TpMsZnCl (1), TpMsZnEt (2), TpMs∗ZnEt (3), and TpMsZnOAc (5). Compound 3 slowly disproportionates in benzene solution to afford the bis(ligand) complex (κ2-TpMs∗)2Zn (4). Acetate complex 5 as well as TpMsZnOCOPh (6) and [TpMs∗ZnOAc]2 (7) were alternatively prepared by acidolysis of the parent ethyl complexes (2, 3) with the corresponding carboxylic acid. No reaction was observed between 2 and 3 and alcohols (ROH; R = Et, iPr, Bn), while salt metathesis reactions of ZnEt(OR) with Tl[TpMs] led to 2 instead of the desired zinc-alkoxide complex. Compounds 1-7 were characterized by elemental analysis, 1H and 13C NMR spectroscopy, as well as by X-ray diffraction studies for 1, 2, 4, 5 and 7. The former compounds adopt a monomeric structure in the solid state while [TpMs∗ZnOAc]2 (7) exists as an anti-syn bridged acetate dimer. Complex 4 is four-coordinated, featuring a rare bidentate coordination mode of the TpMs∗ ligands. The results are rationalized in terms of the variable steric constraint around the zinc atom provided by the TpMs and TpMs∗ ligands.  相似文献   

9.
The reaction of quadruply bonded dimolybdenum complex, [Mo2(μ-OAc)4] (1), with lithiated amidinato, Li[(NiPr)2CR] (R = tBu; 2a, Me; 2b, Ph; 2c), was investigated. The reaction of 1 with 2a afforded the dark-red solid, whereas the product was so highly unstable that the product was not able to be characterized. In the case of acetamidinato 2b, lantern-type mixed-ligand quadruply bonded dimolybdenum complex, [Mo2(μ-OAc){μ-(NiPr)2CMe}3] (3), was obtained as a yellow solid. In the reaction with benzamidinato 2c, symmetrical lantern-type dimolybdenum complex, [Mo2(μ-OAc)2 {μ-(NiPr)2CPh}2] (4), was isolated as a yellow solid. In the latter reaction, intermediary red compound (5), which is considered to be stereoisomer of 4 possessing non-lantern-type skeleton, was formed. However, isolation of 5 as a single component was not successful due to isomerization to 4. Complex 5 readily reacted with dry oxygen to give dimolybdenum(V) complex, [{Mo(η-(NiPr)2CPh)oxo}2 (μ-OAc)2(μ-oxo)] (6), as a red solid. These complexes were characterized spectroscopically as well as, in some cases, by X-ray analyses.  相似文献   

10.
Red-black [TpiPr∗MoVO]2(μ-O)(μ-MoVIO4) (1, TpiPr∗ = hydrobis(3-isopropylpyrazolyl)(5-isopropylpyrazolyl)borate) has been isolated as a by-product in the synthesis of NEt4[TpiPrMo(CO)3] (TpiPr = hydrotris(3-isopropylpyrazolyl)borate) and characterized by spectroscopic and X-ray crystallographic techniques. The trinuclear, mixed-valence complex contains two distorted octahedral anti-TpiPr∗MoVO centers bridged by bent oxo (Mo-O-Mo av. 158.7°) and tetrahedral κO,κO′-molybdate ligands. The complex contains a six-membered, non-planar Mo3(μ-O)3 core and two 1,2-borotropically-shifted TpiPr∗ ligands (with the shifted pyrazolyl trans to MoV=O). Aerial decomposition of solid NEt4[TpiPrMo(CO)3] produces sky-blue, diamagnetic TpiPrMoO(iPrpz)(iPrpzH) (2, iPrpz- = 3-isopropylpyrazolate, iPrpzH = 3-isopropyl-2H-pyrazole). Molecules of 2 feature a tridentate fac-TpiPr ligand and mutually cis terminal oxo (MoO = 1.665(2) Å) and monodentate iPrpz and iPrpzH ligands. The latter are formed by B-N bond cleavage of TpiPr. The complex can also be synthesized by reacting NEt4[TpiPrMo(CO)3] with excess 3-isopropylpyrazole and dioxygen at 100 °C. Cleavage of the B-N bond(s) of TpiPr was also observed in the formation of TpiPrMoO(SPh)(iPrpzH) (3) as a by-product in the synthesis of TpiPrMoO2(SPh). In the monohydrate, 3 exhibits a distorted octahedral geometry defined by a tridentate fac-TpiPr ligand and mutually cis terminal oxo (MoO = 1.676(3) Å) and monodentate SPh and iPrpzH ligands. The pyrazole β-NH group is observed to participate in a hydrogen-bond to the lattice water molecule. The complex can be synthesized in high yield by reducing TpiPrMoO2(SPh) by HSPh or PPh3 in the presence of excess 3-isopropylpyrazole.  相似文献   

11.
The [ReOX3(AsPh3)(OAsPh3)] (X = Cl or Br) complexes react with two equivalents of 3,5-dimetylopyrazole (3,5-Me2pzH) in acetone at room temperature to give [{Re(O)X2(3,5- Me2pzH)2}2(μ-O)] (1 and 2). In the case of [ReOBr3(AsPh3)(OAsPh3)], a small quantity of the dinuclear rhenium complex [{Re(O)Br(3,5-Me2pzH)}2(μ-O)(μ-3,5-Me2pz)2] (3) has been isolated next to the main product 2. Treatment of [ReOX3(PPh3)2] compounds with two equivalents of 3,5-Me2pzH in acetone at room temperature leads to the isolation of symmetrically substituted dinuclear rhenium complexes [{Re(O)X(PPh3)}2(μ-O)(μ-3,5-Me2pz)2] (4 and 5). Refluxing of [ReO(OEt)X2(PPh3)2] complexes with 3,5-Me2pzH in ethanol affords unsymmetrically substituted dinuclear rhenium [{Re(O)X(PPh3)}(μ-O)(μ-3,5-Me2pz)2{Re(O)X(3,5- Me2pzH)}] complexes (6 and 7). The complexes obtained in these reactions have been characterised by IR, UV-Vis, 1H and 31P NMR. The crystal and molecular structures have been determined for 1, 2, 3, 4, 6 and 7 complexes.  相似文献   

12.
The reaction of FcCOCl (Fc = (C5H5)Fe(C5H4)) with benzimidazole or imidazole in 1:1 ratio gives the ferrocenyl derivatives FcCO(benzim) (L1) or FcCO(im) (L2), respectively. Two molecules of L1 or L2 can replace two nitrile ligands in [Mo(η3-C3H5)(CO)2(CH3CN)2Br] or [Mo(η3- C5H5O)(CO)2(CH3CN)2Br] leading to the new trinuclear complexes [Mo(η3-C3H5)(CO)2(L)2Br] (C1 for L = L1; C3 for L = L2) and [Mo(η3-C5H5O)(CO)2(L)2Br] (C2 for L = L1; C4 for L = L2) with L1 and L2 acting as N-monodentade ligands. L1, L2 and C2 were characterized by X-ray diffraction studies. [Mo(η3-C5H5O)(CO)2(L1)2Br] was shown to be a trinuclear species, with the two L1 molecules occupying one equatorial and one axial position in the coordination sphere of Mo(II). Cyclic voltammetric studies were performed for the two ligands L1 and L2, as well as for their molybdenum complexes, and kinetic and thermodynamic data for the corresponding redox processes obtained. In agreement with the nature of the frontier orbitals obtained from DFT calculations, L1 and L2 exhibit one oxidation process at the Fe(II) center, while C1, C3, and C4 display another oxidation wave at lower potentials, associated with the oxidation of Mo(II).  相似文献   

13.
Reaction of [Mo2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 or metallic Mo under hydrothermal conditions (140 °C, 4 M HCl) gives oxido-sulfido cluster aqua complex [Mo33-S)(μ-O)2(μ-S)(H2O)9]4+ (1). Similarly, [W33-S)(μ-O)2(μ-S)(H2O)9]4+ (2) is obtained from [W2O2(μ-S)2(H2O)6]2+ and W(CO)6. While reaction of [Mo2O2(μ-S)2(H2O)6]2+ with W(CO)6 mainly proceeds as simple reduction to give 1, [W2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 produces new mixed-metal cluster [W2Mo(μ3-S)(μ-O)2(μ-S)(H2O)9]4+ (3) as main product. From solutions of 1 in HCl supramolecular adduct with cucurbit[6]uril (CB[6]) {[Mo3O2S2(H2O)6Cl3]2CB[6]}Cl2⋅18H2O (4) was isolated and structurally characterized. The aqua complexes were converted into acetylacetonates [M3O2S2(acac)3(py)3]PF6 (M3 = Mo3, W3, W2Mo; 5a-c), which were characterized by X-ray single crystal analysis, electrospray ionization mass spectrometry and 1H NMR spectroscopy. Crystal structure of (H5O2)(Me4N)4[W33-S)(μ2-S)(μ2-O)2(NCS)9] (6), obtained from 2, is also reported.  相似文献   

14.
The reaction of the dihydrido iridium(III) precursor [IrH2(Cl)(PiPr3)2] (5) with internal alkynes RCC(CO2Me) (R = Me, CO2Me) afforded the five-coordinate hydrido(vinyl) complexes [IrH(Cl){(E)-C(R)CH(CO2Me)}(PiPr3)2] (6, 7), via insertion of the alkyne into one of the IrH bonds. Compounds 6 and 7 are also accessible by careful hydrogenation of the alkyne iridium(I) derivatives trans-[IrCl{RCC(CO2Me)}(PiPr3)2] (9, 10), the latter being prepared from in situ generated trans-[IrCl(C8H14)(PiPr3)2] and RCC(CO2Me). UV irradiation of 6 (R = CO2Me) led to the formation of the isomer [IrH(Cl){κ2(C,O)-C(CO2Me)CHC(OMe)O}(PiPr3)2] (3) having the vinyl ligand coordinated in a bidentate fashion. While 6 reacted with acetonitrile and CO to afford the six-coordinate iridium(III) compounds [IrH(Cl){(E)-C(CO2Me)CH(CO2Me)}(L′)(PiPr3)2] (11, 12), treatment of 6 with LiC5H5 gave the half-sandwich-type complex [(η5-C5H5)IrH{(E)-C(CO2Me)CH(CO2Me)}(PiPr3)] (13) by, the loss of one PiPr3. The reaction of 3 with CO under pressure resulted in the formation of [IrH(Cl){(Z)-C(CO2Me)CH(CO2Me)}(CO)(PiPr3)2] (14) in which, in contrast to the stereoisomer 12, the two CO2Me substituents are trans disposed.  相似文献   

15.
Synthesis and single crystal X-ray structures of H2L1 and VO(L1)(HL) [H2L1 = N,N-bis(2-hydroxy-3,5-ditertiarybutyl)-N′,N′-dimethylethylendiamine) or simply aminebis(phenol) and H2L = salicylic acid) are reported here. The complex [VO(L1)(HL)] is in distorted octahedral geometry under O4N2 donor environment where the basal core is defined by O(1), O(3), O(2) and N(5) atoms and two axial coordinates are occupied by O(4), an alkoxo-group and N(1), an imino-nitrogen atom. The electron spray mass spectrometric study on [VO(L1)(HL)] in MeCN clearly points out the existence of single species in solution. Again, the 51V NMR of the bulk polycrystalline sample reveals that the complex [VO(L1)(HL)] mainly exists in three out of four possible isomers. The formation of [VO(L1)(HL)] from both [VO(L1)(OMe)] and [VO(L1)(OEt)] was followed kinetically by reacting with salicylic acid in MeCN. The presence of isosbestic point indicates a clean conversion of the reactants to product.  相似文献   

16.
Sequential conversion of molecular oxygen into peroxo- and hydroperoxo-metal species involved in an effective O2-activation is verified for the TpiPr2Rh system by isolation and characterization of the intermediates. O2-treatment of the Rh(I) precursor, TpiPr2Rh(dppe) (1), in the presence of 3,5-diisopropylpyrazole (H-pziPr2) gives the κ2-peroxometal complex, TpiPr2(H-pziPr2)Rh(κ2-O2) (2), which is subsequently converted to the hydroperoxo complex, TpiPr2(H-pzH2)(pzH2)Rh-OOH (4), upon treatment with pyrazole (H-pzH2). The peroxo species 2 and 4 have been characterized by spectroscopic and crystallographic methods and it is revealed that, in the present N-rich coordination system, the basic peroxo ligands (O2, OOH) form hydrogen-bonding interactions with the proximal N- and NH-functional groups.  相似文献   

17.
A series of oxo-vanadium(IV) complexes: TpVO(pzH)(CH3COO) (1), TpVO(pzH)(CCl3COO) (2), TpVO(pzH)(C6H5COO) (3), TpVO(pzH)(m-NO2-C6H4COO)·CH3CN (4) and [TpVO(pzH)(H2O)]+[m-NO2-C6H4-SO3]·CH3OH (5) (Tp = hydrotris(3,5-dimethylpyrazolyl)borate; pzH = 3,5-dimethylpyrazole) are synthesized in methanol solution under physiological conditions. They are characterized by elemental analysis, IR, UV-Vis and X-ray crystallography. Structural analyses show that the vanadium atoms in complexes 1-5 are all in a distorted-octahedral environment with the N4O2 donor set, and intra- or inter-hydrogen bonding linkages have been also observed in each complex. Bromination reaction activity of the complexes has been evaluated by the method with phenol red as organic substrate in the presence of H2O2, Br and phosphate buffer, indicating that they can be considered as potential functional model vanadium-dependent haloperoxidases. In addition, thermal analysis and quantum chemistry calculations were also performed and discussed in detail.  相似文献   

18.
A novel bridging ligand 2,2′-bis(1,2,4-triazino[5,6-f]phenanthren-3-yl)-4,4′-bipyridine (btpb) and its mononuclear ruthenium(II) complex [Ru(bpy)2(btpb)]2+ (Rubtpb; bpy = 2,2′-bipyridyl) and dinuclear ruthenium(II) complex [Ru(bpy)2(btpb)Ru(bpy)2]4+ (Ru2btpb) have been synthesized and characterized by elemental analyses, fast atom bombardment or electrospray mass spectra, 1H NMR, and electronic spectroscopy. Binding behaviors of the mono- and dinuclear complexes with calf thymus DNA (CT-DNA) have been investigated by absorption spectra, viscosity measurements, and equilibrium dialysis experiments. As the concentration of DNA is increased, the electronic absorption spectra bands at the metal-ligand charge transfer of the mononuclear complex Rubtpb at 501.0 nm exhibit hypochromism of about 17.4% and bathochromism of 2.0 nm, the dinuclear complex Ru2btpb at 511.0 nm exhibits hypochromism of about 24.8% and bathochromism of 1.0 nm. The increasing amounts of the complexes on the relative viscosities of CT-DNA are much smaller than that of the classic intercalators. The experiments suggest that the Rubtpb and Ru2btpb may be bound to DNA by non-intercalating binder.  相似文献   

19.
The reaction of Mo2(μ-O2CCH3)4 with 2-pyridyl(diisopropylphosphino)methane (NP) affords the dimolybdenum(V) complex Mo2(μ-O)2O2Cl22-NP)2 (1). Complexes of the related 2-pyridylbis(diisopropylphosphino)methane ligand (NP2) have been isolated, namely, a mixed bromo/chloro complex of composition PdBr1.09Cl0.912-NP2) (2) and the dicopper(I) complex [Cu2(μ-η3-NP2)2](BF4)2 (3). The structures of 1, 2 and 3 have been established by X-ray crystallography.  相似文献   

20.
The new complex, [RuII(bpy)2(4-HCOO-4′-pyCH2 NHCO-bpy)](PF6)2 · 3H2O (1), where 4-HCOO-4′-pyCH2NHCO-bpy is 4-(carboxylic acid)-4′-pyrid-2-ylmethylamido-2,2′-bipyridine, has been synthesised from [Ru(bpy)2(H2dcbpy)](PF6)2 (H2dcbpy is 4,4′-(dicarboxylic acid)-2,2′-bipyridine) and characterised by elemental analysis and spectroscopic methods. An X-ray crystal structure determination of the trihydrate of the [Ru(bpy)2(H2dcbpy)](PF6)2 precursor is reported, since it represented a different solvate to an existing structure. The structure shows a distorted octahedral arrangement of the ligands around the ruthenium(II) centre and is consistent with the carboxyl groups being protonated. A comparative study of the electrochemical and photophysical properties of [RuII(bpy)2(4-HCOO-4′-pyCH2NHCO-bpy)]2+ (1), [Ru(bpy)2(H2dcbpy)]2+ (2), [Ru(bpy)3]2+ (3), [Ru(bpy)2Cl2] (4) and [Ru(bpy)2Cl2]+ (5) was then undertaken to determine their variation upon changing the ligands occupying two of the six ruthenium(II) coordination sites. The ruthenium(II) complexes exhibit intense ligand centred (LC) transition bands in the UV region, and broad MLCT bands in the visible region. The ruthenium(III) complex, 5, displayed overlapping LC bands in the UV region and a LMCT band in the visible. 1, 2 and 3 were found, via cyclic voltammetry at a glassy carbon electrode, to exhibit very positive reversible formal potentials of 996, 992 and 893 mV (versus Fc/Fc+) respectively for the Ru(III)/Ru(II) half-cell reaction. As expected the reversible potential derived from oxidation of 4 (−77 mV (versus Fc/Fc+)) was in excellent agreement with that found via reduction of 5 (−84 mV (versus Fc/Fc+)). Spectroelectrochemical experiments in an optically transparent thin-layer electrochemical cell configuration allowed UV-Vis spectra of the Ru(III) redox state to be obtained for 1, 2, 3 and 4 and also confirmed that 5 was the product of oxidative bulk electrolysis of 4. These spectrochemical measurements also confirmed that the oxidation of all Ru(II) complexes and reduction of the corresponding Ru(III) complex are fully reversible in both the chemical and electrochemical senses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号