首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The details of most electron transfer reactions involving iron-sulfur proteins have remained undisclosed because of the lack of experimental methods suitable to measure precisely the relevant rates. Nuclear magnetic resonance (NMR) provides a powerful means to overcome these problems, at least with selected proteins. A combination of NMR studies and site-directed mutagenesis experiments has been instrumental in defining both the site of interaction and the main trends of the intracomplex electron transfer in the case of rubredoxin electron self-exchange. Analysis of the NMR data obtained for mixtures of different redox levels of several 2[4Fe-4S] ferredoxins provided both first-order, for intramolecular, and second-order, for intermolecular, rate constants. Their dependence as a function of structural changes gave insight into the mechanism of electron transfer in this type of protein. Contrary to some expectations, the high-spin [4Fe-4Se]+ clusters assembled in isopotential ferredoxins do not change the intramolecular electron transfer rate as compared to low-spin [4Fe-4S]+ homologs. In combination with activity measurements, the kinetic data have been used to model the electron transfer competent complexes between Clostridium pasteurianum ferredoxin and the main enzymes acting as redox partners in vivo.  相似文献   

2.
The reaction of parsley 2Fe-2S ferredoxin in the normal oxidized state with eaq? generated by pulse radiolysis techniques has been studied at ~25°C, pH 7–8, I = 0.10 M (NaClO4). Rate constants ke (eaq? decay) and kp (protein absorbance change) are the same, second-order rate constant 9.7 × 109 M?1 sec?1. The reaction exhibits close to 100% efficiency. With 8Fe-8S ferredoxin from Clostridium pasteurianum under identical conditions it now appears that kp (although sometimes significantly smaller) is equal to ke. Varying efficiencies are also observed with this protein depending on the batch used. The reasons for such variable behavior are not fully understood. With oxidized and reduced forms of Chromatium v. high-potential iron-sulfur protein (HIPIP), ke and kp are essentially the same, but the highest efficiency observed is only ~50%. The prevailing pattern is therefore that rate constants ke and kp are generally in step for proteins having a single (or identical) active site(s). When the active site is buried as with HIPIP the efficiency of the reaction appears to decrease.  相似文献   

3.
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone pool. It contains one [4Fe-4S] (2+,1+) and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S] (2+,1+) to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S] (+) at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 and -30 mV for wild type to -11 and -19 mV, respectively. The N338A mutation decreased the potentials to -37 and -49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF 1e (-) catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone but not in electron transfer from ETF to ETF-QO. Therefore, the iron-sulfur cluster is the immediate acceptor from ETF.  相似文献   

4.
Electron transfer activities and steady state reduction levels of Fe-S centers of NADH-Q oxidoreductase were measured in mitochondria, submitochondrial particles (ETPH), and complex I after treatment with various reagents. p-Chloromercuribenzenesulfonate destroyed the signal from center N-4 (gx = 1.88) in ETPH but not in mitochondria, showing that N-4 is accessible only from the matrix side of the inner membrane. N-Bromosuccinimide also destroyed the signal from N-4 but without inhibiting rotenone-sensitive electron transfer to quinone, suggesting a branched pathway for electron transfer. Diethylpyrocarbonate caused oxidation of N-3 and N-4 in the steady state without changing N-1, suggesting N-1 is before N-3 and N-4. Difluorodinitrobenzene and dicyclohexylcarbodiimide inhibited oxidation of all Fe-S centers and tetranitromethane inhibited reduction of all Fe-S centers. Titrations of the rate of superoxide (O2-) generation in rotenone-treated submitochondrial particles were similar with the ratio [NADH]/[NAD] and that of 3-acetyl pyridine adenine nucleotide in spite of different midpoint potentials of the two couples. On reaction with inhibitors the inhibition of O2- formation was similar to that of ferricyanide reductase rather than quinone reductase. The rate of O2- formation during ATP-driven reverse electron transfer was 16% of the rate observed with NADH. The presence of NAD increased the rate to 83%. The results suggest that bound, reduced nucleotide, probably E-NAD., is the main source of O2- in NADH dehydrogenase. The effect of ATP on the reduction levels of Fe-S centers in well-coupled ETPH was measured by equilibrating with either NADH/NAD or succinate/fumarate redox couples. With NADH/NAD none of the Fe-S centers showed ATP induced changes, but with succinate/fumarate all centers showed ATP-driven reduction with or without NAD present. The effect on N-2 was smaller than that on N-1, N-3, and N-4. These observations indicate that the major coupling interaction is between N-2 and the low potential centers, N-1, N-3, and N-4. Possible schemes of coupling in this segment are discussed.  相似文献   

5.
Intra-molecular electron transfer is a key process, which is of prime importance, in photosynthesis, mitochondrial electron transfer and the action of many multi-centre enzymes. This mini-review considers the possible mechanisms of intra-molecular electron transfer in proteins and reviews the recent developments relating to possible electron tunnelling and electron hopping processes within di-heme cytochrome c peroxidase.  相似文献   

6.
A method is described for the interpretation of electron paramagnetic resonance spectra of reduced binuclear iron-sulfur proteins. The gy values for any protein can be analyzed so that both the symmetry and the extent of covalency at the paramagnetic site can be parameterized. These parameters can be related to the chemical composition of the paramagnetic center, the protein-dependent charge delocalization of the unpaired electron, and the geometric arrangement at the reduced iron atom. These analyses may ultimately be used to rationalize certain aspects of the redox potentials of the various iron-sulfur proteins.  相似文献   

7.
8.
9.
10.
A gene encoding the high-potential iron-sulfur protein (HiPIP) was cloned from the purple photosynthetic bacterium Rubrivivax gelatinosus. An insertional disruption of this gene by a kanamycin resistance cartridge resulted in a significant decrease in the growth rate under photosynthetic growth conditions. Flash-induced kinetic measurements showed that the rate of reduction of the photooxidized reaction center is greatly diminished in the mutant depleted in the HiPIP. On the other hand, mutants depleted in the low- and high-potential cytochromes c(8), the two other soluble electron carriers, which have been shown to donate an electron to the reaction center in Rvi. gelatinosus, showed growth rates similar to those of the wild type under both photosynthetic and respiratory growth conditions. It was concluded that HiPIP is the major physiological electron donor to the reaction center in Rvi. gelatinosus cells grown under photosynthetic conditions.  相似文献   

11.
12.
It is shown that the interaction of proteins with a polar solvent leads to the formation of electron donor groups in the proteins. The highest occupied level of these groups in situated near the bottom of the conduction energy band of protein. The transfer of an electron from the donor group through the conduction band of protein to the spatially removed acceptor group is considered including the possible relaxation processes.  相似文献   

13.
An examination of x-ray structures of single-cluster [4Fe-4S] proteins in the Protein Data Bank has revealed that all redox proteins and the glutamine 5-phosphoribosyl-1-pyrophosphate amidotransferase from Bacillus subtilis have a topological configuration arbitrarily designated as D, whereas the DNA repair enzyme endonuclease III from Escherichia coli has the opposite topological configuration, L. This is the first example in which both senses of topological chirality have been observed in a class of proteins. © 1997 John Wiley & Sons, Inc. Biopoly 42: 411–414, 1997  相似文献   

14.
The electrochemistry of some copper-containing proteins and enzymes, viz. azurin, galactose oxidase, tyrosinase (catechol oxidase), and the “blue” multicopper oxidases (ascorbate oxidase, bilirubin oxidase, ceruloplasmin, laccase) is reviewed and discussed in conjunction with their basic biochemical and structural characteristics. It is shown that long-range electron transfer between these enzymes and electrodes can be established, and the mechanistic schemes of the DET processes are proposed.  相似文献   

15.
Iron-sulfur clusters-containing proteins participate in many cellular processes, including crucial biological events like DNA synthesis and processing of dioxygen. In most iron-sulfur proteins, the clusters function as electron-transfer groups in mediating one-electron redox processes and as such they are integral components of respiratory and photosynthetic electron transfer chains and numerous redox enzymes involved in carbon, oxygen, hydrogen, sulfur and nitrogen metabolism. Recently, novel regulatory and enzymatic functions of these proteins have emerged. Iron-sulfur cluster proteins participate in the control of gene expression, oxygen/nitrogen sensing, control of labile iron pool and DNA damage recognition and repair. Their role in cellular response to oxidative stress and as a source of free iron ions is also discussed.  相似文献   

16.
Examination of a growing range of electron transfer proteins is clarifying what design elements are and are not naturally selected. Intraprotein electron transfer between natural redox centers is generally engineered to be robust and resistant to mutational changes and thermal fluctuations, by using chains of redox centers connected by electron tunneling distances of 14 A or less. This assures that tunneling rates are faster than the typical millisecond bond-breaking at catalytic sites. Interprotein electron transfer addresses the potential problem of slow diffusion by designing attractive docking sites that permit a conformational search for short tunneling distances.  相似文献   

17.
A photosynthetic mutant (strain 1073) of Lemna perpusilla was previously shown to have a block in the electron transport chain between plastoquinone and cytochrome f ((1976) Plant Physiol. 57, 577–579). Electron paramagnetic resonance analysis of chloroplasts from this mutant indicates that the g = 1.89 signal of a reduced iron-sulfur center (the ‘Rieske’ iron-sulfur center) is absent. The absence of this signal indicates the Rieske center is either absent from or defective in the mutant, and this result is consistent with this iron-sulfur center functioning between plastoquinone and cytochrome f in the electron transport chain of chloroplasts.  相似文献   

18.
Intra- and intermolecular electron transfer processes in redox proteins   总被引:2,自引:0,他引:2  
Initial velocity and product inhibition experiments were performed to characterize the kinetic mechanism of branched chain ketoacid dehydrogenase (the branched chain complex) activity. The results were directly compared to predicted patterns for a three-site ping-pong mechanism. Product inhibition experiments confirmed that NADH is competitive versus NAD+ and isovaleryl CoA is competitive versus CoA. Furthermore, both NADH and isovaleryl CoA were uncompetitive versus ketoisovaleric acid. These results are consistent with a ping-pong mechanism and are similar to pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase. However, inhibition patterns for isovaleryl CoA versus NAD+ and NADH versus CoA are not consistent with a ping-pong mechanism. These patterns may result from a steric interaction between the flavoprotein and transacetylase subunits of the complex. To determine the kinetic mechanism of the substrates and feedback inhibitors (NADH and isovaleryl CoA) of the branched chain complex, it was necessary to define the interaction of the inhibitors at nonsaturating fixed substrate (CoA and NAD+) concentrations. While the competitive inhibition patterns were maintained, slope replots for NADH versus NAD+ at nonsaturating CoA concentrations were parabolic. This unexpected finding resembles a linear mixed type of inhibition where the inhibition is a combination of pure competitive and noncompetitive inhibition.  相似文献   

19.
The enthalpy and entropy changes associated with protein reduction (deltaHdegrees,(rc), deltaSdegrees,(rc)) were determined for a number of low-potential iron-sulfur proteins through variable temperature direct electrochemical experiments. These data add to previous estimates making available, overall, the reduction thermodynamics for twenty species from various sources containing all the different types of metal centers. These parameters are discussed with reference to structural data and calculated electrostatic metal-environment interaction energies, and redox properties of model complexes. This work, which is the first systematic investigation on the reduction thermodynamics of Fe-S proteins, contributes to the comprehension of the determinants of the differences in reduction potential among different protein families within a novel perspective. Moreover, comparison with analogous data obtained previously for electron transport (ET) metalloproteins with positive reduction potentials, i.e., cytochromes c, blue copper proteins, and HiPIPs, helps our understanding of the factors controlling the reduction potential in ET species containing different metal cofactors. The main results of this work can be summarized as follows.  相似文献   

20.
Incubation of spinach thylakoids with HgCl2 selectively destroys Fe–S center B (FB). The function of electron acceptors in FB-less PS I particles was studied by following the decay kinetics of P700+ at room temperature after multiple flash excitation in the absence of a terminal electron acceptor. In untreated particles, the decay kinetics of the signal after the first and the second flashes were very similar (t 1/22.5 ms), and were principally determined by the concentration of the artificial electron donor added. The decay after the third flash was fast (t 1/20.25 ms). In FB-less particles, although the decay after the first flash was slow, fast decay was observed already after the second flash. We conclude that in FB-less particles, electron transfer can proceed normally at room temperature from FX to FA and that the charge recombination between P700+ and FX -/A1 - predominated after the second excitation. The rate of this recombination process is not significantly affected by the destruction of FB. Even in the presence of 60% glycerol, FB-less particles can transfer electrons to FA at room temperature as efficiently as untreated particles.Abbreviations DCIP 2, 6-dichlorophenol indophenol - FA, FB, FX iron-sulfur center A, B and X, respectively - PMS phenazine methosulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号