首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes in polyamines (PAs) in cells and cultivation media of alfalfa (Medicago sativa L.) and tobacco bright yellow 2 (BY-2) (Nicotiana tabacum L.) cell suspension cultures were studied over their growth cycles. The total content of PAs (both free and conjugated forms) was nearly 10 times higher in alfalfa, with high level of free putrescine (Put) (in exponential growth phase it represented about 65-73% of the intracellular Put pool). In contrast, the high content of soluble Put conjugates was found in tobacco cells (in exponential phase about 70% of the intracellular Put). Marked differences occurred in the amount of PAs excreted into the cultivation medium: alfalfa cells excreted at the first day after inoculation 2117.0, 230.5, 29.0 and 88.0 nmol g(-1) of cell fresh weight (FW) of Put, spermidine (Spd), spermine (Spm) and cadaverine (Cad), respectively, while at the same time tobacco cells excreted only small amount of Put and Spd (12.7 and 2.4 nmol g(-1) FW, respectively). On day 1 the amounts of Put, Spd, Spm and Cad excreted by alfalfa cells represented 21, 38, 12 and 15% of the total pool (intra- plus extra-cellular contents) of Put, Spd, Spm and Cad, respectively. In the course of lag-phase and the beginning of exponential phase the relative contents of extracellular PAs continually decreased (with the exception of Cad). On day 10, the extracellular Put, Spd, Spm and Cad still represented 11.3, 10.9, 2.1 and 27% of their total pools. The extracellular PAs in tobacco cells represented from day 3 only 0.1% from their total pools. The possible role of PA excretion into the cultivation medium in maintenance of intracellular PA contents in the cells of the two cell culture systems, differing markedly in growth rate and PA metabolism is discussed.  相似文献   

2.
We compared the properties of mammalian arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) in rat liver and brain. Mammalian ADC is thermally unstable and associated with mitochondrial membranes. ADC decarboxylates both arginine (Km = 0.75 mM) and ornithine (Km = 0.25 mM), a reaction not inhibited by the specific ODC inhibitor, difluoromethylomithine. ADC activity is inhibited by Ca2+, Co2+, and polyamines, is present in many organs being highest in aorta and lowest in testis, and is not recognized by a specific monoclonal antibody to ODC. In contrast, ODC is thermally stable, cytosolic, and mitochondrial and is expressed at low levels in most organs except testis. Although ADC and ODC are expressed in cultured rat C6 glioma cells, the patterns of expression during growth and confluence are very different. We conclude that mammalian ADC differs from ADC isoforms expressed in plants, bacteria, or Caenorhabditis elegans and is distinct from ODC. ADC serves to synthesize agmatine in proximity to mitochondria, an organelle also harboring agmatine's degradative enzyme, agmatinase, and a class of imidazoline receptor (I2) to which agmatine binds with high affinity.  相似文献   

3.
4.
5.
Regulation of polyamine biosynthesis during growth and differentation of Euglena gracilis was investigated. Increased activity of l-ornithine decarboxylase (EC 4.1.1.17), the enzyme which catalyzes the initial step in polyamine synthesis in Euglena, and accumulation of polyamines were observed prior to DNA replication in synchronous cultures of heterotropically or photoautotrophically grown cells. In photoatotrophic cells three maxima of polyamine synthesis were observed during the light period of the cell cycle. The transition from quiescence of active growth was accompanied in heterotrophic Euglena by a very large stimulation of ornithine decaboxylase activity and polyamine synthesis; the decrease in growth potential of these cells was correlated with a decrease in polyamine levels. In contrast, differentiation of Euglena, i.e., a shift from heterotrophic to photoautotrophic mode of living in the absence of division, led only to a minor stimulation of polyamine biosynthesis. α-Methylornithine, an inhibitor of ornithine decarboxylase, blocked the growth of heterotrophic Euglena, and depletion of intracellular polyamines decreased the differentiation rate. Both events could be reversed only by addition of putrescine to the growth medium. This study suggests that Euglena requires a minimal intracellular level of polyamines to grow and differentiate under optimal conditions. This requirement seems to be more stringent for cell division.  相似文献   

6.
The metabolism of the naturally occurring polyamines-putrescine, spermidine and spermine-is a highly integrated system involving biosynthesis, uptake, degradation and interconversion. Metabolic differences in polyamine metabolism have long been considered to be a potential target to arrest proliferative processes ranging from cancer to microbial and parasitic diseases. Despite the early success of polyamine inhibitors such as alpha-difluoromethylornithine (DFMO) in treating the latter stages of African sleeping sickness, in which the central nervous system is affected, they proved to be ineffective in checking other major diseases caused by parasitic protozoa, such as Chagas' disease, leishmaniasis or malaria. In the use and design of new polyamine-based inhibitors, account must be taken of the presence of up-regulated polyamine transporters in the plasma membrane of the infectious agent that are able to circumvent the effect of the drug by providing the parasite with polyamines from the host. This review contains information on the polyamine requirements and molecular, biochemical and genetic characterization of different transport mechanisms in the parasitic agents responsible for a number of the deadly diseases that afflict underdeveloped and developing countries.  相似文献   

7.
Summary. In this paper we describe the polyamine biosynthesis and oxidation processes, giving an overview about recent results in free-living Amoebae.The protozoa polyamine levels are different in comparison with mammalian cells. Also, the polyamine levels in protozoa cells change if these species are pathological or not for the human beings. All the amoeba strains show high concentrations of 1,3-diaminopropane (DAP), spermidine and acetylspermidine while spermine is absent. In these amoeba a considerable polyamine oxidase activity has been found, which acts on N8-acetylspermidine, but not on free polyamines. This enzyme is responsible, together with polyamine acetylase, of DAP synthesis whose function is not well known.  相似文献   

8.
A previous study had shown that polyamines adsorb selectively on plant cell walls according to the valence of the polyamine (Messiaen et al. 1997, Plant Physiol. 113: 387–395). In this study, the adsorption of polyamines onto isolated carrot cell walls and onto pure polygalacturonic acid was investigated in the presence of competing mono- and divalent cations (Na+ and Ca2+). Putrescine (Put2+) was unable to remove all the calcium (Ca2+) from cell walls or from polygalacturonic acid. Spermidine (Spd3+) and spermine (Spm4+) adsorbed on all galacturonates and were able to remove Ca2+ completely from both the walls and the pure polygalacturonates. Therefore, Spd3+ and Spm4+, unlike Put2+, prevented polygalacturonic acid from adopting the Ca2+-induced supramolecular conformation recognized by the 2F4 anti-pectin monoclonal antibody. We show that the signal transduction cascade otherwise initiated in plant cells by Ca2+-bound α-1,4-oligogalacturonides was indeed blocked by both Spd3+ and Spm4+, but not by Put2+. The mobilization of cytosolic free Ca2+ and the cytosolic acidification usually observed after treatment with pectic fragments did not occur and the subsequent activation of phenylalanine ammonia-lyase was suppressed. It is hypothesized that the disruption by Spd3+ and Spm4+ of the Ca2+-induced supramolecular conformation of pectic fragments was the cause of the inhibition of the pectic signal. We conclude that polyamines can act on plant cell physiology by modulating the transduction of the pectic signal. Received: 14 March 1998 / Accepted: 28 October 1998  相似文献   

9.
E. Cohen  H. Kende 《Planta》1986,169(4):498-504
Submergence and treatment with ethylene or gibberellic acid (GA3) stimulates rapid growth in internodes of deepwater rice (Oryza sativa L. cv. Habiganj Aman II). This growth is based on greatly enhanced rate of cell-division activity in the intercalary meristem (IM) and on increased cell elongation. We chose polyamine biosynthesis as a biochemical marker for cell-division activity in the IM of rice stems. Upon submergence of the plant, the activity of S-adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) in the IM increased six- to tenfold within 8 h; thereafter, SAMDC activity declined. Arginine decarboxylase (ADC; EC 4.1.1.19) showed a similar but less pronounced increase in activity. The activity of ornithine decarboxylase (ODC; EC 4.1.1.17) in the IM was not affected by submergence. The levels of putrescine and spermidine also rose in the IM of submerged, whole plants while the concentration of spermine remained low. The increase in SAMDC activity was localized in the IM while the activity of ADC rose both in the node and the IM above it. The node also contained low levels of ODC activity which increased slightly following submergence. Increased activities of polyamine-synthesizing enzymes in the nodal region of submerged plants probably resulted from the promotion of adventitious root formation in the node. Treatment of excised rice-stem sections with ethylene or GA3 enhanced the activities of SAMDC and ADC in the IM and inhibited the decline in the levels of putrescine and spermidine. We conclude that SAMDC and perhaps also ADC may serve as biochemical markers for the enhancement of cell-division activity in the IM of deepwater rice.Abbreviations ADC arginine decarboxylase - GA gibberellin - IM intercalary meristem - ODC ornithine decarboxylase - SAM S-adenosylmethionine - SAMDC SAM decarboxylase  相似文献   

10.
Transgenic tobacco plants expressing the putrescine synthesis gene ornithine decarboxylase from mouse were raised to study the effects of up-regulation of a metabolic pathway as critical as the polyamine biosynthesis on the plant growth and development, in vitro-morphogenesis and their response to salt stress. Further, the response of the alternate pathway (arginine decarboxylase) for putrescine synthesis to the modulation of the ornithine decarboxylase pathway has also been investigated. The over-expression of the odc gene and increased levels of putrescine in tobacco led to a delay in plant regeneration on selection medium which could be overcome by the exogenous application of polyamine biosynthesis inhibitors and spermidine. Further, the lines generated had a variable in vitro morphogenic potential, which could be correlated to the shifts in their polyamine metabolism. These studies have brought forward the critical role played by polyamines in the normal development of plants and also their role in plant regeneration. Since polyamines are known to accumulate in cells under abiotic stress conditions, the tolerance of the transgenics to salt stress was also investigated and the transgenics with their polyamine metabolism up-graded showed increased tolerance to salt stress.  相似文献   

11.
《Journal of Asia》2022,25(1):101835
The domesticated silkworm Bombyx mori is an economically important insect that produces large quantities of silk during its 5th instar larval stage. Polyamines are important regulators of growth and have been shown to affect silk production, however their role in larval development is not completely understood. L-ornithine decarboxylase (ODC), a key regulatory enzyme in the polyamine biosynthetic pathway catalyzes the conversion of ornithine to putrescine, which is further broken down to spermidine and spermine. In this study, we set out to understand the role of ODC on the growth and development of silkworm larvae. We fed 5th instar larvae with α-difluoromethylornithine (DFMO), an ODC inhibitor and studied its impact on larval silk glands. Feeding DFMO did not alter the expression of L-ODC but led to a significant reduction in putrescine and spermidine levels. Furthermore, reduced cellular levels of polyamine led to increased oxidative stress and decreased cell viability. Subsequently, this resulted in several developmental defects at the pupal and moth stages. These findings highlight the importance of ODC in the growth and development of B. mori larvae.  相似文献   

12.
Polyamine levels and the activities of two polyamine biosynthetic enzymes, arginine decarboxylase (EC 4.1.1.19) and S-adenosylmethionine decarboxylase (EC 4.1.1.50), were determined during somatic embryogenesis of carrot (Daucus carota L.) cell cultures. Embryogenic cultures showed severalfold increases in polyamine levels over nondifferentiating controls. A mutant cell line that failed to form embryos but grew at the same rate as the wild-type line also failed to show increases in polyamine levels, thus providing evidence that this increased polyamine content was in fact associated with the development of embryos. Furthermore, inhibition of these increases in polyamines caused by drugs inhibited embryogenesis and the effect was reversible with spermidine. The activities of arginine decarboxylase and Sadenosylmethionine decarboxylase were found to be suppressed by auxin; however, the specific effects differed between exogenous 2,4-dichlorophenoxyacetic acid and endogenous indole-3-acetic acid. The results indicate that increased polyamine levels are required for cellular differentiation and development occurring during somatic embryogenesis in carrot cell cultures.Abbreviations ADC arginine decarboxylase - 2,4-D 2,4-dichlorophenoxyacetic acid - DFMA difluoromethylarginine - DCHAS dicyclohexylammonium sulfate - SAMDC S-adenosylmethionine decarboxylase  相似文献   

13.
A cDNA was cloned encoding ornithine decarboxylase (ODC) of the unicellular green alga Chlamydomonas reinhardtii. The polypeptide consists of 396 amino acid residues with 35–37% sequence identity to other eukaryotic ODCs. As indicated by the phylogenetic tree calculated by neighbour joining analysis, the Chlamydomonas ODC has the same evolutionary distances to the ODCs of higher plants and mammalians. The Chlamydomonas ODC gene contains three introns of 222, 133, and 129 bp, respectively. As revealed by Northern-blot analyses, expression of the Chlamydomonas ODC gene is neither altered throughout the vegetative cell cycle nor modulated by exogenous polyamines.  相似文献   

14.
Abstract: Although experimental animal data have implicated ornithine decarboxylase, a key regulatory enzyme of polyamine biosynthesis, in brain development and function, little information is available on this enzyme in normal or abnormal human brain. We examined the influence, in autopsied human brain, of postnatal development and aging, regional distribution, and Alzheimer's disease on the activity of ornithine decarboxylase. Consistent with animal data, human brain ornithine decarboxylase activity was highest in the perinatal period, declining sharply (by ∼60%) during the first year of life to values that remained generally unchanged up to senescence. In adult brain, a moderately heterogeneous regional distribution of enzyme activity was observed, with high levels in the thalamus and occipital cortex and low levels in cerebellar cortex and putamen. In the Alzheimer's disease group, mean ornithine decarboxylase activity was significantly increased in the temporal cortex (+76%), reduced in occipital cortex (−70%), and unchanged in hippocampus and putamen. In contrast, brain enzyme activity was normal in patients with the neurodegenerative disorder spinocerebellar ataxia type I. Our demonstration of ornithine decarboxylase activity in neonatal and adult human brain suggests roles for ornithine decarboxylase in both developing and mature brain function, and we provide further evidence for the involvement of abnormal polyamine system activity in Alzheimer's disease.  相似文献   

15.
16.
Summary The major objective of this study was to determine if the observed changes in polyamines and their biosynthetic enzymes during somatic embryo development were specifically related to either the stage of the embryo development or to the duration of time spent on the maturation medium. Somatic embryos of red spruce (Picea rubens) at different developmental stages, grown in the embryo development and maturation media for various lengths of time, were separated from the associated subtending tissue (embryogenic and the suspensor cell masses) and analyzed for their polyamine content as well as for polyamine biosynthetic enzyme activities. Polyamine content was also analyzed in embryos representing different stages of developmentthat were collected from the sam culture plate at the same time and the subtending tissue surrouding them. Putrescine was the predominant polyamine in the pro-embryogenic tissue, while spermidine was predominant during embryo development. Significant changes in spermidine/putrescine and spermine/putrescine ratios were observed at all stages of embryo development as compared to the pro-embryogenic cell mass. Changes in the ratios of various polyamines were clearly correlated with the developmental stage of the embryo rather than the period of growth in the maturation medium. Whereas the activities of both ornithine decarboxylase and arginine decarboxylase increased by week 3 or 4 and stayed high during the subsequent 6 wk of growth, the activity of S-adenosylmethionine decarboxylase steadily declined during embryo development.  相似文献   

17.
A study on polyamine metabolism and the consequences of polyamine biosynthesis inhibition on the development of Sclerotinia sclerotiorum sclerotia was conducted. Concentrations of the triamine spermidine and the tetramine spermine, as well as ornithine decarboxylase and S-adenosyl-methionine decarboxylase activities, decreased during sclerotia maturation. In turn, the concentration of the diamine putrescine was reduced at early stages of sclerotial development but it increased later on. This increment was not related to de novo biosynthesis, as demonstrated by the continuous decrease in ornithine decarboxylase activity. Alternatively, it could be explained by the release of putrescine from the conjugated polyamine pool. α-Difluoro-methylornithine and cyclohexylamine, which inhibit putrescine and spermidine biosynthesis, respectively, decreased mycelial growth, but did not reduce the number of sclerotia produced in vitro even though they disrupted polyamine metabolism during sclerotial development. It can be concluded that sclerotial development is less dependent on polyamine biosynthesis than mycelial growth, and that the increase of free putrescine is a typical feature of sclerotial development. The relationship between polyamine metabolism and sclerotial development, as well as the potential of polyamine biosynthesis inhibition as a strategy for the control of plant diseases caused by sclerotial fungi are discussed.  相似文献   

18.
Nitric oxide (NO), polyamines (PAs), diamine oxidases (DAO) and polyamine oxidases (PAO) play important roles in wide spectrum of physiological processes such as germination, root development, flowering and senescence and in defence responses against abiotic and biotic stress conditions. This functional overlapping suggests interaction of NO and PA in signalling cascades. Exogenous application of PAs putrescine, spermidine and spermine to Arabidopsis seedlings induced NO production as observed by fluorimetry and fluorescence microscopy using the NO-binding fluorophores DAF-2 and DAR-4M. The observed NO release induced by 1 mM spermine treatment in the Arabidopsis seedlings was very rapid without apparent lag phase. These observations pave a new insight into PA-mediated signalling and NO as a potential mediator of PA actions. When comparing the functions of NO and PA in plant development and abiotic and biotic stresses common to both signalling components it can be speculated that NO may be a link between PA-mediated stress responses filing a gap between many known physiological effects of PAs and amelioration of stresses. NO production indicated by PAs could be mediated either by H2O2, one reaction product of oxidation of PAs by DAO and PAO, or by unknown mechanisms involving PAs, DAO and PAO.  相似文献   

19.
20.
The metabolic fate of stable isotopically labeled polyamines was investigated after their first and second intraperitoneal injection in rats. Using gas chromatographic and mass fragmentographic analyses of acid-hydrolyzed 24-h urines, some aspects of the polyamine metabolism could be elucidated. After the injections with hexadeutero-1,3-diaminopropane, obly labeled 1,3-diaminopropane was recovered from the urine samples. The rat injected with tetradeuteroputrescine excreted labeled putrescine excreted labeled putrescine, γ-amino-n-butyric acid, 2-hydroxyputrescine and spermidine, while the urine samples of the rat after the injections with tetradeuterocadaverine contained labeled cadaverine and δ-aminovaleric acid. The injections of hexadeuterospermidine led to the appearance of labeled spermidine, isoputreanine, putreanine, N-(2-carboxyethyl)-4-amino-n-butyric acid, putrescine, γ-amino-n-butyric acid, 1,3-diaminopropane, β-alanine and spermine. After the injections with octadeuterospermine, labeled spermine, N-(3-aminopropyl)-N′-(2-carboxyethyl)-1,4-diaminobutane, N,N′-bis(2-carboxyethyl)-1,4-diaminobutane, spermidine, isoputreanine, putreanine, N-(2-carboxyethyl)-4-amino-n-butyric acid, putrescine, 1,3-diaminopropane, β-alanine, 2-hydroxyputrescine and possibly γ-amino-n-butyric acid were recovered. Clear differences between the metabolism after the first and second injection were noted for putrescine, spermidine and spermine, which is suggestive for enzyme induction and/or the existence of salvage pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号