首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and relatively rapid reversed-phase HPLC method was applied to the enantiomeric separation of tramadol and its two main metabolites, O-desmethyltramadol (M1) and N-desmethyltramadol (M2) in plasma samples. Chromatography was performed on an AGP column containing alpha1-acid glycoprotein as chiral selector with a mobile phase of 30 mM diammonium hydrogen phosphate buffer-acetonitrile-triethylamine (98.9:1:0.1, v/v), adjusted to pH 7 by phosphoric acid, and a flow rate of 0.5 ml/min. The fluorescence of analytes was detected at excitation and emission wavelengths of 200 and 301 nm, respectively. The sample preparation was a simple extraction with ethyl acetate using fluconazol as internal standard (IS). The enantiomers of all analytes and IS peaks eluted within 32 min, without any endogenous interference. The calibration curves were linear (r(2) > 0.993) in the concentration range of 2-200, 2.5-100 and 2.5-75 ng/ml for tramadol, M1, and M2 enantiomers, respectively. The within- and between-day variation determined by the measurement of quality control samples at four tested concentrations, showed acceptable values. The lower limit of quantitation was 2 ng/ml for tramadol enantiomers and 2.5 ng/ml for M1 or M2 enantiomers. Mean recoveries of enantiomers from plasma samples were > 81% for all analytes. The procedure was applied to assess the pharmacokinetics of the enantiomers of tramadol and its two main metabolites following oral administration of single 100-mg doses to healthy volunteers.  相似文献   

2.
A simple and highly sensitive high-performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of lansoprazole enantiomers and their metabolites, 5-hydroxylansoprazole enantiomers and lansoprazole sulfone, in human plasma have been developed. Chromatographic separation was achieved with a Chiral CD-Ph column using a mobile phase of 0.5M NaClO(4)-acetonitrile-methanol (6:3:1 (v/v/v)). The analysis required only 100 microl of plasma and involved a solid-phase extraction with Oasis HLB cartridge, with a high extraction recovery (>94.1%) and good selectivity. The lower limit of quantification (LOQ) of this assay was 10 ng/ml for each enantiomer of both lansoprazole and 5-hydroxylansoprazole, and 5 ng/ml for lansoprazole sulfone. The coefficient of variation of inter- and intra-day assay was <8.0% and accuracy was within 8.4% for all analytes (concentration range 10-1000 ng/ml). The linearity of this assay was set between 10 and 1000 ng/ml (r2>0.999 of the regression line) for each of the five analytes. This method is applicable for accurate and simultaneous monitoring of the plasma levels of lansoprazole enantiomers and their metabolites in the renal transplant recipients.  相似文献   

3.
A sensitive, selective and rapid liquid chromatographic/electrospray ionization tandem mass spectrometric assay was developed and validated for the simultaneous quantification of 16-dehydropregnenolone (DHP) and its five metabolites 4,16-pregnadien-3, 20-dione (M(1)), 5-pregnene-3beta-ol-20-one (M(2)), 5-pregnene-3beta, 20-diol (M(3)), 5-pregnene-3beta-ol-16, 17-epoxi-20-one (M(4)) and 5,16-pregnadien-3beta, 11-diol-20-one (M(5)) in rabbit plasma using dexamethasone as internal standard (IS). The analytes were chromatographed on Spheri-5 RP-18 column (5 microm, 100 mm x 4.6 mm i.d.) coupled with guard column using acetonitrile:ammonium acetate buffer (90:10, v/v) as mobile phase at a flow rate of 0.65 ml/min. The quantitation of the analytes was carried out using API 4000 LC-MS-MS system in the multiple reaction monitoring (MRM) mode. The method was validated in terms of linearity, specificity, sensitivity, recovery, accuracy, precision (intra- and inter-assay variation), freeze-thaw, long-term, auto injector and dry residue stability. Linearity in plasma was observed over a concentration range of 1.56-400 ng/ml with a limit of detection (LOD) of 0.78 ng/ml for all analytes except M(3) and M(5) where linearity was over the 3.13-400 ng/ml with LOD of 1.56 ng/ml. The absolute recoveries from plasma were consistent and reproducible over the linearity range for all analytes. The intra- and inter-day accuracy and precision method were within the acceptable limits and the analytes were stable after three freeze-thaw cycles and their dry residues were stable at -60 degrees C for 15 days. The method was successfully applied to determine concentrations of DHP and its putative metabolites in plasma during a pilot pharmacokinetic study in rabbits.  相似文献   

4.
Tramadol, an analgesic agent, and its two main metabolites O-desmethyltramadol (M1) and N-desmethyltramadol (M2) were determined simultaneously in human plasma by a rapid and specific HPLC method. The sample preparation was a simple extraction with ethyl acetate. Chromatographic separation was achieved with a Chromolith Performance RP-18e 50 mm x 4.6 mm column, using a mixture of methanol:water (13:87, v/v) adjusted to pH 2.5 by phosphoric acid, in an isocratic mode at flow rate of 2 ml/min. Fluorescence detection (lambda(ex)=200 nm/lambda(em)=301 nm) was used. The calibration curves were linear (r(2)>0.997) in the concentration range of 2.5-500 ng/ml, 1.25-500 ng/ml and 5-500 ng/ml for tramadol, M1 and M2, respectively. The lower limit of quantification was 2.5 ng/ml for tramadol, 1.25 ng/ml for M1 and 5 ng/ml for M2. The within- and between-day precisions in the measurement of QC samples at four tested concentrations were in the range of 2.5-9.7%, 2.5-9.9% and 5.9-11.3% for tramadol, M1 and M2, respectively. The developed procedure was applied to assess the pharmacokinetics of tramadol and its two main metabolites following administration of 100mg single oral dose of tramadol to healthy volunteers.  相似文献   

5.
This study describes the enantioselective analysis of unbound and total concentrations of tramadol and its main metabolites O-desmethyltramadol (M1) and N-desmethyltramadol (M2) in human plasma. Sample preparation was preceded by an ultrafiltration step to separate the unbound drug. Both the ultrafiltrate and plasma samples were submitted to liquid/liquid extraction with methyl t-butyl ether. Separation was performed on a Chiralpak(?) AD column and tandem mass spectrometry consisting of an electrospray ionization source, positive ion mode and multiple reaction monitoring was used as the detection system. Linearity was observed in the following ranges: 0.2-600 and 0.5-250 ng/mL for analysis of total and unbound concentrations of the tramadol enantiomers, respectively, and 0.1-300 and 0.25-125 ng/mL for total and unbound concentrations of the M1 and M2 enantiomers, respectively. The lower limits of quantitation were 0.2 and 0.5 ng/mL for analysis of total and unbound concentration of each tramadol enantiomer, respectively, and 0.1 and 0.25 ng/mL for total and unbound concentrations of M1 and M2 enantiomers, respectively. Intra- and interassay reproducibility and inaccuracy did not exceed 15%. Clinical application of the method to patients with neuropathic pain showed plasma accumulation of (+)-tramadol and (+)-M2 after a single oral dose of racemic tramadol. Fractions unbound of tramadol, M1 or M2 were not enantioselective in the patients investigated.  相似文献   

6.
The effects of route of administration on the stereoselective pharmacokinetics of tramadol (T) and its active metabolite (M1) were studied in rats. A single 20 mg/kg dose of racemic T was administered through intravenous, intraperitoneal, or oral route to different groups of rats, and blood and urine samples were collected. Samples were analyzed using chiral chromatography, and pharmacokinetic parameters (mean +/- SD) were estimated by noncompartmental methods. Following intravenous injection, there was no stereoselectivity in the pharmacokinetics of T. Both enantiomers showed clearance values (62.5 +/- 27.2 and 64.4 +/- 39.0 ml/min/kg for (+)- and (-)-T, respectively) that were equal or higher than the reported liver blood flow in rats. Similar to T, the area under the plasma concentration-time curves (AUCs) of M1 did not exhibit stereoselectivity after intravenous administration of the parent drug. However, the systemic availability of (+)-T was significantly (P < 0.05) higher than that of its antipode following intraperitoneal (0.527 +/- 0.240 vs. 0.373 +/- 0.189) and oral (0.307 +/- 0.136 vs. 0.159 +/- 0.115) administrations. The AUC of the M1 enantiomers, on the other hand, remained mostly nonstereoselective regardless of the route of administration. Pharmacokinetic analysis indicated that the stereoselectivity in the pharmacokinetics of oral T is due to stereoselective first pass metabolism in the liver and, possibly, in the gastrointestinal tract. The direction and extent of stereoselectivity in the pharmacokinetics of T and M1 in rats were in agreement with those previously reported in humans, suggesting that the rat may be a suitable model for enantioselective studies of T pharmacokinetics.  相似文献   

7.
This paper describes a method of determining clioquinol levels in hamster plasma and tissue by means of HPLC and electrochemical detection. Clioquinol was separated on a Nucleosil C18 300 mm x 3.9 mm i.d. 7 microm column at 1 ml/min using a phosphate/citrate buffer 0.1M (400 ml) with 600 ml of a methanol:acetonitrile (1:1, v/v) mobile phase. The retention times of clioquinol and the IS were, respectively, 11.6 and 8.1 min; the quantitation limit (CV>8%) was 5 ng/ml in plasma and 10 ng/ml in tissues. The intra- and inter-assay accuracies of the method were more than 95%, with coefficients of variation between 3.0 and 7.7%, and plasma and tissue recovery rates of 72-77%. There was a linear response to clioquinol 5-2000 ng/ml in plasma, and 10-1000 ng/g in tissues. The method is highly sensitive and selective, makes it possible to study the pharmacokinetics of plasma clioquinol after oral administration and the distribution of clioquinol in tissues, and could be used to monitor plasma clioquinol levels in humans.  相似文献   

8.
An HPLC system using solid-phase extraction and HPLC with UV detection has been validated in order to determine tramadol and o-desmethyltramadol (M1) concentrations in human plasma. The method developed was selective and linear for concentrations ranging from 50 to 3500 ng/ml (tramadol) and 50 to 500 ng/ml (M1) with mean recoveries of 94.36±12.53% and 93.52±7.88%, respectively. Limit of quantitation (LOQ) was 50 ng/ml. For tramadol, the intra-day accuracy ranged from 95.48 to 114.64% and the inter-day accuracy, 97.21 to 103.24%. Good precision (0.51 and 18.32% for intra- and inter-day, respectively) was obtained at LOQ. The system has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.  相似文献   

9.
A fast, simple, and a reliable high-performance liquid chromatography linked with electrochemical detector (HPLC-ECD) method for the assessment of lipoic acid (LA) and dihydrolipoic acid (DHLA) in plasma was developed using naproxen sodium as an internal standard (IS) and validated according to standard guidelines. Extraction of both analytes and IS from plasma (250 μl) was carried out with a single step liquid-liquid extraction applying dichloromethane. The separated organic layer was dried under stream of nitrogen at 40°C and the residue was reconstituted with the mobile phase. Complete separation of both compounds and IS at 30°C on Discovery HS C18 RP column (250 mm × 4.6 mm, 5 μm) was achieved in 9 min using acetonitrile: 0.05 M phosphate buffer (pH 2.4 adjusted with phosphoric acid) (52:48, v/v) as a mobile phase pumped at flow rate of 1.5 ml min(-1) using electrochemical detector in DC mode at the detector potential of 1.0 V. The limit of detection and limit of quantification for lipoic acid were 500 pg/ml and 3 ng/ml, and for dihydrolipoic acid were 3 ng/ml and 10 ng/ml, respectively. The absolute recoveries of lipoic acid and dihydrolipoic acid determined on three nominal concentrations were in the range of 93.40-97.06, and 93.00-97.10, respectively. Similarly coefficient of variations (% CV) for both intra-day and inter-day were between 0.829 and 3.097% for lipoic acid and between 1.620 and 5.681% for dihydrolipoic acid, respectively. This validated method was applied for the analysis of lipoic acid/dihydrolipoic acid in the plasma of human volunteers and will be used for the quantification of these compounds in patients with oxidative stress induced pathologies.  相似文献   

10.
A method for the simultaneous determination of +S and -R arotinolol in serum by micellar electrokinetic capillary chromatography is described. Stereoselective resolution of the arotinolol enantiomers was achieved using 5 mM sodium taurocholate in 10 mM sodium dihydrogen phosphate buffer of pH 2.5. A 72-cm uncoated fused-silica capillary at a constant voltage of 15 kV was used for the analysis. The analytes of interest were extracted from serum using solid phase extraction. An octadecyl cartridge gave good recoveries in excess of 87% for both +S and -R arotinolol without any interference. The calibration curves were linear over the range of 50-500 ng ml(-1) with +S propranolol as the internal standard and the coefficient of determination was greater than 0.999 (n = 3). The limit of quantitation was 50 ng ml(-1) for each enantiomer and the detection limit using 1 ml serum and a UV detection set et 220 nm was 25 ng ml(-1) (S/N = 2). Precision and accuracy of the method were in the range 0.8-2.7% and 1.2-6.4%, respectively, for +S arotinolol and 1.1-3.9% and 2.2-6.5%, respectively, for -R arotinolol.  相似文献   

11.
A precise, sensitive and high throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of trazodone (TRZ) and its primary metabolite, m-chlorophenylpiperazine (mCPP), in human plasma was developed and validated. The analytes and the internal standard-nefazodone were extracted from 500 microL aliquots of human plasma via liquid-liquid extraction in n-hexane. Chromatographic separation was achieved in a run time of 2.5 min on a Betabasic cyano column (100 mm x 2.1 mm, 5 microm) under isocratic conditions. Detection of analytes and IS was done by tandem mass spectrometry, operating in positive ion and multiple reaction monitoring (MRM) acquisition mode. The protonated precursor to product ion transitions monitored for TRZ, mCPP and IS were m/z 372.2-->176.2, 197.2-->118.1 and 470.5-->274.6 respectively. The method was fully validated for its sensitivity, selectivity, accuracy and precision, matrix effect, stability study and dilution integrity. A linear dynamic range of 10.0-3000.0 ng/mL for TRZ and 0.2-60.0 ng/mL for mCPP was evaluated with mean correlation coefficient (r) of 0.9986 and 0.9990 respectively. The intra-batch and inter-batch precision (%CV) across five validation runs (LLOQ, lower limit of quantitation; LQC, low quality control; MQC, middle quality control; HQC, high quality control and ULOQ, upper limit of quantitation) was < or =8.4% for both the analytes. The method was successfully applied to a bioequivalence study of 100mg trazodone tablet formulation in 36 healthy Indian male subjects under fasting and fed conditions.  相似文献   

12.
A liquid chromatography-tandem mass spectrometry (LC/MS/MS) method was developed and validated for the quantitation of (R)-, (S)-fluoxetine, and (R)-, (S)-norfluoxetine in ovine plasma. The analytes were extracted from ovine plasma at a basic pH using a single-step liquid-liquid extraction with methyl-tert-butyl ether. Chromatographic separation of all enantiomers was achieved using an AGP-chiral column with a run time of 10 min. (R)-, (S)-fluoxetine, and (R)-, (S)-norfluoxetine were quantitated at the total ion current (TIC) of multiple reaction monitoring (MRM) transitions of m/z 310.2→44.1, m/z 310.2→147.7 for (R)-, (S)-fluoxetine, and m/z 296.2→30.3, m/z 296.2→133.9 for (R)-, (S)-norfluoxetine. This method was validated for accuracy, precision, linearity, range, limit of quantitation (LOQ), selectivity, recovery, dilution integrity, matrix effect, and evaluation of carry-over. Observed accuracy ranges were as follows: (R)-fluoxetine -8.82 to 3.75%; (S)-fluoxetine -10.8 to 1.46%; (R)-norfluoxetine -7.50 to 0.37% and (S)-norfluoxetine -8.77% to -1.33%. Observed precision ranges were as follows: (R)-fluoxetine 5.29-11.5%; (S)-fluoxetine 3.91-11.1%; (R)-norfluoxetine 4.32-7.67% and (S)-norfluoxetine -8.77% to -1.33%. The calibration curves were weighted (1/X(2), n=4) and observed to be linear for all analytes with the following r(2) values: (R)-fluoxetine ≥ 0.997; (S)-fluoxetine ≥ 0.996; (R)-norfluoxetine ≥ 0.989 and (S)-norfluoxetine ≥ 0.994. The analytical range of the method was 1-500 ng/ml with an LOQ of 1 ng/ml for all analytes, using a sample volume of 300 μL.  相似文献   

13.
A sensitive and automated method for the separation and individual determination of tramadol enantiomers in plasma has been developed using solid-phase extraction (SPE) on disposable extraction cartridges (DECs) in combination with chiral liquid chromatography (LC). The SPE operations were performed automatically by means of a sample processor equipped with a robotic arm (ASPEC system). The DEC filled with ethyl silica (50 mg) was first conditioned with methanol and phosphate buffer, pH 7.4 A 1.0-ml volume of plasma was then applied on the DEC. The washing step was performed with the same buffer. The analytes were eluted with 0.15 ml of methanol, and 0.35 ml of phosphate buffer, pH 6.0, containing sodium perchlorate (0.2 M) were added to the extract before injection into the LC system. The enantiomeric separation of tramadol was achieved using a Chiralcel OD-R column containing cellulose tris-(3,5-dimethylphenylcarbamate) as chiral stationary phase. The mobile phase was a mixture of phosphate buffer, pH 6.0, containing sodium perchlorate (0.2 M) and acetonitrile (75:25). The mobile-phase pH and the NaClO4 concentration were optimized with respect to enantiomeric resolution. The method developed was validated. Recoveries for both enantiomers of tramadol were about 100%. The method was found to be linear in the 2.5–150 ng/ml concentration range [r2=0.999 for (+)- and (−)-tramadol]. The repeatability and intermediate precision at a concentration of 50 ng/ml were 6.5 and 8.7% for (+)-tramadol and 6.1 and 7.6% for (−)-tramadol, respectively.  相似文献   

14.
A sensitive, stereoselective assay using solid phase extraction and LC-MS-MS was developed and validated for the analysis of (R)- and (S)-bupropion and its major metabolite (R,R)- and (S,S)-hydroxybupropion in human plasma and urine. Plasma or glucuronidase-hydrolyzed urine was acidified, then extracted using a Waters Oasis MCX solid phase 96-well plate. HPLC separation used an alpha(1)-acid glycoprotein column, a gradient mobile phase of methanol and aqueous ammonium formate, and analytes were detected by electrospray ionization and multiple reaction monitoring with an API 4000 Qtrap. The assay was linear in plasma from 0.5 to 200 ng/ml and 2.5 to 1000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. The assay was linear in urine from 5 to 2000 ng/ml and 25 to 10,000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. Intra- and inter-day accuracy was >98% and intra- and inter-day coefficients of variations were less than 10% for all analytes and concentrations. The assay was applied to a subject dosed with racemic bupropion. The predominant enantiomers in both urine and plasma were (R)-bupropion and (R,R)-hydroxybupropion. This is the first LC-MS/MS assay to analyze the enantiomers of both bupropion and hydroxybupropion in plasma and urine.  相似文献   

15.
A reversed-phase liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method was developed and validated for simultaneous determination of ABT-888 and its major metabolite (M8) in human plasma. Sample preparation involved a liquid–liquid extraction by the addition of 0.25 ml of plasma with 10 μl of 1 M NaOH and 1.0 ml ethyl acetate containing 50 ng/ml of the internal standard zileuton. The analytes were separated on a Waters XBridge C18 column using a gradient mobile phase consisting of methanol/water containing 0.45% formic acid at the flow rate of 0.2 ml/min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the ABT-888 and M8 concentration ranges of 1–2000 ng/ml in human plasma. The lower limits of quantitation (LLOQ) were 1 ng/ml for both ABT-888 and M8 in human plasma. The accuracy and within- and between-day precisions were within the generally accepted criteria for bioanalytical method (<15%). This method was successfully employed to characterize the plasma concentration–time profile of ABT-888 after its oral administration in cancer patients.  相似文献   

16.
Tramadol (T) is available as a racemic mixture of (+)‐trans‐T and (−)‐trans‐T. The main metabolic pathways are O‐demethylation and N‐demethylation, producing trans‐O‐desmethyltramadol ( M1 ) and trans‐N‐desmethyltramadol ( M2 ) enantiomers, respectively. The analgesic effect of T is related to the opioid activity of (+)‐trans‐T and (+)‐ M1 and to the monoaminergic action of (+/−)‐trans‐T. This is the first study using tandem mass spectrometry as a detection system for the simultaneous analysis of trans‐T, M1 , and M2 enantiomers. The analytes were resolved on a Chiralpak® AD column using hexane:ethanol (95.5:4.5, v/v) plus 0.1% diethylamine as the mobile phase. The quantitation limits were 0.5 ng/ml for trans‐T and M1 and 0.1 ng/ml for M2 . The method developed and validated here was applied to a pharmacokinetic study in rats. Male Wistar rats (n = 6 at each time point) received a single oral dose of 20 mg/kg racemic trans‐T. Blood samples were collected up to 12 h after drug administration. The kinetic disposition of trans‐T and M2 was enantioselective (AUC(+)/(−) ratio = 4.16 and 6.36, respectively). The direction and extent of enantioselectivity in the pharmacokinetics of trans‐T and M2 in rats were comparable to data previously reported for healthy volunteers, suggesting that rats are a suitable model for enantioselective studies of trans‐T pharmacokinetics. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Torasemide is a "loop type" diuretic drug. For pharmacokinetic studies sensitive analytic methods are essential for authentic qualitative and quantitative information. A robust, selective and sensitive HPLC method is described for the simultaneous determination of torasemide, its major metabolite M5 and its active metabolites M1 and M3 and an internal standard within 17 min. Solid-phase extraction with C(2)-cartridges was used for the clean-up of plasma samples. The chromatographic separation was carried out on a CN-column with a mobile phase consisting of perchloric acid (0.02 M, pH 2.5)/acetonitrile (90/10, v/v)). The calibration range used reached from 20 to 1000 ng/ml for all analytes. Coefficients of variation were less than 10% at every calibration point for each analyte. Plasma concentrations in samples obtained from volunteers in the course of a clinical study could be reliably measured with this method. Median maximum concentrations in plasma after a 10mg oral dose during a 24h study interval were located at 1h for torasemide, 1h for M1 and 2h for M5. Concentrations between 2226 and <20 ng/ml for torasemide, between 159 and <20 ng/ml for M1 and between 420 and <20 ng/ml for M5 were observed.  相似文献   

18.
Nateglinide (NTG), an insulin secretogogue, has been studied in rats for drug-drug interaction with cilostazol (CLZ), an antiplatelet agent commonly used in diabetics. We developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) based method that is capable of simultaneous monitoring plasma levels of nateglinide, cilostazol, and its active metabolite 3,4-dehydro-cilostazol (DCLZ). All analytes including the internal standard (Repaglinide) were chromatographed on reverse phase C(18) column (50 mm x 4.6mm i.d., 5 microm) using acetonitrile: 2mM ammonium acetate buffer, pH 3.4 (90:10, v/v) as mobile phase at a flow rate 0.4 ml/min in an isocratic mode. The detection of analyte was performed on LC-MS/MS system in the multiple reaction monitoring (MRM) mode. The quantitations for analytes were based on relative concentration. The method was validated over the concentration range of 20-2000 ng/ml and the lower limit of quantitation was 20 ng/ml. The recoveries from spiked control samples were >79% for all analytes and internal standard. Intra- and inter-day accuracy and precision of validated method were with in the acceptable limits of <15% at all concentration. The quantitation method was successfully applied for simultaneous estimation of NTG, CLZ and DCLZ in a pharmacokinetic drug-drug interaction study in Wistar rats.  相似文献   

19.
A sensitive and stereoselective high-performance liquid chromatographic assay for the quantitative determination of the analgesic tramadol and O-demethyltramadol, an active metabolite, is described in this work. Ketamine was used as internal standard. The assay involved a single tert-butymethylether extraction and liquid chromatography analysis with fluorescence detection. Chromatography was performed at 20 degrees C on a Chiracel OD-R column containing cellulose tris-(3,5-dimethylphenylcarbamate) as stationary phase, preceded by an achiral end-capped C18 column. The mobile phase was a mixture of phosphate buffer (containing sodium perchlorate (0.2 M) and triethylamine (0.09 M) adjusted to pH 6) and acetonitrile (80:20). The method developed was validated. The limit of quantitation of each enantiomer of tramadol and its active metabolite by this method was 0.5 ng/mL; only 0.5 mL of the plasma sample was required for the determination. The calibration curve was linear from 0.5 to 750 ng/mL for tramadol enantiomers, and from 0.5 to 500 ng/mL for O-demethyltramadol enantiomers. Intra and interday precision [coefficient of variation (CV)] did not exceed 10%. Mean recoveries of 95.95 and 97.87% for (+)R,R- and (-)S,S-tramadol and 97.70 and 98.79% for (+)R,R- and (-)S,S-O-demethyltramadol with CVs < 2.15% were obtained. Applicability of the method was demonstrated by a pharmacokinetic study in normal volunteers who received 100 mg of tramadol by the intravenous route.  相似文献   

20.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for simultaneous quantitation of dexamethasone palmitate and dexamethasone in human plasma was developed. After sample preparation by protein precipitation and liquid-liquid extraction, the analytes and internal standard (IS) were separated on a Venusil XBP-C8 column using gradient elution. Multiple reaction monitoring of dexamethasone palmitate, dexamethasone and IS used the precursor to product ion transitions at m/z 631.8-->373.1, m/z 393.2-->147.1 and m/z 264.2-->58.1, respectively. The method was linear over the ranges 1.5-1000ng/mL for dexamethasone palmitate and 2.5-250ng/mL for dexamethasone with intra- and inter-day precisions of <10% and accuracies of 100+/-7%. The assay was applied to a clinical pharmacokinetic study involving the injection of dexamethasone palmitate to healthy volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号