首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究微囊藻毒素合成酶基因的蛋白表达水平与环境因子间的关系,文章以位于微囊藻毒素合成基因簇两个操纵子中的mcyC和mcyI基因为代表,利用制备的高效McyC和McyI多克隆抗体,采用Western Blot技术检测了铁胁迫对微囊藻毒素合成酶McyC和McyI蛋白表达水平的影响。研究结果表明,在铁胁迫下,铜绿微囊藻PCC 7806藻细胞内McyC和McyI的蛋白水平变化趋势一致,且与相同条件下藻细胞内毒素的合成产量变化一致,暗示铁胁迫直接通过影响微囊藻毒素合成酶的表达水平调控毒素的合成。研究为进一步了解微囊藻毒素的合成机制提供了基础材料。  相似文献   

2.
3.
Metabolism of lactate as a carbon source by Pseudomonas citronellolis occurred via a nicotinamide adenine dinucleotide (NAD)-independent L-lactate dehydrogenase, which was present in cells grown on DL-lactate but was not present in cells grown on acetate, aspartate, citrate, glucose, glutamate, or malate. The cells also possessed a constitutive, NAD-independent malate dehydrogenase instead of the conventional NAD-dependent malate dehydrogenase instead of the conventional NAD-dependent enzyme in the tricarboxylic acid cycle. Both enzymes were particulate and used dichlorophenolindo-phenol or oxygen as an electron acceptor. In acetate-grown cells, the activity of pyruvate dehydrogenase and NAD phosphate-linked malate enzyme decreased, cells grown on glucose or lactate. This was consistent with the need to maintain a supply of oxalacetate for metabolism of acetate via the tricarboxylic acid cycle. Changes in enzyme activities suggest that gluconeogenesis from noncarbohydrate carbon sources occurs via the malate enzyme (when oxalacetate decarboxylase is inhibited) or a combination of the NAD-independent malate dehydrogenase and oxalacetate decarboxylase.  相似文献   

4.
Shieh YJ  Ku MS  Black CC 《Plant physiology》1982,69(4):776-780
Mesophyll cells and bundle sheath strands isolated from leaves of the C(4) plant Digitaria sanguinalis (L.) Scop. are capable of utilizing aspartate as a Hill oxidant. The resulting O(2) evolution upon illumination depends on the presence of 2-oxoglutarate, is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, and is stimulated by methylamine. The rate of aspartate-dependent O(2) evolution with mesophyll cells was similar to those with phosphoenolpyruvate + CO(2) or with oxalacetate. Amino-oxyacetate, an inhibitor of aspartate aminotransferase, inhibited the aspartate-dependent O(2) evolution. Aspartate aminotransferase and NADP(+) -malate dehydrogenase are located in the mesophyll chloroplasts. These data suggest that aspartate is converted to oxalacetate via aspartate aminotransferase in the chloroplasts of mesophyll cells and that oxalacetate is subsequently reduced to malate, which is coupled to the photochemical evolution of O(2). This suggestion is further verified by the inhibition of phosphoenolpyruvate-dependent (14)CO(2) fixation by aspartate + 2-oxoglutarate, which presumably acts as oxalacetate and competes with phosphoenolpyruvate + CO(2) for NADPH. dl-Glyceraldehyde inhibited aspartate-dependent O(2) evolution in the bundle sheath strands but not in the mesophyll cells. The data indicate that aspartate may be converted to malate in both mesophyll and bundle sheath cells. In NADP(+) -malic enzyme species, aspartate may exist as a C(4)-dicarboxylic acid reservoir which can contribute to the C(4) cycle through its conversion to malate.  相似文献   

5.
Blooms that are formed by cyanobacteria consist of toxic and nontoxic strains. The mechanisms that result in the occurrence of nontoxic strains are enigmatic. All the nontoxic strains of the filamentous cyanobacterium Planktothrix that were isolated from 9 European countries were found to have lost 90% of a large microcystin synthetase (mcy) gene cluster that encoded the synthesis of the toxic peptide microcystin (MC). Those strains still contain the flanking regions of the mcy gene cluster along with remnants of the transposable elements that are found in between. The majority of the strains still contain a gene coding for a distinct thioesterase type II (mcyT), which is putatively involved in MC synthesis. The insertional inactivation of mcyT in an MC-producing strain resulted in the reduction of MC synthesis by 94 +/- 2% (1 standard deviation). Nontoxic strains that occur in shallow lakes throughout Europe form a monophyletic lineage. A second lineage consists of strains that contain the mcy gene cluster but differ in their photosynthetic pigment composition, which is due to the occurrence of strains that contain phycocyanin or large amounts of phycoerythrin in addition to phycocyanin. Strains containing phycoerythrin typically occur in deep-stratified lakes. The rare occurrence of gene cluster deletion, paired with the evolutionary diversification of the lineages of strains that lost or still contain the mcy gene cluster, needs to be invoked in order to explain the absence or dominance of toxic cyanobacteria in various habitats.  相似文献   

6.
Peptide-synthetase-encoding DNA fragments were isolated by a PCR-based approach from the chromosome of Microcystis aeruginosa K-139, which produces cyclic heptapeptides, 7-desmethylmicrocystin-LR and 3,7-didesmethylmicrocystin-LR. Three open reading frames (mcyA, mcyB, mcyC) encoding microcystin synthetases were identified in the gene cluster. Sequence analysis indicated that McyA (315 kDa) consists of two modules with an N-methylation domain attached to the first and an epimerization domain attached to the second; McyB (242 kDa) has two modules, and McyC (147 kDa) contains one module with a putative C-terminal thioesterase domain. Conserved amino acid sequence motifs for ATP binding, ATP hydrolysis, adenylate formation, and 4'-phosphopantetheine attachment were identified by sequence comparison with authentic peptide synthetase. Insertion mutations in mcyA, generated by homologous recombination, abolished the production of both microcystins in M. aeruginosa K-139. Primer extension analysis demonstrated light-dependent mcy expression. Southern hybridization and partial DNA sequencing analyses of six microcystin-producing and two non-producing Microcystis strains suggested that the microcystin-producing strains contain the mcy gene and the non-producing strains can be divided into two groups, those possessing no mcy genes and those with mcy genes.  相似文献   

7.
8.
Current evidence suggests that mitochondrial matrix enzymes exist in solid-state, multienzyme complexes in vivo. Addition of polyethylene glycol to a solution containing malate dehydrogenase and citrate synthase generates such a solid-state, enzyme complex in vitro at enzyme concentrations permitting kinetic measurements. Suspensions of the isolated, solid-state, hetero-complex of these enzymes were used to study the coupled reactions of citrate synthesis from malate, NAD, and CoASAc. The particles appear to be about 1 microgram in diameter. Considering the ratio of enzyme to oxalacetate molecules in or at the surface of the solid-state particles, one would expect oxalacetate to be converted to citrate within a few molecular distances of the site of oxalacetate generation. This model of "substrate channeling" (or alternatively a direct transfer of oxalacetate between enzymes) is supported by experiments with excess aspartate aminotransferase and glutamate added to the solution phase to give a reaction competing with the synthase for bulk phase oxalacetate. Quantities of aminotransferase that reduce the citrate reaction rate with soluble dehydrogenase and synthase by 90% do not significantly affect rates with comparable amounts of the dehydrogenase-synthase complex. We suggest that similar substrate channeling can occur in vivo and discuss the possible advantages provided thereby.  相似文献   

9.
Microcystins represent an extraordinarily large family of cyclic heptapeptide toxins that are nonribosomally synthesized by various cyanobacteria. Microcystins specifically inhibit the eukaryotic protein phosphatases 1 and 2A. Their outstanding variability makes them particularly useful for studies on the evolution of structure-function relationships in peptide synthetases and their genes. Analyses of microcystin synthetase genes provide valuable clues for the potential and limits of combinatorial biosynthesis. We have sequenced and analyzed 55.6 kb of the potential microcystin synthetase gene (mcy) cluster from the filamentous cyanobacterium Planktothrix agardhii CYA 126. The cluster contains genes for peptide synthetases (mcyABC), polyketide synthases (PKSs; mcyD), chimeric enzymes composed of peptide synthetase and PKS modules (mcyEG), a putative thioesterase (mcyT), a putative ABC transporter (mcyH), and a putative peptide-modifying enzyme (mcyJ). The gene content and arrangement and the sequence of specific domains in the gene products differ from those of the mcy cluster in Microcystis, a unicellular cyanobacterium. The data suggest an evolution of mcy clusters from, rather than to, genes for nodularin (a related pentapeptide) biosynthesis. Our data do not support the idea of horizontal gene transfer of complete mcy gene clusters between the genera. We have established a protocol for stable genetic transformation of Planktothrix, a genus that is characterized by multicellular filaments exhibiting continuous motility. Targeted mutation of mcyJ revealed its function as a gene coding for a O-methyltransferase. The mutant cells produce a novel microcystin variant exhibiting reduced inhibitory activity toward protein phosphatases.  相似文献   

10.
A rather complete model of the gluconeogenic pathway was used, with the known separate pools of mitochondrial and cytosolic oxalacetate, malate and aspartate. The fumarase, malate dehydrogenase and glutamate oxalacetate transaminase reactions were assumed to be isotopically actively reversible, but none at isotopic equilibrium. Malate was assumed to exchange actively between the mitochondrial and cytosol, while aspartate exchange was more limited, in agreement with the known electrogenic nature of aspartate export from the mitochondria. This model was fit to14C data obtained in hepatocyte studies, and to the whole rat14C data obtained by Heath and Rose (Biochem J. 227, 851–876, 1985). The latter data were easily fit to our model, when a single mitochondrial oxalacetate pool was assumed. However, invoking two mitochondrial oxalacetate pools, as proposed by Heath and Rose, with the oxalacetate formed via pyruvate carboxylase preferentially channelled to gluconeogenesis, could not be fit with the known differences in scrambling in glucose and glutamate produced from L[3-14C]lactate.  相似文献   

11.
The cluster of microcystin synthetase genes from Anabaena strain 90 was sequenced and characterized. The total size of the region is 55.4 kb, and the genes are organized in three putative operons. The first operon (mcyA-mcyB-mcyC) is transcribed in the opposite direction from the second operon (mcyG-mcyD-mcyJ-mcyE-mcyF-mcyI) and the third operon (mcyH). The genes mcyA, mcyB, and mcyC encode nonribosomal peptide synthetases (NRPS), while mcyD codes for a polyketide synthase (PKS), and mcyG and mcyE are mixed NRPS-PKS genes. The genes mcyJ, mcyF, and mcyI are similar to genes coding for a methyltransferase, an aspartate racemase, and a D-3-phosphoglycerate dehydrogenase, respectively. The region in the first module of mcyB coding for the adenylation domain was found to be 96% identical with the corresponding part of mcyC, suggesting a recent duplication of this fragment and a replacement in mcyB. In Anabaena strain 90, the order of the domains encoded by the genes in the two sets (from mcyG to mcyI and from mcyA to mcyC) is colinear with the hypothetical order of the enzymatic reactions for microcystin biosynthesis. The order of the microcystin synthetase genes in Anabaena strain 90 differs from the arrangement found in two other cyanobacterial species, Microcystis aeruginosa and Planktothrix agardhii. The average sequence match between the microcystin synthetase genes of Anabaena strain 90 and the corresponding genes of the other species is 74%. The identity of the individual proteins varies from 67 to 81%. The genes of microcystin biosynthesis from three major producers of this toxin are now known. This makes it possible to design probes and primers to identify the toxin producers in the environment.  相似文献   

12.
The mechanism that leads to an inhibition of enzyme activity in the presence of high concentrations of substrate was investigated with the two malate dehydrogenase isoenzymes obtained from pig heart. The inhibition is promoted by an abortive binary complex formed by the enzymes and the enol form of of oxalacelate. Neither the oxidized coenzyme nor the reduced coenzyme appears to be involved in the formation of this complex. These results suggest that the mechanism of substrate inhibition that occurs with the pig heart malate dehydrogenases is different from that observed with the lactate dehydrogenases from chicken hearts. The inhibition constants for oxalacetate are 2.0 mM with the mitochondrial enzyme and 4.5 mM with the cytoplasmic enzyme. Since the in vivo concentration of oxalacetate is reported to be about 10 micrometer, these data suggest that the substrate inhibition that is exhibited by the malate dehydrogenases may not be of any significance in vivo.  相似文献   

13.
Y F Cheung  C H Fung  C Walsh 《Biochemistry》1975,14(13):2981-2986
The stereochemistry of the two half-reactions catalyzed by the biotin-containing enzyme, transcarboxy-lase from Propionobacteria shermanii, has been determined. The pro-R hydrogen at C-2 of propionyl-coenzyme A is replaced by CO2 in formation of the S isomer of methylmalonyl-CoA, defining the process as retention of configuration. This C-2 hydrogen is abstracted at a rate identical with product formation. For the other half-reaction, pyruvate to oxalacetate, the chiral methyl group methodology of Rose (I. A. Rose (1970), J. Biol. Chem. 245, 6052) was employed. First, it was determined with [3-2-He]pyruvate that a kinetic deuterium isotope effect of 2.1 occurs at Vmax in this carboxyl transfer, indicating that the necessary requirement for discrimination against heavy isotopes of hydrogen existed. Then, 3(S)-[3-2-H,3-H]pyruvate, generated from 3(S)-]E-2-H,3-H]phosphoglycerate, was carboxylated and the oxalacetate trapped as [3030H]malate using malate dehydrogenase. Exhaustive incubation of the tritiated malate (3-H/14-C = 1.95) with fumarase to labilize the pro-R hydrogen at C-3 resulted in release of 65% of the tritium into water. Reisolation of the malate after fumarase action yielded a 30H/14-C ration of 0.67, indicating 34% retention as expected. The theoretical enantiotopic distribution for the observed k1H/k2H of 2.1 is 68:32. Selective enrichment of tritium in the pro-R position at C-3 of malate indicates enzymatic carboxylation of pyruvate with retention of configuration in this half-reaction also.  相似文献   

14.
When α-ketoglutarate is the substrate, malate is a considerably more effective inhibitor of glutamate dehydrogenase than glutamate, oxalacetate, aspartate, or glutarate. Malate is a considerably poorer inhibitor when glutamate is the substrate. Malate is competitive with α-ketoglutarate, uncompetitive with TPNH, and noncompetitive with glutamate. The above, plus the fact that malate is a considerably more potent inhibitor when TPNH rather than TPN is the coenzyme, indicates that malate is predominantly bound to the α-ketoglutarate site of the enzyme-TPNH complex and has a considerably lower affinity for the enzyme-TPN complex. Ligands which decrease binding of TPNH to the enzyme such as ADP and leucine markedly decrease inhibition by malate. Conversely, GTP, which increases binding of TPNH to the enzyme also enhances inhibition by malate. Malate also decreases interaction between mitochondrial aspartate aminotransferase and glutamate dehydrogenase. This effect of malate on enzyme-enzyme interaction is enhanced by DPNH and GTP which also increase inhibition of glutamate dehydrogenase by malate and is decreased by TPN, ADP, ATP, α-ketoglutarate, and leucine which decrease inhibition of glutamate dehydrogenase by malate. These results indicate that malate could decrease α-ketoglutarate utilization by inhibiting glutamate dehydrogenase and retarding transfer of α-ketoglutarate from the aminotransferase to glutamate dehydrogenase. These effects of malate would be most pronounced when the mitochondrial level of α-ketoglutarate is low and the level of malate and reduced pyridine nucleotide is high.  相似文献   

15.
A NADH-linked oxygen-tolerant malate dehydrogenase was purified 270-fold from cell extracts of Methanospirillum hungatii. Inhibitors of the enzyme included ADP, alpha-ketoglutarate, and excess NADH. Inhibition patterns for ADP were competitive with respect to NADH and non-competitive with respect to oxalacetate. Inhibition by alpha-ketoglutarate was non-competitive with oxalacetate as variable substrate and uncompetitive with respect to NADH. alpha-Ketoglutarate is surmised to function as an end-product inhibitor of the enzyme in reactions converting oxalacetate to alpha-ketoglutarate. No enzyme activity was detected in the direction of malate conversion to oxalacetate, in keeping with a strictly biosynthetic function of the enzyme. An analysis of variance of intial rate data fit to sequential and ping-pong equations showed that a sequential mechanism was perferred. The malate dehydrogenase of M. hungatii resembles those of many other bacteria and eucaryotic cells respect to molecular weight (61,700) and reaction mechanism, but may be regulated differently.  相似文献   

16.
Isolated pea leaf mitochondria oxidatively decarboxylate added glycine. This decarboxylation could be linked to the respiratory chain (in which case it was coupled to three phosphorylations) or to mitochondrial malate dehydrogenase when oxalacetate was supplied. Decarboxylation rates measured as O2 uptake, or CO2 and NH3 release were adequate to account for whole leaf photorespiration. Oxalacetate-supported glycine decarboxylation, measured by linking malate efflux to added malic enzyme, yielded rates considerably less than the electron transport rates. Butylmalonate inhibited malate efflux but not oxalacetate entry; phthalonate inhibited oxalacetate entry but had little effect on malate or α-ketoglutarate oxidation. It is suggested that oxalacetate and malate transport are catalyzed by separate carrier systems of the mitochondrial membrane.  相似文献   

17.
Microcystis is a well-known cyanobacterial genus frequently producing hepatotoxins named microcystins. Toxin production is encoded by microcystin genes (mcy). This study aims (i) to relate the mcy occurrence in individual colonies to the presence of microcystin, (ii) to assess whether morphological characteristics (morphospecies) are related to the occurrence of mcy genes, and (iii) to test whether there are geographical variations in morphospecies specificity and abundance of mcy genes. Individual colonies of nine different European countries were analysed by (1) morphological characteristics, (2) PCR to amplify a gene region within mcyA and mcyB indicative for microcystin biosynthesis, (3) matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) to detect microcystins. Almost one hundred percent of the colonies predicted to produce microcystins by PCR analysis were found to contain microcystins. A high similarity in microcystin variants in the different colonies selected from lakes across Europe was demonstrated. The different morphospecies varied in the frequency with which they contained mcy genes. Most colonies (>75%) of M. aeruginosa and M. botrys contained the mcy genes, whereas < or = 20% of the colonies identified as M. ichthyoblabe and M. viridis gave a PCR product of the mcy genes. No colonies of M. wesenbergii gave a PCR product of either mcy gene. In addition, a positive relationship was found between the size of the colony and the frequency of those containing the mcy genes. It is concluded that the analysis of morphospecies is indicative for microcystin production, although the quantitative analysis of microcystin concentrations in water remains indispensable for hazard control.  相似文献   

18.
19.
Binding experiments indicate that mitochondrial aspartate aminotransferase can associate with the alpha-ketoglutarate dehydrogenase complex and that mitochondrial malate dehydrogenase can associate with this binary complex to form a ternary complex. Formation of this ternary complex enables low levels of the alpha-ketoglutarate dehydrogenase complex, in the presence of the aminotransferase, to reverse inhibition of malate oxidation by glutamate. Thus, glutamate can react with the aminotransferase in this complex without glutamate inhibiting production of oxalacetate by the malate dehydrogenase in the complex. The conversion of glutamate to alpha-ketoglutarate could also be facilitated because in the trienzyme complex, oxalacetate might be directly transferred from malate dehydrogenase to the aminotransferase. In addition, association of malate dehydrogenase with these other two enzymes enhances malate dehydrogenase activity due to a marked decrease in the Km of malate. The potential ability of the aminotransferase to transfer directly alpha-ketoglutarate to the alpha-ketoglutarate dehydrogenase complex in this multienzyme system plus the ability of succinyl-CoA, a product of this transfer, to inhibit citrate synthase could play a role in preventing alpha-ketoglutarate and citrate from accumulating in high levels. This would maintain the catalytic activity of the multienzyme system because alpha-ketoglutarate and citrate allosterically inhibit malate dehydrogenase and dissociate this enzyme from the multienzyme system. In addition, citrate also competitively inhibits fumarase. Consequently, when the levels of alpha-ketoglutarate and citrate are high and the multienzyme system is not required to convert glutamate to alpha-ketoglutarate, it is inactive. However, control by citrate would be expected to be absent in rapidly dividing tumors which characteristically have low mitochondrial levels of citrate.  相似文献   

20.
The regulatory properties of the NAD-dependent malic enzyme from the mitochondria of Ascaris suum have been studied. The malate saturation curve exhibits sigmoidicity and the degree of this sigmoidicity increases as the pH is increased. Fumarate was the only compound tested that stimulated the enzyme activity, whereas oxalacetate was the most powerful inhibitor. Activation by low levels of fumarate was found to be competitive with malate. It is proposed that this stimulation has physiological significance in controlling the dismutation reaction in the parasite. The branched-chain volatile fatty acid excretion products, tiglate, 2-methylbutanoate, and 2-methylpentanoate, inhibited the enzyme activity and this inhibition was competitive with malate. The Ki values for these compounds are in the physiological range of their concentrations; therefore, it is suggested that they may aid in controlling the malic enzyme activity in vivo. Oxalacetate inhibition of malic enzyme activity was competitive with malate, and the Ki values decreased with an increase in pH. Two alternatives are proposed which could account for the lack of oxalacetate decarboxylation by the ascarid malic enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号