首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel triazole based inhibitors of Ras farnesyl transferase   总被引:1,自引:0,他引:1  
A novel series of potent inhibitors of Ras farnesyl transferase possessing a 1,2,4-triazole pharmacophore is described. These inhibitors were discovered from a parallel synthesis effort and were subsequently optimized to in vitro IC50 value of less than 1 nM.  相似文献   

2.
A novel diphosphate mimic, the 2,3,6-trifluoro-5-hydroxy-4-nitrophenoxy group (1), has been employed as the template in the solid-phase synthesis of novel farnesyl transferase inhibitors using the Mitsunobu reaction. The most potent inhibitor (farnesyloxy-5-hydroxy-2,3,6-trifluoro-4-nitrobenzene) displayed an IC50 of 6.3 microM versus farnesyl transferase.  相似文献   

3.
1,3,5,5-Tetrasubstituted 2,4-imidazolinedione (hydantoin) derivatives were evaluated as Ftase inhibitors. Potent Ftase inhibitors without thiol or peptide were obtained in three steps.  相似文献   

4.
Farnesyl:protein transferase (FPTase) catalyzes the covalent addition of the isoprenyl moiety of farnesylpyrophosphate to the C-terminus of the Ras oncoprotein and other cellular proteins. Inhibitors of FPTase (FTIs) have been developed as potential anticancer agents, and several compounds have been evaluated in clinical trials. To facilitate the identification of cell-active FTIs with high potency, the authors developed a method that uses a radiolabeled FTI that serves as a ligand in competitive displacement assays. Using high-affinity [(3)H]-labeled or [(125)I]-labeled FTI radioligands, they show that specific binding to FPTase can be detected in intact cells. Binding of these labeled FTI radioligands can be competed with a variety of structurally diverse FTIs, and the authors show that inhibition of FTI radioligand binding correlates well with inhibition of FPTase substrate prenylation in cells. This method provides a rapid and quantitative means of assessing FTI potency in cells and is useful for guiding the discovery of potent, novel inhibitors of FPTase. Similar methods could be employed in the optimization of inhibitors for other intracellular drug targets.  相似文献   

5.
Novel tricyclic FPT inhibitors with submicromolar FPT activity are described. Greatly enhanced FPT activity is realized with phthaloyl derivatized amino compound 2k, which showed FPT inhibitory activity of IC50 = 0.66 μM. Sulfonamides 5g and 50 were also found to be potent FPT inhibitor. SAR resulting from a variety of tricyclic amino acids and sulfonamide derivatives is discussed.  相似文献   

6.
A series of 2-arylindole-3-acetamide farnesyl protein transferase inhibitors has been identified. The compounds inhibit the enzyme in a farnesyl pyrophosphate-competitive manner and are selective for farnesyl protein transferase over the related enzyme geranylgeranyltransferase-I. A representative member of this series of inhibitors demonstrates equal effectiveness against HDJ-2 and K-Ras farnesylation in a cell-based assay when geranylgeranylation is suppressed.  相似文献   

7.
A series of (4-chlorophenyl)--(1-methyl-1H-imidazol-5-yl)azoloquinolines and -quinazolines was prepared. These compounds displayed potent Farnesyl Protein Transferase inhibitory activity and tetrazolo[1,5-a]quinazolines are promising agents for oral in vivo inhibition.  相似文献   

8.
Synthesis and biological evaluation of heteroarenes as reduced cysteine replacements are described. Of the heteroaryl groups examined with respect to FT inhibitor FTI-276 (1), pyridyl was the replacement found to be most effective. Substitutions at C4 of the pyridyl moiety did not affect the in vitro activity. Compound 9a was found to have moderate in vivo bioavailability.  相似文献   

9.
SCH 66336 is a trihalo tricyclic compound that is currently undergoing Phase II clinical trials for the treatment of solid tumors. Modifications of SCH 66336 by incorporating such groups as amides, acids, esters, ureas and lactams off the first or the distal piperidine (from the tricycle) provided potent FPT inhibitors some of which exhibited good cellular activity. A number of these compounds incorporate properties that might improve pharmacokinetic stability of these inhibitors by virtue of their increased solubility or by their change in log P.  相似文献   

10.
Rubber transferase, a cis-prenyltransferase, catalyzes the addition of thousands of isopentenyl diphosphate (IPP) molecules to an allylic diphosphate initiator, such as farnesyl diphosphate (FPP, 1), in the presence of a divalent metal cofactor. In an effort to characterize the catalytic site of rubber transferase, the effects of two types of protein farnesyltransferase inhibitors, several chaetomellic acid A analogs (2, 4-7) and alpha-hydroxyfarnesylphosphonic acid (3), on the ability of rubber transferase to add IPP to the allylic diphosphate initiator were determined. Both types of compounds inhibited the activity of rubber transferases from Hevea brasiliensis and Parthenium argentatum, but there were species-specific differences in the inhibition of rubber transferases by these compounds. Several shorter analogs of chaetomellic acid A did not inhibit rubber transferase activity, even though the analogs contained chemical features that are present in an elongating rubber molecule. These results indicate that the initiator-binding site in rubber transferase shares similar features to FPP binding sites in other enzymes.  相似文献   

11.
Starting from a FPP analogue with nanomolar inhibitory activity against isolated FPTase, yet lacking activity in cellular assays, structural modifications were performed to enhance cellular activity by removing all acidic functionalities. Overall, these changes resulted in the transformation of a pure FPP to a mixed FPP and CAAX competitive inhibitor with nanomolar activity on isolated FPTase and micromolar inhibitory activity in the farnesylation of H-Ras in cultured DLD-1 cells.  相似文献   

12.
Three consensus 3D-QSAR (c-3D-QSAR) models were built for 38, 34, and 78 inhibitors of β-secretase, histone deacetylase, and farnesyltransferase, respectively. To build an individual 3D-QSAR model, the structures of an inhibitor series are aligned through docking of a protein receptor into the active site using the program GOLD. CoMFA, CoMSIA, and Catalyst are then performed for the training set of each structurally aligned inhibitor series to obtain a 3D-QSAR model. Since the consensus in features identified is high for the same pharmacophore features selected for building a 3D-QSAR model by a 3D-QSAR method, a c-3D-QSAR model for each inhibitor series is constructed by combining the pharmacophore features selected for building the 3D-QSAR model using the SYBYL spread sheet and PLS module. Each c-3D-QSAR pharmacophore model built was examined visually and compared with that obtained by simultaneous mapping of the corresponding 3D-QSAR pharmacophores built onto a selected inhibitor structure. It was found that the c-3D-QSAR model built for an inhibitor series improves not only the overall prediction statistics for both training and test sets but also the prediction accuracy for some less active inhibitors of the series.  相似文献   

13.
14.
A novel series of compounds, derived from 4-amino-phenyl piperazine, has been designed to selectively inhibit farnesyl protein transferase (FPTase) as CAAX tetrapeptide analogues. Certain of these compounds were shown to possess low nanomolar inhibitory activity both against the isolated enzyme and in cultured cells.  相似文献   

15.
J Grünler  I Parmryd 《FEBS letters》1999,455(3):233-237
Farnesyl protein transferase (FPT) activity was measured in rat liver subcellular fractions by using an unspecific acceptor for the farnesyl groups. The highest specific activity was found in mitochondria and it exceeded that of the microsomes three-fold. Considerably lower specific activities were found in the nuclei and cytosol. Further subfractionation revealed that the mitochondrial FPT activity is located in the matrix. The beta-subunit of the mitochondrial enzyme has an apparent molecular mass of 46 kDa, which is similar to its cytosolic counterpart. The results suggest that protein farnesylation can take place in a number of subcellular organelles.  相似文献   

16.
Protein farnesyl transferase (FTase) catalyzes transfer of a 15-carbon farnesyl group from farnesyl diphosphate (FPP) to a conserved cysteine in the C-terminal Ca1a2X motif of a range of proteins ("C" refers to the cysteine, "a" to any aliphatic amino acid, and "X" to any amino acid), and the lipid chain interacts with, and forms part of, the Ca1a2X peptide binding site. Here, we employed a library of anilinogeranyl diphosphate (AGPP) derivatives to examine whether altering the interacting surface between the two substrates could be exploited to generate Ca1a2X peptide selective FPP analogues. Analysis of transfer kinetics to dansyl-GCVLS peptide revealed that AGPP analogues with substituents smaller than or equal in size to a thiomethyl group supported FTase function, while analogues with larger substituents did not. Analogues with small meta-substitutions on the aniline ring such as iodo and cyano increased reactivity with dansyl-GCVLS and provided analogues that were effective FPP competitors. Other analogues with ortho-substitutions on the aniline were potent dansyl-GCVLS modification FTase inhibitors (Ki in the 2.4-18 nM range). Both meta- and para-trifluoromethoxy-AGPP are transferred to dansyl-GCVLS while the ortho-substituted isomer was a potent farnesyl transferase inhibitor (FTI) with an inhibition constant Ki = 3.0 nM. In contrast, ortho-trifluoromethoxy-AGPP was efficiently transferred to dansyl-GCVIM. Competition for dansyl-GCVLS and dansyl-GCVIM peptides by FPP and ortho-trifluoromethoxy-AGPP gave both analogue and farnesyl modified dansyl-GCVIM but only farnesylated dansyl-GCVLS. We provide evidence that competitive modification of dansyl-GCVIM by ortho-trifluoromethoxy-AGPP stems from a prechemical step discrimination between the competing peptides by the FTase-analogue complex. These results show that subtle changes engineered into the isoprenoid structure can alter the reactivity and FPP competitiveness of the analogues, which may be important for the development of prenylated protein function inhibitors.  相似文献   

17.
Limonene and its metabolite perillyl alcohol are naturally-occurring isoprenoids that block the growth of cancer cells both in vitro and in vivo. This cytostatic effect appears to be due, at least in part, to the fact that these compounds are weak yet selective and non-toxic inhibitors of protein prenylation. Protein-farnesyl transferase (FTase), the enzyme responsible for protein farnesylation, has become a key target for the rational design of cancer chemotherapeutic agents. Therefore, several alpha-hydroxyphosphonate derivatives of limonene were designed and synthesized as potentially more potent FTase inhibitors. A noteworthy feature of the synthesis was the use of trimethylsilyl triflate as a mild, neutral deprotection method for the preparation of sensitive phosphonates from the corresponding tert-butyl phosphonate esters. Evaluation of these compounds demonstrates that they are exceptionally poor FTase inhibitors in vitro (IC50 > or = 3 mM) and they have no effect on protein farnesylation in cells. In contrast, farnesyl phosphonyl(methyl)phosphinate, a diphosphate-modified derivative of the natural substrate farnesyl diphosphate, is a very potent FTase inhibitor in vitro (Ki=23 nM).  相似文献   

18.
Four cyclopentenediones, farnesyl protein transferase inhibitors, and anti-tumor compounds were isolated from the methanolic extract of the fruits of Lindera erythrocarpa Makino (Lauraceae). The structure of the compounds was determined by spectral data including NMR and mass spectrometry, and cyclopentenediones such as methyllinderone (1), methyllucidone (2), lucidone (3), and linderone (4) were identified by comparing their reported spectral data with that of the literature values. Compounds 1-4 inhibited farnesyl protein transferase with IC50 value of 55.3+/-4.1, 42+/-1.9, 103+/-5.1, and 40+/-3.5 microM, respectively. Isolated compounds also inhibited the growth of various human cancer cell lines in a dose-dependent manner. Especially, Compounds 1 and 2 selectively inhibited the growth of H-ras-transformed rat-2 cell lines in comparison with normal rat-2 cells with a GI50 value of 0.3 and 0.85 microM, respectively. Methyllucidone strongly inhibited the growth of human cancer cells and colon tumor xenografted in nude mice. The anti-tumor effects of the compound were further confirmed with caspase-3 activation and degradation of PARP. The results suggest that methyllucidone can be a potential anti-cancer agent against H-ras-transformed tumor and will also be a good lead molecule for the development of anti-tumor drug.  相似文献   

19.
A rapid structure-activity study was performed by parallel liquid synthesis on N,N'-disubstitution of 3-amino azepin-2-one to afford potent and specific farnesyl transferase inhibitors with low nM enzymatic and cellular activities. The activities of the selected compounds were validated in vivo, and compounds 41a and 44a presented significant antitumour activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号