首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Exercise alters the distribution of ammonia and lactate in blood   总被引:2,自引:0,他引:2  
Six subjects (3 males, 3 females) worked for 4 min on a cycle ergometer at 115% of peak O2 uptake (VO2). Venous samples drawn before, directly after, and 15 min after exercise were analyzed for ammonia (NH3) and lactate concentrations of plasma, whole blood, and erythrocytes (RBCs) to examine the effect of exercise on blood NH3 and lactate distribution. Exercise increased (P less than 0.05) the [NH3] of plasma and RBCs, with the larger (P less than 0.05) change in plasma (1.8- vs. 0.7-fold). This reduced (P less than 0.05) the RBC-to-plasma [NH3] ratio of 2.4 at rest to 1.3. The plasma-to-RBC [lactate] gradient (P less than 0.05) at rest (0.5 mmol/l) increased (P less than 0.05) 16-fold immediately after exercise (8.7 mmol/l), reflecting the greater increase (P less than 0.05) in plasma than RBCs [lactate] (15.5 vs. 7.5 mmol/l). [Lactate] and [NH3] did not decrease (P greater than 0.05) immediately after to 15 min after exercise. Plasma and whole blood [NH3] or [lactate] were correlated (r greater than 0.93, P less than 0.01) at all sample times, but the slopes of the relations for [NH3] (immediately after vs. 15 min after exercise) or for [lactate] (before and immediately after vs. 15 min after exercise) differed (P less than 0.05). The results indicate that supramaximal exercise alters the distribution of NH3 and lactate between plasma and RBC, thus changing the relations between plasma and whole-blood concentrations of these metabolites. The alteration of NH3 distribution may reflect changes in the pH gradient between plasma and RBCs.  相似文献   

10.
11.
12.
13.
14.
To investigate substrate recruitment and transport across the Escherichia coli Ammonia transporter B (AmtB) protein, we performed molecular dynamics simulations of the AmtB trimer. We have identified residues important in recruitment of ammonium and intraluminal binding sites selective of ammonium, which provide a means of cation selectivity. Our results indicate that A162 guides translocation of an extraluminal ammonium into the pore lumen. We propose a mechanism for transporting the intraluminally recruited proton back to periplasm. Our mechanism conforms to net transport of ammonia and can explain why ammonia conduction is lost upon mutation of the conserved residue D160. We unify previous suggestions of D160 having either a structural or an ammonium binding function. Finally, our simulations show that the channel lumen is hydrated from the cytoplasmic side via the formation of single file water, while the F107/F215 stack at the inner-most part of the periplasmic vestibule constitutes a hydrophobic filter preventing AmtB from conducting water.  相似文献   

15.
16.
The effect of acute hypoxia on blood concentration of ammonia ([NH3]b) and lactate (la-]b) was studied during incremental exercise(IE), and two-step constant workload exercises (CE). Fourteen endurance-trained subjects performed incremental exercise on a cycle ergometer under normoxic (21% O2) and hypoxic (10.4% O2) conditions. Eight endurance-trained subjects performed two-step constant workload exercise at sea level and at a simulated altitude of 5000 m (hypobaric chamber, P(B)=405 Torr; P(O2)=85 Torr) in random order. In normoxia, the first step lasted 25 minutes at an intensity of 85 % of the individual ventilatory anaerobic threshold (AT(vent), ind) at sea level. This reduced workload was followed by a second step of 5 minutes at 115% of their AT(vent), ind. This test was repeated into a hypobaric chamber, at a simulated altitude of 5,000 m. The first step in hypoxia was at an intensity of 65 % of AT(vent), ind., whereas workload for the second step at simulated altitude was the same as that of the first workload in normoxia (85 % of AT(vent), ind). During IE, [NH3]b and [la-]b were significantly higher in hypoxia than in normoxia. Increases in these metabolites were highly correlated in each condition. The onset of [NH3]b and [la-]b accumulation occurred at different exercise intensity in normoxia (181W for lactate and 222W for ammonia) and hypoxia (100W for lactate and 140W for ammonia). In both conditions, during CE, [NH3]b showed a significant increase during each of the two steps, whereas [la-]b increased to a steady-state in the initial step, followed by a sharp increase above 4 mM x L(-1) during the second. Although exercise intensity was much lower in hypoxia than in normoxia, [NH3]b was always higher at simulated altitude. Thus, for the same workload, [NH3]b in hypoxia was significantly higher (p<0.05) than in normoxia. Our data suggest that there is a close relationship between [NH3]b and [la-]b in normoxia and hypoxia during graded intensity exercises. The accumulation of ammonia in blood is independent of that of lactate during constant intense exercise. Hypoxia increases the concentration of ammonia in blood during exercise.  相似文献   

17.
18.
Investigations using nonsteady-state and fatiguing exercise protocols have demonstrated a strong relationship between ammonia and lactate metabolism and have suggested a cause and effect relationship between these two variables. We investigated the lactate-ammonia response using prolonged exercise and inspiration of hyperoxic gas (60% O2-40% N2). The exercise consisted of either 70-75% maximal O2 uptake (VO2 max) for 40 min (series 1, n = 6) or 75-80% VO2max for 30 min (series 2, n = 6) with the subjects inspiring room air on one occasion and hyperoxia in the other test. In both series blood ammonia rose continuously throughout the exercise regardless of the inspired gas treatment; in contrast blood lactate did not increase after 10 min with room air, and with hyperoxia blood lactate was reduced. Muscle lactate and ammonia (series 2; vastus lateralis) had responses similar to the blood data. The data demonstrated no apparent lactate-ammonia relationship with prolonged exercise or in response to hyperoxia, suggesting that ammonia production can be independent of lactate metabolism. The data also suggest that type I fibers can be a major source of ammonia in humans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号