首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By use of membrane preparations and incubation conditions optimized for each binding site, we have characterized the benzodiazepine and ionophore-linked-convulsant/barbiturate modulatory sites within the chick tectal GABAA receptor complex. Using [3H]flunitrazepam (FNZ) and [35S]t-butylbicyclophosphorothionate (TBPS), respectively, as specific radioligand probes for the two sites, we have found in each case one single population of high-affinity, saturable, specific binding sites. The apparent dissociation constants (Kd) show no change during tectal development (9 nM for [3H]FNZ, and 25–28 nM for [35S]TBPS) while the respective densities of binding sites at saturation (Bmax) experience in both cases a twofold increase between embryonic day 16 and postnatal day 10. Ligand-specific pharmacological profiles and allosteric interactions between the transmitter and modulatory sites appear to be well preserved in the chick tectal membrane preparations employed in this study.  相似文献   

2.
The developmental profiles of the neurotransmitter recognition site, labeled by [3H]muscimol, and of the two main modulatory sites, labeled by [3H]flunitrazepam and [35S]t-butylbicyclophosphorothionate, respectively, within the GABAA receptor complex, have been determined in chick tectal lobes between embryonic day 8 and postnatal day 20. The consonance among the rates of appearance and accumulation of the three receptor sites in tectal membranes suggests a coordinated expression and assembly of the protein subunits involved in the spatial configuration of the complex and its three binding sites, although the existence of isolated muscimol binding subunits during early embryogenesis cannot be excluded at the present time. Furthermore, the total number of binding sites of each kind, per pair of lobes, is compatible with a 1/1/I stoichiometry. The GABAA receptor complex reaches a maximum of expression, relative to total membrane protein, immediately after hatching, suggesting that the tectal GABAergic system may be instrumental in damping the effects of sudden exposure to light of the chick visual system upon eye opening.  相似文献   

3.
Abstract— The binding of [3H]muscimol, a potent GABA agonist, to crude synaptic membranes prepared from rat brain was studied using a filtration method to isolate membrane-bound ligand. Specific binding was found to be saturable and occurred to two binding sites of K d5 5 and 30 n m . Binding was Na+-independent and enhanced by both freezing and Triton treatment. Regional and subcellular distribution studies and pharmacological characterization of specific [3H]muscimol binding are consistent with binding to the synaptic GABA receptor.  相似文献   

4.
In the absence of detergent, specific binding of [3H]GR65630, a 5-hydroxytryptamine3 (5-HT3) antagonist, determined in the presence of 5-HT3 receptor antagonist ICS205-930, was at most 30% of the total binding. To decrease the level of nonspecific binding, the effects of detergents on [3H]GR65630 binding to rat cortical membranes were investigated. The use of a detergent (0.1% Lubrol PX or Triton X-100) decreased nonspecific binding, increasing the proportion of specific binding to 70% of total binding. In the presence of 0.1% Triton X-100, binding of [3H]GR65630 was rapid, reversible and saturable at 25°C. The rank order of 5-HT3 receptor active drugs in inhibiting [3H]GR65630 binding was quipazine > ICS205-930 > 2-methyl-5-HT = 5-HT > metoclopramide, which confirmed that [3H]GR65630 efficiently labeled 5-HT3 receptors in the presence of Triton X-100. Triton X-100 improved 5-HT3 receptor binding with rat brain membranes.  相似文献   

5.
The effects of γ-amino-n-butyric acid (GABA), (+)bicuculline, isoguvacine and 3-(4-chlorophenyl)-4-aminobutyrate [(±)baclofen] on the K-induced release of [3H]acetylcholine (ACh) were studied in the superior cervical ganglia of the rat in vitro. GABA and isoguvacine inhibited [3H]ACh release and these inhibitions were reversible by (+)bicuculline. Furthermore, the release of [3H]ACh was also inhibited by (±)baclofen. In receptor-binding studies, binding of [3H]GABA to membrane preparations from the superior cervical ganglia was inhibited by both (±)baclofen and (+)bicuculline. It is concluded that the inhibitory effect of GABA on the release of ACh can be mediated by GABAA(bicuculline-sensitive) and by GABAB (baclofen-activated) receptors. Our findings are compatible with the existence of a non-synaptic GABAergic inhibitory system involving GABAA and GABAB receptors on cholinergic nerve terminals in the superior cervical ganglion of rat.  相似文献   

6.
Age-related alterations in major neurotransmitter receptors and voltage dependent calcium channels were analyzed by receptor autoradiography in the gerbil brain. [3H]Quinuclidinyl benzilate (QNB). [3H]cyclohexyladenosine (CHA), [3H]muscimol, [3H]MK-801, [3H]SCH 23390, [3H]naloxone, and [3H]PN200-110 were used to label muscarinic acetylcholine receptors, adenosine A1 receptors, γ-aminobutyric acidA (GABAA) receptors, (NMDA) receptors, dopamine D1 receptors, opioid receptors, and voltage dependent calcium channels, respectively. In middle-aged gerbils (16 months old), the hippocampus exhibited a significant elevation in [3H]QNB, [3H]MK-801, [3H]SCH 23390, [3H]naloxone, and [3H]PN200-110 binding, whereas [3H]CHA and [3H]muscimol binding showed a significant reduction in this area, compared with that of young animals (1 month). On the other hand, the cerebellum showed a significant alteration in [3H]QNB, [3H]CHA, and [3H]naloxone binding and the striatum also exhibited a significant alteration in [3H]SCH 23390 and [3H]CHA binding in middle-aged gerbils. The neocortex showed a significant elevation only in [3H]CHA binding in middle-aged animals. The nucleus accumbens and thalamus also showed a significant alteration only in [3H]muscimol binding. However, the hypothalamus and substantia nigra exhibited no significant alteration in these bindings in middle-aged gerbils. These results demonstrate the age-related alterations of various neurotransmitter receptors and voltage dependent calcium channels in most brain regions. Furthermore, they suggest that the hippocampus is most susceptible to aging processes and is altered at an early stage of senescence.  相似文献   

7.
The distribution and the pharmacological properties of the binding of the benzodiazepine receptor antagonist [3H]-Ro 15–1788 (8-fluoro-3-carboethoxy-5,6-dihydro-5-methyl-6-oxo-4H imidazol [1,5-a] 1,4 benzodiazepine) were compared in some brain membranes of the saltwater teleost fish, Mullus surmuletus: only a single population of [3H]-Ro 15–1788 binding sites was detected. The binding was saturable and reversible with a high affinity, revealing a significant population of binding sites (Kd value of 2.1 ± 0.2 nM and Bmax value of 1400-900 fmol mg−1 of protein, depending on fish length). The highest concentration of benzodiazepine recognition sites labelled with [3H]-Ro 15–1788 was present in the optic lobe and the olfactory bulb and the lowest concentration was found in the medulla oblongata, cerebellum and spinal cord. In order to explore behavioural selectivity as a consequence of multiple receptor subtypes, six benzodiazepine receptor ligands, flunitrazepam (5-(2-fluoro-phenyl)-1,3,dihydro-1-methyl-7-nitro-2H-1,4-benzodiazepine-2-one), alpidem, (N,N-dipropyl-6-chloro-2-(4-chlorophenyl) imidazo [1,2-a] pyridine-3-acetamide) zolpidem {N,N,6, trimethyl-2-(4-methyl-phenyl) imidazo [1,2-a] pyridine-3-acetamide hemitartrate}, methyl β carboline-3-carboxylate (βCCM), Ro 15–1788 and Ro 5–4864 (4′-chlorodiazepam), were tested in vitro by binding of [3H]-Ro 15–1788 to membrane preparations from various brain areas of Mullus surmuletus. Displacement studies showed a similar rank order of efficacy of various unlabelled ligands. In all regions of the brain and in the spinal cord, GABA potentiate [3H]-flunitrazepam binding in a similar order, suggesting that the BDZ recognition sites are part of the GABAA receptor structure. These results suggest that central-type benzodiazepine receptors are present in one class of benzodiazepine binding sites in the saltwater teleost fish brain of Mullus surmuletus (type I-like). Here we report initial evidence of homogeneity of subtypes of central benzodiazepine receptors in the spinal cord of the saltwater teleost fish, Mullus surmuletus.  相似文献   

8.
[3H]Lysergic acid diethylamide (LSD) in the presence of 40 nM ketanserin labeled the 5-HT1A receptor subtype in rat hippocampal membranes. In the presence of guanosine triphosphate (GTP), the Bmax and affinity of [3H]LSD binding to the 5-HT1A binding site were significantly decreased. [3H]LSD in the presence of 40 nM WB4101 labeled the 5-HT2 receptor subtype in homogenates of rat frontal cortex. In contrast to the effect on [3H]LSD binding to the 5-HT1A binding site, GTP produced no significant effect on either the Bmax or the KD of [3H]LSD binding to the 5-HT2 binding site. Competition of 5-HT for [3H]LSD binding to the 5-HT2 binding site was best described by a computer-derived model assuming two binding sites. In the presence of GTP, the 5-HT competition curve was shifted significantly to the right with an approx. 3-fold increase in the IC50. These binding characteristics are consistent with [3H]LSD acting as an antagonist at the 5-HT2 receptor which has multiple affinity states for agonists and is coupled to a guanine nucleotide regulatory subunit. Thus, [3H]LSD has binding characteristics consistent with it acting as an agonist at the 5-HT1A receptor subtype but as an antagonist at the 5-HT2 receptor subtype in rat brain.  相似文献   

9.
Abstract: The chemical topography of the γ-aminobutyric acid (GABA) and benzodiazepine (BZ) receptors was investigated in a thoroughly washed cortical membrane preparation of the rat. Chemical modification by several amino- and tyrosyl-selective reagents and the protection from it by direct and allosteric ligands of the GABA-BZ receptor complex were used to identify the residues at the binding sites. Inhibition of specific GABA binding by p -diazobenzenesulfonic acid (DSA), tetrani-tromethane (TNM), and N -acetylimidazole and the selective and complete protection from it by GABA and muscimol suggest the presence of a tyrosine residue at the GABAA site. TNM, like DSA, selectively decreased the number of the low-affinity GABA receptors, and this could be completely protected only by GABA concentrations that can saturate the low-affinity sites. TNM pre-treatment also abolished the muscimol enhancement of [3H]diazepam binding, which suggests that the low-affinity GABA receptor sites are responsible for this enhancement. Inhibition of GABA binding by pyridoxal-5-phosphate (PLP) and the selective protection by GABA and muscimol support the presence of a lysine residue at the GABAA receptor site. Complete and selective protection from diethylpyrocarbonate (DEP) inhibition of [3H]diazepam binding by flurazepam suggests the presence of a histidine residue at the BZ site. Flurazepam selectively protected from inhibition of [3H]diazepam binding by N -bromosuccinimide and N -acetylimidazole, but not that by DSA and TNM, which does not allow a unanimous conclusion regarding the presence of tyrosine or tryptophan residues at the BZ site.  相似文献   

10.
Abstract: This study examined γ-aminobutyric acidA (GABAA) receptor function in cultured rat cerebellar granule cells by using microphysiometry following chronic flunitrazepam exposure, and correlated the findings with the α1 and β2/3 subunit protein expression and [3H]muscimol binding after the same treatment paradigm. Flunitrazepam treatment reduced ( p < 0.05) the maximal GABA-stimulated increase in extracellular acidification rate ( E max) (16.5 ± 1.2% and 11.3 ± 1.0%, 2-day control and treated cells, respectively; 17.4 ± 1.0% and 9.9 ± 0.7%, 7-day control and treated cells, respectively; best-fit E max± SEM, n = 7), without affecting the GABA concentration required to elicit 50% of maximal response (EC50) (1.2 ± 1.7 and 2.3 ± 1.8 µ M , 2-day control and treated cells, respectively; 1.7 ± 1.5 and 1.5 ± 1.5 µ M , 7-day control and treated cells, respectively; best-fit EC50± SEM, n = 7). Flunitrazepam exposure also abolished the flunitrazepam potentiation of the GABA response, caused a transient reduction of the GABAA receptor α1 and β2/3 subunit proteins over the initial 2 days, but did not alter [3H]muscimol binding compared with vehicle-treated cells. The results suggest that changes in GABAA receptor subunit protein expression, rather than loss of [3H]muscimol binding sites, underlie the chronic flunitrazepam-mediated desensitisation of GABAA receptor function.  相似文献   

11.
Crude membrane fractions were prepared from rat retinae and used to study the specific binding of [3H]muscimol, a potent GABA agonist. Specific [3H]muscimol binding was enhanced 2–3 fold by pretreatment of the membranes with 0.025% Triton X-100. Two muscimol binding sites were demonstrated with KD values of 4.4 and 12.3 nM. GABA, muscimol, and 3-aminopropanesulfonic acid were the most potent inhibitors of specific [3H]muscimol binding with KI values of 15, 10, and 50 nM, respectively. These data are consistent with binding to the synaptic GABA receptor.  相似文献   

12.
Abstract— The uptake and binding of [3H]GABA and the binding of [3H]muscimol were measured in cell-free fractions of crayfish muscle. The uptake of GABA was saturable, of high affinity ( K m= 0.5μ m ), and inhibited by low concentrations of compounds believed to block GABA uptake specifically, such as nipecotic acid and 2,4,diaminobutyric acid. The GABA uptake activity was localized to sucrose gradient fractions enriched in sarcolemma as demonstrated by marker enzymes and electron microscopy. The binding of the potent GABAergic agonist muscimol was also localized to the sarcolemma. The binding was saturable, of high affinity (K D = 9 n m ), and inhibited by GABA (K 1 = 125 n m ) and by low concentrations of receptor-specific GABA analogues, such as isoguvacine, imidazole acetic acid, and 3-aminopropane sulfonic acid. The rank order for inhibition by GABA analogues of [3H]muscimol binding sites correlated very well with activity on GABA synapses in invertebrates, consistent with specific postsynaptic receptor labeling.  相似文献   

13.
Structural analogues of ZAPA, Z-3-[(aminoiminomethyl)thio]prop-2-enoic acid, an isothiouronium analogue of GABA, are potent GABAA agonists as seen in the isolated guinea-pig ileum and in the facilitation of [3H]diazepam binding to rat brain membranes. Compounds with guanidino or amidine groups replacing the amino functionality of GABA were also found to be active. The highest activity was displayed by the isothiouronium salts in which the conformational flexibility of the molecule is restricted by a Z-substituted carbon–carbon double bond. A series of bis-isothiouronium compounds was prepared from aliphatic ,ω-bis-thioureas as mixtures of E and Z adducts. Maximum GABAA agonist activity for this series was found with a C6–C8 carbon chain, and the results were consistent with an interaction at the GABAA receptor with only one end of the molecule, rather than the more potent effect expected of a molecule bridging two active sites. GABAA antagonist/partial agonist activity was observed on the guinea-pig isolated ileum for a number of different analogue types, with the most potent being bis-isothiouronium derivatives. None of the substituted derivatives of ZAPA was as active as ZAPA itself, and maximum GABAA activity was found in the n-pentyl and n-hexyl analogues.  相似文献   

14.
High affinity, specific [3H]5-hydroxytryptamine (5-HT) binding to spinal cord synaptosomes was examined to identify the 5-HT receptor subtypes present. Computer nonlinear regression analysis of competition studies employing 8-OH-DPAT indicated that this 5-HT1A selective agonist demonstrated high affinity competition (Ki = 1.3 nM) for 24.6 ± 0.7% of the total [3H]5-HT binding sites. Competition studies employing the 5-HT1B selective agonist RU24969, in the presence of 100 nM 8-OH-DPAT, indicated that RU24969 demonstrated high affinity (Ki = 1.1 nM) competitive inhibition for 26.2 ± 1.4% of all [3H]5-HT binding sites. Neither 5-HT1C, 5-HT1D, 5-HT2 nor 5-HT3 selective compounds demonstrated any high affinity competition for the residual 49% of specific [3H]5-HT binding. Therefore, three major classes of [3H]5-HT binding sites could be demonstrated in spinal cord synaptosomes: 5-HT1A, 5-HT1B and a novel [3H]5-HT binding site which respectively represented 25, 26 and 49% of spinal cord synaptosomal [3H]5-HT binding. Further studies focusing on the function of the latter binding site are needed to determine if the presently identified novel binding site is the major 5-HT1 receptor subtype present in spinal cord.  相似文献   

15.
The interaction of the nicotinic agonist (R,S)-3-pyridyl-1-methyl-2-(3-pyridyl)-azetidine (MPA) with different nicotinic acetylcholine receptor (nAChR) subtypes was studied in cell lines and rat cortex. MPA showed an affinity (Ki = 1.21 nM) which was higher than anatoxin-a > (−)-nicotine > (+)-[R]nornicotine > (−)-[S]nornicotine > and (+)-nicotine, but lower than cytisine (Ki = 0.46 nM) in competing for (−)-[3H]nicotine binding in M10 cells, which stably express the recombinant 4β2 nAChR subtype. A one-binding site model was observed in all competing experiments between (−)-[3H]nicotine binding and each of the agonists studied in M10 cells. MPA showed a 13-fold higher affinity for (−)-[3H]nicotine binding sites compared to the [3H]epibatidine binding sites in rat cortical membranes. In human neuroblastoma SH-SY5Y cells, which predominantly express the 3 nAChR subunit mRNA, MPA displaced [3H]epibatidine binding from a single population of the binding sites with an affinity in the same nM range as that observed MPA in displacing [3H]epibatidine binding in rat cortical membranes. Chronic treatment of M10 cells with MPA significantly up-regulated the number of (−)-[3H]nicotine binding sites in a concentration dependent manner. Thus MPA appears to have higher affinity to 4-subunit containing receptor subtype than 3-subunit containing receptor subtype of nAChRs. Furthermore MPA binds to 4β2 receptor subtype with higher affinity than (−)-nicotine and behaves, opposite to cytisine, as a full agonist in up-regulating the number of nAChRs. © 1998 Elsevier Science Ltd. All rights reserved.  相似文献   

16.
WAY–100635 is the first selective, silent 5–HT1A (5-hydroxytryptamine1A, serotonin-1A) receptor antagonist. We have investigated the use of [3H]WAY–100635 as a quantitative autoradiographic ligand in post-mortem human hippocampus, raphe and four cortical regions, and compared it with the 5–HT1A receptor agonist, [3H]8–OH–DPAT. Saturation studies showed an average Kd for [3H]WAY–100635 binding in hippocampus of 1.1 nM. The regional and laminar distributions of [3H]WAY–100635 binding and [3H]8–OH–DPAT binding were similar. The density of [3H]WAY–100635 binding sites was 60–70% more than that of [3H]8–OH–DPAT in all areas examined except the cingulate gyrus where it was 165% higher. [3H]WAY–100635 binding was robust and was not affected by the post-mortem interval, freezer storage time or brain pH (agonal state). Using [3H]WAY–100635, we confirmed an increase of 5–HT1A receptor binding sites in the frontal cortex in schizophrenia, previously demonstrated with [3H]8–OH–DPAT. Compared to [3H]8–OH–DPAT, [3H]WAY–100635 has two advantages: it has a higher selectivity and affinity for the 5–HT1A receptor, and it recognizes 5–HT1A receptors whether or not they are coupled to a G-protein, whereas [3H]8–OH–DPAT primarily detects coupled receptors. Given these considerations, the [3H]WAY–100635 binding data in schizophrenia clarify two points. First, they indicate that the elevated [3H]8–OH–DPAT binding seen in the same cases is attributable to an increase of 5–HT1A receptors rather than any other binding site. Second, the enhanced [3H]8–OH–DPAT binding in schizophrenia reflects an increased density of 5–HT1A receptors, not an increased percentage of 5–HT1A receptors which are G-protein-coupled. We conclude that [3H]WAY–100635 is a valuable autoradiographic ligand for the qualitative and quantitative study of 5–HT1A receptors in the human brain.  相似文献   

17.
The effect of intrastriatal microinjection of kainic acid (KA) on specific binding of [3H]muscimol to the particulate fractions obtained from corpus striatum (CS), globus pallidus (GP), substantia nigra (SN), and cerebral cortex (CC) was examined. Seven days after the unilateral intrastriatal microinjection of KA, the amount of specifically bound [3H]muscimol was significantly increased at the injected site, whereas no significant alteration of [3H]muscimol binding was found in GP, SN, or CC. Scatchard analysis of striatal binding revealed that microinjection of KA significantly increased the affinity (KD) of GABA receptors on the injected (lesioned) side of the CS without affecting the total number of binding sites (Bmax) therein. This significant increase in [3H]muscimol binding, however, was eliminated by pretreating particulate fractions from the CS with Triton X-100, a non-ionic detergent. No statistically significant difference in amounts of [3H]muscimol binding was detected when the preparations from the KA-treated and non-treated CS were preincubated with 0.05% Triton X-100, respectively. Scatchard analysis using CS preparations treated with 0.05% Triton X-100 revealed that the affinity of the GABA receptor was increased by treatment with Triton X-100, while the total number of binding sites (Bmax) was unchanged by this treatment. These results suggest that neuronal degeneration produced by KA in vivo and pretreatment of particulate preparations with Triton X-100 in vitro may increase the amount of specifically bound [3H]muscimol to CS preparations by a similar molecular mechanism.  相似文献   

18.
Abstract: The concentration of γ-aminobutyric acid (GABA) in the human ovary and the capacity of a membrane preparation from the same organ to bind [3H]GABA specifically were examined. The GABA concentration in the ovary was found to be 214 ± 66 nmol/g frozen tissue (mean ± SEM of six independent determinations). Moreover, a single population of high-affinity GABA binding sites has been identified in the ovarian membranes. The apparent dissociation constant ( K d) and maximum binding capacity ( B max) were 38.3 n M and 676 fmol/mg protein, respectively. The specific binding of [3H]GABA was displaced by muscimol, unlabelled GABA, or (+)bicuculline, but was unaffected by (±)baclofen and picrotoxin. The present results show that GABA and an extremely high density of GABAA receptor binding sites are present in the human ovary, indicating a physiological significance of this amino acid in the female reproductive system.  相似文献   

19.
The binding of [3H]muscimol, a gamma-aminobutyrate (GABA) receptor agonist, to a membrane preparation from pig cerebral cortex was enhanced by the anaesthetic propanidid in a concentration-dependent manner. At 0 degrees C, binding was stimulated to 220% of control values, with 50% stimulation at 60 microM-propanidid. At 37 degrees C, propanidid caused a more powerful stimulation of [3H]muscimol binding (340% of control values). Propanidid (1 mM) exerted little effect on the affinity of muscimol binding (KD approx. 10 nM), but increased the apparent number of high-affinity binding sites in the membrane by 2-fold. Enhancement of [3H]muscimol binding was observed only in the presence of Cl- ions, half-maximal activation being achieved at approx. 40 mM-Cl-. Picrotoxinin inhibited the stimulation of [3H]muscimol binding by propanidid with an IC50 (concentration causing 50% inhibition) value of approx. 25 microM. The enhancement of [3H]muscimol binding by propanidid was not additive with the enhancement produced by secobarbital. Phenobarbital inhibited the effect of propanidid and secobarbital. The GABA receptor was solubilized with Triton X-100 or with Chaps [3-[(3-cholamidopropyl)dimethylammonio]propanesulphonate]. Propanidid and secobarbital did not stimulate the binding of [3H]muscimol after solubilization with Triton X-100. However, the receptor could be solubilized by 5 mM-Chaps with retention of the stimulatory effects of propanidid and secobarbital. Unlike barbiturates, propanidid did not stimulate the binding of [3H]flunitrazepam to membranes. It is suggested that the ability to modulate the [3H]muscimol site of the GABA-receptor complex may be a common and perhaps functional characteristic of general anaesthetics.  相似文献   

20.
Olfactory bulbs contain dendrodendritic synapses, which occur between granule cells and mitral cells, and gamma-aminobutyric acid (GABA) is thought to act as an inhibitory neurotransmitter at these synapses. Synaptosomes derived from the dendrodendritic synapses of the olfactory bulb were shown previously to contain considerable L-glutamate decarboxylase activity. The subcellular distribution and binding parameters of [3H]GABA and [3H]muscimol binding sites have now been determined in the rat olfactory bulb. Of all fractions examined, crude synaptic membranes (CSM) prepared from the dendrodendritic synaptosomes were shown to have the highest specific binding activity and accounted for nearly all of the total binding activity for both ligands. The specific binding activities for [3H]GABA and for [3H]muscimol were greatly increased after treating the CSM with 0.05% Triton X-100. Binding was shown to be Na+-independent, reversible, pharmacologically specific, and saturable. High- and low-affinity sites were detected for both ligands, and both classes of sites had appreciably lower KD values for muscimol (KD1 = 3.1 nM, KD2 = 25.1 nM) than for GABA (KD1 = 8.6 nM; KD2 = 63.7 nM). The amounts of the high-affinity binding sites for muscimol and GABA were similar (Bmax = 1.7 and 1.5 pmol/mg protein, respectively). The results of the present experiments indicate that the GABA and muscimol binding sites represent the GABA postsynaptic receptor, presumably on mitral cell dendrites, and provide further support for the hypothesis that GABA functions as a neurotransmitter at the dendrodendritic synapses in the olfactory bulb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号