首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The level of incorporation of [3H]fucose or [3H]lysine into subcel-lular fractions of the visual and motor cortices of 50-day-old dark-reared (D) and light-exposed (L) rats was determined. No differences were found between D and L rats in the incorporation of either precursor into subcellular fractions of the motor cortex, or in any fraction of the visual cortex except the synaptic-membrane fraction. After a 3-h light exposure the incorporation of [3H]fucose into the visual cortex synaptic-membrane fraction was elevated (L/D = 136%). Incorporation of [3H]lysine was elevated in the visual cortex synaptic-membrane fraction of L compared to D rats after a 1-h exposure (L/D = 118%). However, after a 3-h exposure the incorporation was depressed in this fraction (L/D = 79%). No differences could be found in the levels of activity of fucosyl transferase following first exposure to light but dark-rearing itself resulted in increased enzyme activity in the motor cortex compared to normal controls. First exposure of 20-day-old dark-reared rats to light led to an increase in the incorporation of [3H]fucose into soluble glycoproteins of both the visual and motor cortex and into particulate glycoproteins of the visual cortex only. These results are in contrast with those found with 50-day-old animals and suggest that the effects of light-exposure on [3H]fucose incorporation may be age-dependent.  相似文献   

2.
Abstract— Enzyme activities in motor and visual cortex and cerebellum of rats reared for 50 days in the dark (D) were compared to levels in normally reared (N) and in dark-reared littermates exposed to 3 h of visual stimulation (L). Amongst 6 acid hydrolases, two, acid phosphatase and galactosaminadase, showed no effect of dark rearing. In three of the others, glucuronidase, glucosaminidase and galactosidase, activity tended to be lower in D than L. In glucosaminidase, N was similar to D and L above both, while in (total) glucosidase, galactosidase and glucuronidase, N was higher than D and L approached N. There were fewer changes in cerebellum than in cortex.
Visual cortex acetylcholinesterase was 29% higher in L than in D, and 41% higher in L than in N, but there were no significant differences in AChE or BChE in motor cortex or cerebellum. Choline acetyltransferase was higher by 30% in L and D in visual cortex, and 22% in motor cortex. There were no differences in the cerebellum. There were no differences in the levels of activity of glutamate decarboxylase or Na+, K+, Mg2+ -ATPase in any region or condition.
The significance of both the apparently transient and more permanent effects of dark rearing and light exposure on the enzymes studied, and discrepancies with other reports of enzyme changes in dark rearing are discussed.  相似文献   

3.
—The rate of incorporation of [3H]lysine into acid-insoluble material in vivo was determined in neurons and neuropil from the visual cortex of dark-reared rats, littermates exposed to the light for varying lengths of time and normally reared controls. Following onset of light exposure, the elevation of incorporation was confined to the neuronal fraction. On continuous exposure for up to 96 h, the level of incorporation in the neuronal fraction dropped to that of the dark control value. In dark-reared animals, the rate of incorporation in the neuronal fraction was 68 per cent of that in neuropil, in normals it was 150 per cent. On onset of exposure, the ratio in light exposed animals approached the normal level, but on prolonged continuous exposure both light exposed and normal ratios dropped to the dark control value once more. This drop did not occur if the animals were exposed to a 12 h light/dark cycle. These results are taken as suggesting that part of the protein synthesis of the visual cortex is functionally controlled, and that neuronal and neuropil fractions show a metabolic relationship which can be affected by environmental changes. The failure to show a depression of incorporation in prolonged exposure, by comparison with earlier results under somewhat different behavioural conditions, was taken as further evidence for the ‘state-dependence’ of a number of brain biochemical parameters.  相似文献   

4.
Effects of 16 (16 light:8 dark) and 8 (8L:16D) h of daily light were compared with continuous light (24L:0D) exposure on prolactin (PRL) concentrations in serum of prepubertal bulls. Concentrations of PRL in serum were 2 to 3 fold greater in bulls exposed to 24L:0D or 16L:8D as compared with 8L:16D. However, PRL concentrations attained a maximum approximately 3 weeks later in calves exposed to 24L:0D than in calves given 16L:8D. Continuous low intensity (11 to 16 lux) lighting supplemented with 16 or 8 h of high intensity (449 to 618 lux) light per day increased PRL concentrations in serum of prepubertal bulls 1.5 to 2.5 fold relative to 8L:16D (470 lux). We found that relative to 8L:16D, 1) photoperiods of 16 or 24 h of light per day increased serum concentrations of PRL in prepubertal bulls; however, the time required to achieve maximum PRL concentrations was longer in animals exposed to 24L:0D, 2) continuous low intensity lighting supplemented with 16 or 8 h of high intensity daily light also increased concentrations of PRL in serum.  相似文献   

5.
—A resolution of the enhancement of protein synthesis in the visual cortex of rats during first exposure to light (Richardson and Rose , 1972) was achieved by polyacrylamide gel electrophoresis using a double-labelling technique. Differential incorporation of lysine was established between exposed and control animals in two fractions of the soluble proteins and seven fractions of the insoluble proteins. This suggests that exposure to a new experience of this type involves a specific effect on protein synthesis, rather than a general stimulation across all fractions.  相似文献   

6.
Incorporation of lysine into acid-insoluble material from subcellular fractions of rat cerebral cortex has been studied using double and single-labelling techniques, in littermates reared for 50 days in the dark and then dark-maintained or light-exposed for 1 h. When light-exposed animals were compared to dark controls the only subcellular fraction from the whole cortex in which lysine incorporation shows a significant elevation (168%, P < 0.05) was located in the ribosomal pellet of the cerebral cortex. A similar comparison of subcellular fractions from visual and motor cortices showed that the elevation was again in the ribosomes and confined to visual cortex only. Motor cortex of light-exposed animals showed a small depression of incorporation in ribosomes as compared to dark controls. Sub-fractionation of nuclei from whole cortex preparations showed varying, but non-significant elevations in light-exposed animals in all but the histone fraction in which there was negligible incorporation of precursor. It is concluded that enhancement of incorporation of precursor into proteins of the cerebral cortex, which accompanies first exposure to light, is a complex response. At exposure for 1 h it involves a number of particular protein species located in the visual cortex, a major proportion of which are ribosomally bound.  相似文献   

7.
The inhibition of the polymerization of tubulin from cultured cells of rose (Rosa. sp. cv. Paul's scarlet) by colchicine and the binding of colchicine to tubulin were examined in vitro and compared with data obtained in parallel experiments with bovine brain tubulin. Turbidimetric measurements of taxol-induced polymerization of rose microtubules were found to be sensitive and semiquantitative at low tubulin concentrations, and to conform to some of the characteristics of a nucleation and condensation-polymerization mechanism for assembly of filamentous helical polymers. Colchicine inhibited the rapid phase of polymerization at 24°C with an apparent inhibition constant (K i) of 1.4·10-4 M for rose tubulin and an apparent K i=8.8·10-7 M for brain tubulin. The binding of [3H]colchicine to rose tubulin to form tubulin-colchicine complex was mildly temperature-dependent and slow, taking 2–3 h to reach equilibrium at 24°C, and was not affected by vinblastine sulfate. The binding of [3H]colchicine to rose tubulin was saturable and Scatchard analysis indicated a single class of low-affinity binding sites having an apparent affinity constant (K) of 9.7·102 M-1 and an estimated molar binding stoichiometry (r) of 0.47 at 24°C. The values for brain tubulin were K=2.46·106 M-1 and r=0.45 at 37°C. The binding of [3H]colchicine to rose tubulin was inhibited by excess unlabeled colchicine, but not by podophyllotoxin or tropolone. The data demonstrate divergence of the colchicine-binding sites on plant and animal tubulins and indicate that the relative resistance of plant microtubule polymerization to colchicine results from a low-affinity interaction of colchicine and tubulin.Abbreviations MT microtubule - TC tubulin-colchicine complex  相似文献   

8.
Crustaceans are interesting models to study the effects of ultraviolet (UV) radiation, and many species may be used as biomarkers for aquatic contamination of UV radiation reaching the surface of the Earth. Here, we investigated cell damage in the visual system of crabs Neohelice granulata that were acclimated to either 12L:12D, constant light, or constant dark, and were exposed to UVA or UVB at 12:00 h (noon). The production of reactive oxygen species (ROS), antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (LPO) damage, catalase activity, and pigment dispersion in the eye were evaluated. No significant differences from the three groups of controls (animals acclimated to 12L:12D, or in constant light, or not exposed to UV radiation) were observed in animals acclimated to 12L:12D, however, crabs acclimated to constant light and exposed to UV radiation for 30 min showed a significant increase in ROS concentration, catalase activity, and LPO damage, but a decrease in ACAP compared with the controls. Crabs acclimated to constant darkness and exposed to UV for 30 min showed a significantly increased ROS concentration and LPO damage, but the ACAP and catalase activity did not differ from the controls (animals kept in the dark while the experimental group was being exposed to UV radiation). Pigment dispersion in the pigment cells of eyes of animals acclimated to constant light was also observed. The results indicate that UVA and UVB alter specific oxidative parameters; however, the cell damage is more evident in animals deviated from the normal dark/light rhythm.  相似文献   

9.
Newly weaned rats which had been kept in the darl from birth were injected intraventricularly with (6-14C) orotic acid. Experimental rats were exposed to light for 2 h and dark controls were returned to the dark environment for 2 h. It was found that after this period the relative specific activity of the RNA in the visual cortex of the former was significantly (p<0.001) higher than that of the RNA in the visual cortex of the latter. There was no significant difference in the labelling of the frontal cortex.In a second group of experiments light deprived newly weaned rats were exposed to light for periods ranging from 0–15 h prior to being given a 1 h pulse of (6-14C) orotic acid. After 1–2 h after first exposure to light the labelling of the RNA in the visual cortex was significantly increased (p<0.001) but after 3 h the labelling was not significantly different from the dark control value. This transient increase in RNA labelling after first exposure to light was not found in the frontal cortex.  相似文献   

10.
The influence of early hypothyroidism on the concentration and biochemical properties of soluble and particulate tubulin from the cerebral cortex and cerebellum was investigated during development in the rat. Cellular soluble tubulin concentration (pmol colchicine bound/μg DNA) was approx 16% lower in both brain areas of hypothyroid animals compared to controls at 25 days of age. No effect of thyroid hormone deficiency was observed when tubulin concentration was expressed in terms of tissue protein or weight. The particulate tubulin concentration was approx 20% lower in the cerebral cortex of 25-day-old hypothyroid rats although the distribution of tubulin between soluble and particulate fractions was similar to controls. The incorporation of [14C]leucine into cerebral cortical tubulin in vitro (c.p.m. in tubulin/c.p.m. in total protein) was not significantly altered by the hormonal deficiency. Thus there was no apparent evidence of a selective defect in tubulin synthesis. Tubulin from hypothyroid rats behaved similarly to control samples with respect to the effects of pharmacological agents and temperature, lability of binding, chromatographic profile and electrophoretic mobility on sodium dodecyl sulfate polyacrylamide gels.  相似文献   

11.
The thermal depolymerization procedure of Stephens (1970. J. Mol. Biol. 47:353) has been employed for solubilization of Strongylocentrotus purpuratus sperm tail outer doublet microtubules with the use of a buffer during solubilization which is of optimal pH and ionic strength for the preservation of colchicine binding activity of chick embryo brain tubulin. Colchicine binding values were corrected for first-order decay during heat solubilization at 50°C (t½ = 5.4 min) and incubation with colchicine at 37°C in the presence of vinblastine sulfate (t½ = 485 min). The colchicine binding properties of heat-solubilized outer doublet tubulin were qualitatively identical with those of other soluble forms of tubulin. The solubilized tubulin (mol wt, 115,000) bound 0.9 ± 0.2 mol of colchicine per mol of tubulin, with a binding constant of 6.3 x 105 liters/mol at 37°C. The colchicine binding reaction was both time and temperature dependent, and the binding of colchicine was prevented in a competitive manner by podophyllotoxin (Ki = 1.3 x 10-6 M). The first-order decay of colchicine binding activity was substantially decreased by the addition of the vinca alkaloids, vinblastine sulfate or vincristine sulfate, thus demonstrating the presence of a vinca alkaloid binding site(s) on the outer doublet tubulin. Tubulin contained within the assembled microtubules did not decay. Intact outer doublet microtubules bound less than 0.001 mol of colchicine per mol of tubulin contained in the microtubules, under conditions where soluble tubulin would have bound 1 mol of colchicine per mol of tubulin (saturating concentration of colchicine, no decay of colchicine binding activity). The presence of colchicine had no effect on the rate of solubilization of outer doublet microtubules during incubation at 37°C. Therefore, the colchicine binding site on tubulin is blocked (not available to bind colchicine) when the tubulin is in the assembled outer doublet microtubules.  相似文献   

12.
We examined the effects of in vivo hypoxia (10% O2/90% N2) on the gamma-aminobutyric acid (GABA)/benzodiazepine receptors and on glutamic acid decarboxylase (GAD) activity in the rat brain. Male Wistar rats were exposed to a mixture of 10% O2 and 90% N2 in a chamber for various periods (3, 6, 12, and 24 h). The control rats were exposed to room air. The brain regions examined were the cerebral cortex, striatum, hippocampus, and cerebellum. GABA and benzodiazepine receptors were assessed using [3H]muscimol and [3H]flunitrazepam, respectively. Compared with control values, GAD activity was decreased significantly following a 6-h exposure to hypoxia in all four regions studied. On the other hand, the numbers of both [3H]muscimol and [3H]flunitrazepam binding sites were increased significantly. The increase in receptor number tended to return to control values after 24 h. Treatment of the membrane preparations with 0.05% Triton X-100 eliminated the increase in the binding capacity. These results may represent an up-regulation of postsynaptically located GABA/benzodiazepine receptors corresponding to the impaired presynaptic activity under hypoxia.  相似文献   

13.
The synthetic anti-tumor drug 3-(1-anilinoethylidene)-5-benzylpyrrolidine-2,4-dione (TN-16) is known to block microtubule assembly and colchicine binding to tubulin, although its structure does not resemble those of either colchicine, podophyllotoxin, or nocodazole (Arai, FEBS Lett. 155:273-276 (1983]. We have found that TN-16 affects the intra-chain cross-linking of beta-tubulin by N,N'-ethylene-bis(iodoacetamide) in a manner identical to that of colchicine, podophyllotoxin, and nocodazole, but different from that of vinblastine or maytansine. TN-16 also inhibits alkylation of tubulin by iodo[14C]acetamide, as do colchicine and its congeners. TN-16 appears to bind to tubulin at the colchicine binding site and one of its phenyl groups is likely to bind at the site on tubulin where colchicine's A ring binds.  相似文献   

14.
The ability of mebendazole and fenbendazole to bind to tubulin in cytosolic fractions from 8-day Ascaris suum embryos was determined by inhibition studies with [3H]colchicine. Colchicine binding in the presence of 1·10?6 M mebendazole was completely inhibited during a 6 h incubation period at 37°C. Inhibition of colchicine binding to A. suum embryonic tubulin by mebendazole and fenbendazole appeared to be noncompetative. The inhibition constants of mebendazole and fenbendazole for A. suum embryonic tubulin were 1.9·10?8 M and 6.5·10?8 M, respectively. Mebendazole and fenbendazole appeared to be competitive inhibitors of colchicine binding to bovine brain tubulin. The inhibition constants of mebendazole and fenbendazole for bovine brain tubulin were 7.3·10?6 M and 1.7·10?5 M, respectively. These values are 250–400 times greater than the inhibition constants of fenbendazole and mebendazole for A. suum embryonic tubulin. Differential binding affinities between nematode tubulin and mammalian tubulin for benzimidazoles may explain the selective toxicity. The importance of tubulin as a receptor for anthelmintic benzimidazoles in animal parasitic nematodes is discussed.  相似文献   

15.
Two colchicine analogs with modifications only in the C ring are better inhibitors than colchicine of cell growth and tubulin polymerization. Radiolabeled thiocolchicine (with a thiomethyl instead of a methoxy group at position C-10) and N-acetylcolchinol O-methyl ether (NCME) (with a methoxy-substituted benzenoid instead of the methoxy-substituted tropone C ring) were prepared for comparison with colchicine. Scatchard analysis indicated a single binding site with KD values of 1.0-2.3 microM. Thiocolchicine was bound 2-4 times as rapidly as colchicine, but the activation energies of the reactions were nearly identical (18 kcal/mol for colchicine, 20 kcal/mol for thiocolchicine). NCME bound to tubulin in a biphasic reaction. The faster phase was 60 times as fast as colchicine binding at 37 degrees C, and a substantial reaction occurred at 0 degrees C. The rate of the faster phase of NCME binding changed relatively little as a function of temperature, so the activation energy was only 7.0 kcal/mol. Dissociation reactions were also evaluated, and at 37 degrees C the half-lives of the tubulin-drug complexes were 11 min for NCME, 24 h for thiocolchicine, and 27 h for colchicine. Relative dissociation rates as a function of temperature varied little among the drug complexes. Activation energies for the dissociation reactions were 30 kcal/mol for thiocolchicine, 27 kcal/mol for NCME, and 24 kcal/mol for colchicine. Comparison of the activation energies of association and dissociation yielded free energies for the binding reactions of -20 kcal/mol for NCME, -10 kcal/mol for thiocolchicine, and -6 kcal/mol for colchicine. The greater effectiveness of NCME and thiocolchicine as compared with colchicine in biological assays probably derives from their more rapid binding to tubulin and the lower free energies of their binding reactions.  相似文献   

16.
The tubulins of Antarctic fishes possess adaptations that favor microtubule formation at low body temperatures (Detrich et al.: Biochemistry 28:10085-10093, 1989). To determine whether some of these adaptations may be present in a domain of tubulin that participates directly or indirectly in lateral contact between microtubule protofilaments, we have examined the energetics of the binding of colchicine, a drug thought to bind to such a site, to pure brain tubulins from an Antarctic fish (Notothenia gibberifrons) and from a mammal (the cow, Bos taurus). At temperatures between 0 and 20 degrees C, the affinity constants for colchicine binding to the fish tubulin were slightly smaller (1.5-2.6-fold) than those for bovine tubulin. van't Hoff analysis showed that the standard enthalpy changes for colchicine binding to the two tubulins were comparable (delta H degrees = +10.6 and +7.4 kcal mol-1 for piscine and bovine tubulins, respectively), as were the standard entropy changes (delta S degrees = +61.3 eu for N. gibberifrons tubulin, +51.2 eu for bovine tubulin). At saturating concentrations of the ligand, the maximal binding stoichiometry for each tubulin was approximately 1 mol colchicine/mol tubulin dimer. The data indicate that the colchicine-binding sites of the two tubulins are similar, but probably not identical, in structure. The apparent absence of major structural modifications at the colchicine site suggests that this region of tubulin is not involved in functional adaptation for low-temperature polymerization. Rather, the colchicine site of tubulin may have been conserved evolutionarily to serve in vivo as a receptor for endogenous molecules (i.e., "colchicine-like" molecules or MAPs) that regulate microtubule assembly.  相似文献   

17.
Colchicine binding in the free-living nematode Caenorhabditis elegans   总被引:1,自引:0,他引:1  
The [3H]colchicine-binding activity of a crude supernatant of the free-living nematode Caenorhabditis elegans was resolved into a non-saturable component and a tubulin-specific component after partial purification of tubulin by polylysine affinity chromatography. The two fractions displayed opposing thermal dependencies of [3H]colchicine binding, with non-saturable binding increasing, and tubulin binding decreasing, at 4 degrees C. Binding of [3H]colchicine to C.elegans tubulin at 37 degrees C is a pseudo-first-order rate process with a long equilibration time. The affinity of C. elegans tubulin for [3H]colchicine is relatively low (Ka = 1.7 x 10(5) M(-1)) and is characteristic of the colchicine binding affinities observed for tubulins derived from parasitic nematodes. [3H]Colchicine binding to C. elegans tubulin was inhibited by unlabelled colchicine, podophyllotoxin and mebendazole, and was enhanced by vinblastine. The inhibition of [3H]colchicine binding by mebendazole was 10-fold greater for C. elegans tubulin than for ovine brain tubulin. The inhibition of [3H]colchicine binding to C. elegans tubulin by mebendazole is consistent with the recognised anthelmintic action of the benzimidazole carbamates. These data indicate that C. elegans is a useful model for examining the interactions between microtubule inhibitors and the colchicine binding site of nematode tubulin.  相似文献   

18.
Monkeys exposed to a rhythmically flickering light (flicker frequency 7/sec, intensity 1614 lumens/m2) show a higher incorporation of intracisternally administered l -(U-3H)-lysine into proteins of the visual cortex as compared to monkeys kept in darkness. An increase in specific radioactivity is noticed in both the soluble and particulate (including membrane linked) proteins. The 105,000 g supernatant proteins from the visual cortex have been fractionated on DEAE-cellulose columns followed by resolution of each fraction on polyacrylamide gels. The results suggest that there is a group of acidic low molecular weight proteins whose synthesis is significantly stimulated during the exposure of the animal to flickering light. The fractions give immunological cross-reaction with anti S-100 Serum.  相似文献   

19.
The interactions of tubulin with colchicine analogues in which the tropolone methyl ether ring had been transformed into a p-carbomethoxybenzene have been characterized. The analogues were allocolchicine (ALLO) and 2,3,4-trimethoxy-4'-carbomethoxy-1,1'-biphenyl (TCB), the first being transformed colchicine and the second transformed colchicine with ring B eliminated. The binding of both analogues has been shown to be specific for the colchicine binding site on tubulin by competition with colchicine and podophyllotoxin. Both analogues bind reversibly to tubulin with the generation of ligand fluorescence. The binding of ALLO is slow, the fluorescence reaching a steady state in the same time span as colchicine; that of TCB is rapid. The displacement of ALLO by podophyllotoxin proceeds with a half-life of ca. 40 min. Binding isotherms generated from gel filtration and fluorescence measurements have shown that both analogues bind to tubulin with a stoichiometry of 1 mol of analogue/mol of alpha-beta tubulin. The equilibrium binding constants at 25 degrees C have been found to be (9.2 +/- 2.5) x 10(5) M-1 for ALLO and (1.0 +/- 0.2) X 10(5) M-1 for TCB. Binding of both analogues was accompanied by quenching of protein fluorescence, perturbation of the far-ultraviolet circular dichroism of tubulin, and induction of the tubulin GTPase activity, similarly to colchicine binding. Both inhibited microtubule assembly in vitro, ALLO substoichiometrically, and both induced the abnormal cooperative polymerization of tubulin, which is characteristic of the tubulin-colchicine complex. Analysis in terms of the simple bifunctional ligand binding mechanism developed for colchicine [Andreu, J.M., & Timasheff, S.N. (1982) Biochemistry 21, 534-543] and comparison with the binding of the colchicine two-ring analogue, 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one [Andreu, J. M., Gorbunoff, M. J., Lee, J. C., & Timasheff, S. N. (1984) Biochemistry 23, 1742-1752], have shown that transformation of the tropolone methyl ether part of colchicine into p-carbomethoxybenzene weakens the standard free energy of binding to tubulin by 1.4 +/- 0.1 kcal/mol, while elimination of ring B weakens it by 1.0 +/- 0.1 kcal/mol. The roles of rings C and B of colchicine in the thermodynamic and kinetic mechanisms of binding to tubulin were analyzed in terms of these findings.  相似文献   

20.
L D Ward  S N Timasheff 《Biochemistry》1988,27(5):1508-1514
The high-affinity metal divalent cation Mg2+, associated with the exchangeable guanosine 5'-triphosphate (GTP) binding site (E site) on purified tubulin, has been replaced by the transition metal ion Co2+ on tubulin as well as on the tubulin-colchicine, tubulin-allocolchicine and tubulin-8-anilino-1-naphthalenesulfonic acid (tubulin-ANS) complexes. While pure native tubulin readily incorporated 0.8 atom of Co2+ per tubulin alpha-beta dimer, incorporation was reduced to 0.4 atom of Co2+ per mole of tubulin when it was complexed with colchicine, indicating that the conformational change induced in tubulin by the binding of colchicine leads to a reduced accessibility of the divalent cation binding site linked to the E site without necessarily changing the intrinsic binding constant. The fluorescence emission spectra of tubulin-bound colchicine, allocolchicine, and ANS displayed a strong overlap with the Co2+ absorption spectrum, identifying these as adequate donor-acceptor pairs. Fluorescence energy-transfer measurements were carried out between tubulin-bound colchicine (or allocolchicine) and ANS as donors and tubulin-complexed Co2+ as acceptor. It was found that the distance between the ANS and the high-affinity divalent cation binding sites is greater than 28 A, while that between the colchicine and the divalent cation binding sites is greater than 24 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号