首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in mutagenicity during crude oil degradation by fungi   总被引:5,自引:0,他引:5  
Two fungal strains, Cunninghamella elegans and Penicillium zonatum, that grow with crude oil as a sole carbon source were exposed to three crude oils that exhibit a range of mutagenic activity. At regular time intervals following fungal incubation with the various crude oils, extracts were tested for the presence of mutagenic activity using the spiral Salmonella assay. When the most mutagenic of the oils, Pennsylvania crude oil, was degraded by C. elegans or by P. zonatum, its mutagenicity was significantly reduced; corresponding uninoculated (weathered) controls of Pennsylvania crude remained mutagenic. West Texas Sour crude oil, a moderately mutagenic oil, exhibited little change in mutagenicity when incubated with either C. elegans or P. zonatum. Swanson River Field crude oil from Cook Inlet, Alaska is a slightly mutagenic oil that became more mutagenic when incubated with C. elegans; weathered controls of this oil showed little change in mutagenicity. Mycelial mat weights measured during growth on crude oils increased corresponding to the biodegradation of about 25% of the crude oil.  相似文献   

2.
Reclamation of saline soils produced by extraction of bitumen from oil sands is challenging. The main objective of this study was to select a salt-tolerant arbuscular mycorrhizal (AM) fungal isolate that could, in the future, be used to pre-inoculate plants used in reclamation of saline substrates produced by oil sand industry. To achieve this, the effects of NaCl, Na2SO4, and saline release water from composite tailings (CT) on hyphal growth of two AM fungal isolates from non-saline (Rhizophagus irregularis DAOM 181602, Rhizophagus sp. DAOM 227023) and three isolates of R. irregularis isolated from saline or sodic soils (DAOM 234181, DAOM241558, and DAOM241559) were tested in vitro. Pre-symbiotic hyphal growth of the five isolates, in absence of a host plant, decreased with increasing salt stress and no spores germinated in CT. The symbiotic extraradical phase of the four isolates of R. irregularis developed well in saline media compared to the Rhizophagus sp. Nevertheless, fungal development of the four R. irregularis isolates differed in saline media indicating phenotypic variations between isolates.  相似文献   

3.
《农业工程》2021,41(5):416-423
The use of microorganisms for remediation and restoration of hydrocarbons contaminated soils is an effective and economic solution. The current study aims to find out efficient telluric filamentous fungi to degrade petroleum hydrocarbons pollutants. Six fungal strains were isolated from used engine (UE) oil contaminated soil. Fungi were screened for their ability to degrade crude oil, diesel and UE oil using 2.6-dichlorophenol indophenol (DCPIP). Two isolates were selected, identified and registered at NCBI as Aspergillus ustus HM3.aaa and Purpureocillium lilacinum HM4.aaa. Fungi were tested for their tolerance to different concentration of petroleum oils using radial growth diameter assay. Hydrocarbons removal percentage was evaluated gravimetrically. The degradation kinetic of crude oil was studied at a time interval of 10 days. A.ustus was the most tolerant fungi to high concentration of petroleum oils in solid medium. Quantitative analysis showed that crude oil was the most degraded oil by both isolate; P. lilacinium and A. ustus removed 44.55% and 30.43% of crude oil, respectively. The two fungi were able to degrade, respectively, 27.66 and 21.27% of diesel and 14.39 and 16.00% of UE oil. As compared to the controls, these fungi accumulated high biomass in liquid medium with all petroleum oils. Likewise, crude oil removal rate constant (K) and half-lives (t1/2) were 0.02 day−1, 34.66 day and 0.015 day−1, 46.21 day for P. lilacinium and A. ustus, respectively. The selected fungi appear interesting for petroleum oils biodegradation and their application for soil bioremediation require scale-up studies.  相似文献   

4.
The pollution of soil and the subsurface environment by crude oil spill and petroleum products spill is a major concern around the world. The aim of this research was to investigate the ability of fungi isolated from Tehran oil refinery area in removing crude oil and to evaluate their enzymatic activities. Plant root samples were collected from the polluted and control areas, and rhizospheral fungi were isolated and determined using the laboratory methods and taxonomic keys. Seven fungal species were isolated and then cultured in potato dextrose agar (PDA) media containing 0–15% (v/v) crude oil. Oil removal was determined after a one-month growth of fungal colonies and then compared with the control media. The results showed that the studied fungi were able to remove crude oil from the media. The highest removal efficiency was observed in Aspergillus sp. Total protein content and enzymatic activity (of peroxidase and catalase) increased with increasing crude oil pollution. The highest enzymatic activity was evaluated in Aspergillus sp. growing in media containing 15% petroleum and the lowest activity was found in non-polluted groups. Results showed that there is a direct correlation between oil-removing potency and enzymatic activity. Aspergillus sp. showed the highest enzyme activity and also the highest petroleum removal efficiency.  相似文献   

5.
The indigenous fungal flora of three oil refinery contaminated sites (Bharuch, Valsad and Vadodara) of India has been documented in the present investigation. A total seventy-five fungal morphotypes were isolated from these sites and out of them, only fifteen isolates were capable of utilizing ethanol (0–8 %; v:v) as a sole source of carbon and energy for growth. Ten percent ethanol was completely lethal for the growth of all the isolated fungus. Biochemical characterization of the potent ethanol utilizing fungal isolates was studied based on substrate utilization profiles using BIOLOG phenotype microarray plates. Based on the morphological characters and Internal Transcribed Spacer region of ribosomal DNA, the fungal isolates were identified as Fusarium brachygibbosum, Fusarium equiseti, Fusarium acuminatum, Pencillium citrinum, Alternaria tenuissima, Septogloeum mori, Hypocrea lixii, Aureobasidium sp., Penicillium sp., and Fusarium sp. Intra-species genetic diversity among Fusarium sp. was evaluated by whole genome analysis with repetitive DNA sequences (ERIC, REP and BOX) based DNA fingerprinting. It was found that these fungus use alcohol dehydrogenase and acetaldehyde dehydrogenase enzymes based metabolism pathway to utilize ethanol for their growth and colonization.  相似文献   

6.
In a series of studies on the distribution of alkalophilic and alkali-tolerant fungi, soil fungi were isolated from five alkaline calcareous soil samples in two closely located limestone caves (stalactite caves) in Japan using slightly acidic and alkaline media. Some common soil fungi that can grow in alkaline conditions were obtained in high frequencies. The growth response to pH of the isolates revealed that approximately one third (30.8%) of the isolates had the optimum pH in the alkaline range. All isolates of fourAcremonium species and twoChrysosporium species grew well in alkaline conditions, of whichAcremonium sp. andChrysosporium sp. were pronounced alkalophiles. These fungi were thought to be indigenous species in this alkaline environment. The fungal flora in the Japanese alkaline soils was considerably different from the flora reported in alkaline environments in other countries.  相似文献   

7.
Crude oil biodegrading microorganism considers the key role for environmental preserving. In this investigation, crude oil biodegrading fungal strains have been isolated in polluted soil of crude-oil at khurais oil ground in Kingdom of Saudi Arabia. Among of 22 fungal isolates, only three isolates reflected potential capability for oil degradation. These isolates were identified and submitted to GenBank as (A1) Aspergillus polyporicola (MT448790), (A2) Aspergillus spelaeus (MT448791) and (A3) Aspergillus niger (MT459302) through internal-transcribed spacer-regions (ITS1&ITS2) for sequencing in molecular marker. Comparing with controls, strain (A1) Aspergillus niger was superior for biodegradation ability (58%) comparing with Aspergillus polyporicola and Aspergillus spelaeus degrading were showed 47 and 51% respectively. Employed CO2 evolution as indicator for petroleum oil biodegradation by the fungal isolates reflected that, Aspergillus niger emission highest CO2 (28.6%) comparing with Aspergillus spelaeus and Aspergillus polyporicola which showed 13% and 12.4% respectively. capability of Aspergillus sp. to tolerate and adapted oil pollutants with successful growth rate on them, indicated that it can be employed as mycoremediation agent for recovering restoring ecosystem when contaminated by crude oil.  相似文献   

8.
Total aerobic bacteria and fluorescent pseudomonads were counted in bulk and rhizospheric soils of banana plants of 14 plantations in Martinique (French West Indies). Fluorescent Pseudomonas isolates were then identified and investigated for in vitro antagonism towards Cylindrocladium sp., a fungal pathogen of banana roots. Total aerobic bacteria and fluorescent pseudomonads were significantly more abundant in rhizospheric soils than in bulk soils. Among 58 fluorescent Pseudomonas isolates, 41 were identified as Pseudomonas fluorescens biovar V and 17 as Ps. putida biovar A. Six strains exhibited an antagonism towards Cylindrocladium isolates. Among them, Ps. putida strain 93.1 totally blocked fungal growth. No relationship was established between the antifungal effect and enzyme or hydrogen cyanide production by bacteria, suggesting that siderophores and other compounds were involved in fungal inhibition. Antagonistic fluorescent pseudomonads represent a potential for the biological control of banana root infections by Cylindrocladium sp.  相似文献   

9.
Two types of Indian crude oil (Bombay High and Gujarat) were tested for their biodegradability by Acinetobacter calcoaceticus and Alcaligenes odorans. Acinetobacter calcoaceticus S30 and Alc. odorans P20 degraded Bombay High crude oil by 50% and 45%, while only 29% and 37% of Gujarat crude oil (heavy crude oil) was degraded by these isolates, respectively. Acinetobacter calcoaceticus and Alc. odorans in combination deraded 58% and 40% of Bombay High and Gujarat crude oils, respectively, which were significantly higher than that of by individual cultures. Acinetobacter calcoaceticus S30 degraded more of the alkanes fraction than the aromatics fraction of both crude oils. GC fingerprinting of alkane fraction showed major degradation of heptadecane (C17), octadecane (C18), nonadecane (C19), eicosane (C20), docosane (C22), tricosane (C23) and tetracosane (C24) of crude oil, while the Alc. odorans P20 degraded alkanes and aromatics equally. The asphaltenic component increased in both types of crude oil after biodegradation. The two strains grew very well on n -alkane up to C33 as well as on pristane (branched-chain alkane) but could not grow on cycloalkanes. Acinetobacter calcoaceticus S30 could not grow on pure polycyclic aromatic hydrocarbon (PAH) compounds except naphthalene but Alc. odorans P20 could grow on anthracene, phenanthrene, dibenzothiophene, fluorene, fluoranthene, pyrene and chrysene.  相似文献   

10.
Forty six bacterial isolates able to grow on crude oil were isolated from various hydrocarbon-contaminated sites in Kuwait. The extent of crude oil degradation varied over a wide range (1–87%) among the isolates. Isolates were predominantly Gram-positive bacteria (79% of total isolates) belonging to the genera Bacillus (93%) and Paenibacillus (7%). Among the few Gram-negative isolates were from the genera Acinetobacter, Alcaligenes, Klebsiella, Burkholderia, Pseudomonas, and Williamsia. Analyses of their cell-surface hydrophobicity (CSH) by various methods equally showed a wide variation among the isolates. About 74% of isolates that degraded significant amounts of crude oil (>40% degradation) possessed high level of CSH, while 58% of all the isolates exhibited high levels of CSH. Statistical analyses showed significantly high correlation between the ability to degrade crude oil and CSH. The ability of the isolates to bind to polystyrene and salt-aggregation test as measures of CSH were more strongly correlated with hydrocarbon-degrading ability than adherence to hydrocarbons.  相似文献   

11.
Three bacterial strains capable of degrading atrazine were isolated from Manfredi soils (Argentine) using enrichment culture techniques. These soils were used to grow corn and were treated with atrazine for weed control during 3 years. The strains were nonmotile Gram-positive bacilli which formed cleared zones on atrazine solid medium, and the 16S rDNA sequences indicated that they were Arthrobacter sp. strains. The atrazine-degrading activity of the isolates was characterized by the ability to grow with atrazine as the sole nitrogen source, the concomitant herbicide disappearance, and the chloride release. The atrazine-degrader strain Pseudomonas sp. ADP was used for comparative purposes. According to the results, all of the isolates used atrazine as sole source of nitrogen, and sucrose and sodium citrate as the carbon sources for growth. HPLC analyses confirmed herbicide clearance. PCR analysis revealed the presence of the atrazine catabolic genes trzN, atzB, and atzC. The results of this work lead to a better understanding of microbial degradation activity in order to consider the potential application of the isolated strains in bioremediation of atrazine-polluted agricultural soils in Argentina.  相似文献   

12.
Contamination of plants and seeds with microorganisms is one of the main problems in the production and distribution of various agricultural products, as well as raw herbal material for the preparation of herbal remedies. In targeting microbial contamination, among other bacteria, Bacillus species showed a significant capacity for biocontrol. The antifungal activity of 14 isolates of Bacillus spp. against 15 fungal isolates from medicinal plants was examined utilizing a dual plate assay. The strongest and broadest antagonistic activity against all fungi tested was exhibited by isolates SS-12.6 and SS-13.1 (from a 43% to 74% reduction in fungal growth), while isolates SS-39.1 and SS-39.3 were effective against the fewest fungus species and also had the weakest antifungal activity. The effect of a crude lipopeptide extract (CLE) of Bacillus sp. SS-12.6 was similar to that achieved by a dual culture with isolate SS-12.6, confirming that the antagonism was the result of the antifungal activities of lipopeptides. In addition, essential oils of thyme (0.55 mg/mL) and savory (0.32 mg/mL) in various combinations with the CLE of SS-12.6 were tested for antifungal activity, and additive and synergistic effects for some of the fungi were obtained. When testing the effect of CLE, oils (0.40 mg/mL for thyme oil and 0.21 mg/mL for savory oil) and combinations in situ on marigold seeds, a reduction of total fungal infection without an adverse effect on germination was accomplished by 6-h treatments with CLE of SS-12.6 (85% reduction of fungal infection and 63% germination), supernatant from liquid culture of SS-12.6 (more than 90% reduction of fungal infection with 69% seed germination) and combinations of CLE and savory oil (77% reduction of fungal infection and 62% seed germination) and CLE with thyme and savory oils (about 75% reduction of fungal infection with 69% seed germination).  相似文献   

13.
Clark  R.B. 《Plant and Soil》1997,192(1):15-22
Arbuscular mycorrhizal (AM) fungi colonize plant roots and often enhance host plant growth and mineral acquisition, particularly for plants grown under low nutrient and mineral stress conditions. Information about AM fungi and mycorrhizal ( +AM) host plant responses at low pH ( < 5) is limited. Acaulospora are widely reported in acid soil, and Gigaspora sp. appear to be more common in acid soils than Glomus sp. Spores of some AM fungi are more tolerant to acid conditions and high Al than others; t Acaulospora sp., Gigaspora sp., and Glomus manihotis are particularly tolerant. Root colonization is generally less in low than in high pH soils. Percentage root colonization is generally not related to dry matter (DM) produced. Maximum enhancement of plant growth in acid soil varies with AM fungal isolate and soil pH, indicating adaptation of AM isolates to edaphic conditions. Acquisition of many mineral nutrients other than P and Zn is enhanced by +AM plants in acid soil, and the minerals whose concentration is enhanced are those commonly deficient in acid soils (Ca, Mg, and K). Some AM fungal isolates are effective in overcoming soil acidity factors, especially Al toxicity, that restrict plant growth at low pH.  相似文献   

14.
The effect of temperature on the growth of Chrysosporium pannorum, Cylindrocarpon sp., Penicillium janthinellum, and Phoma herbarum, isolated from tundra soils, was studied. The growth in two systems, glucose-mineral agar plates and sand, moistened with glucose-mineral broth, was compared. All isolates showed an exponential increase in mass (measured as protein increase) in sand and a linear rate of extension on agar. Radial increase on agar was shown not to be a good index of growth in sand. Trends in growth rates in the sand cultures indicated that all four fungi can grow at low temperatures. The growth rate for Penicillium janthinellum at 15 degrees C was higher than at 20 degrees C, and Cylindrocarpon sp. and Phoma herbarum had higher growth rates at 2.5 degrees C than at 5 degrees C. These data suggest that there may be some adaptation by these fungi to growth in Arctic regions.  相似文献   

15.
Pseudomonas sp. strain LP1, an organism isolated on the basis of its ability to grow on pyrene, was assayed for its degradative and biosurfactant production potentials when growing on crude, diesel and engine oils. The isolate exhibited specific growth rate and doubling time of 0.304 days−1 and 2.28 days, respectively on crude oil (Escravos Light). The corresponding values on diesel were 0.233 days−1 and 2.97 days, while on engine oil, were 0.122 days−1 and 5.71 days. The organism did not show significant biosurfactant production towards crude oil and diesel, but readily produced biosurfactant on engine oil. The highest Emulsification index (E24) value for the biosurfactant produced by LP1 on engine oil was 80.33 ± 1.20, on day 8 of incubation. Biosurfactant production was growth-associated. The surface-active compound which exhibited zero saline tolerance had its optimal activity at 50°C and pH 2.0.  相似文献   

16.
Strains of Pseudomonas putida, Pseudomonas sp., and Pseudomonas aeruginosa were examined for their ability to grow in the presence of the iron chelator, ethylenediamine-di-(o-hydroxyphenylacetic acid). In vitro fungal inhibition assays showed that the isolates varied in their ability to inhibit the growth of representative fungal plant pathogens. Fungal inhibition in vitro was superior to that of previously reported Pseudomonas sp. Studies with Fusarium oxysporum forma sp. lycopersici and a susceptible tomato cultivar demonstrated that Pseudomonas putida PPU3.1 was able to significantly reduce wilt disease.  相似文献   

17.
Physiological and phylogenetic diversity of bacteria growing on resin acids   总被引:1,自引:0,他引:1  
Resin acids are tricyclic diterpenes which are synthesized by trees and are a major cause of toxicity of pulp mill effluents. Bacterial strains isolated from three different sources and which grow on resin acids were physiologically characterized. Eleven strains, representating distinct groups, were further characterized physiologically and phylogenetically. The isolates had distinct specificities for use, as growth substrates, of the different resin acids tested. The isolates also used fatty acids but were generally limited in use of other diverse substrates tested. According to their 16S rDNA sequences, the representative isolates are related to members of the genera, Sphingomonas, Zoogloea, Ralstonia, Burkholderia, Pseudomonas and Mycobacterium. Analysis of whole-cell fatty acid profiles generally supported those phylogenetic relationships. However, most of the isolated did not have high similarities to reference strains in the Microbial Identification System database of fatty acid profiles or in the Biolog database of substrate oxidation patterns. Described species of Sphingomonas, Zoolgoea, Burkholderia Pseudomonas, most closely related to the isolates we characterized, failed to grow on, or degrade, resin acids. We propose recognition of Zoogloea resiniphila sp. nov., Pseudomonas vancouverensis sp. nov., P. abietaniphila sp. nov. and P. multiresinivorans sp. nov.  相似文献   

18.
A study was undertaken to investigate the distribution of biosurfactant producing and crude oil degrading bacteria in the oil contaminated environment. This research revealed that hydrocarbon contaminated sites are the potent sources for oil degraders. Among 32 oil degrading bacteria isolated from ten different oil contaminated sites of gasoline and diesel fuel stations, 80% exhibited biosurfactant production. The quantity and emulsification activity of the biosurfactants varied. Pseudomonas sp. DS10‐129 produced a maximum of 7.5 ± 0.4 g/l of biosurfactant with a corresponding reduction in surface tension from 68 mN/m to 29.4 ± 0.7 mN/m at 84 h incubation. The isolates Micrococcus sp. GS2‐22, Bacillus sp. DS6‐86, Corynebacterium sp. GS5‐66, Flavobacterium sp. DS5‐73, Pseudomonas sp. DS10‐129, Pseudomonas sp. DS9‐119 and Acinetobacter sp. DS5‐74 emulsified xylene, benzene, n‐hexane, Bombay High crude oil, kerosene, gasoline, diesel fuel and olive oil. The first five of the above isolates had the highest emulsification activity and crude oil degradation ability and were selected for the preparation of a mixed bacterial consortium, which was also an efficient biosurfactant producing oil emulsifying and degrading culture. During this study, biosurfactant production and emulsification activity were detected in Moraxella sp., Flavobacterium sp. and in a mixed bacterial consortium, which have not been reported before.  相似文献   

19.
Entomopathogenic Hypocreales were isolated from arid soils in Argentina using Tenebrio molitor as bait and tested for their biological performance at 30°C and 45–65% RH. Conidial germination was tested in three vegetable oils (sunflower, olive and maize) at two concentrations (1% and 10%) to evaluate their compatibility for further liquid formulations. According to radial growth and germination results, we selected four isolates to test their pathogenicity against second instar B. tabaci nymphs with the selected oil formulations at 30°C. CEP381 and CEP401 showed the highest radial growth. Isolates CEP381, CEP401, CEP413 and CEP409 (Metarhizium spp.) had similar germination percentages as compared with water control when germinated on either sunflower, olive or maize oils at 10% v/v. The highest mortality of B. tabaci was observed for the isolates CEP381 in sunflower oil and CEP401 in olive oil. Molecular identification of isolates was performed using ITS4–5 primers. All isolates belong to the Metarhizium core group. Tested isolates could grow and infect B. tabaci nymphs at 30°C in some of the vegetable oils as carriers, providing new possibilities for integrated pest management of Bemisia tabaci.  相似文献   

20.
Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10?mM of oxalic acid whereas only 15 isolates were grow at 50?mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23?%) after 60?min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号