首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intercellular distribution of the enzymes and metabolites of assimilatory sulfate reduction and glutathione synthesis was analyzed in maize (Zea mays L. cv LG 9) leaves. Mesophyll cells and strands of bundle-sheath cells from second leaves of 11-d-old maize seedlings were obtained by two different mechanical-isolation methods. Cross-contamination of cell preparations was determined using ribulose bisphosphate carboxylase (EC 4.1.1.39) and nitrate reductase (EC 1.6.6.1) as marker enzymes for bundle-sheath and mesophyll cells, respectively. ATP sulfurylase (EC 2.7.7.4) and adenosine 5′-phosphosulfate sulfotransferase activities were detected almost exclusively in the bundle-sheath cells, whereas GSH synthetase (EC 6.3.2.3) and cyst(e)ine, γ-glutamylcysteine, and glutathione were located predominantly in the mesophyll cells. Feeding experiments using [35S]sulfate with intact leaves indicated that cyst(e)ine was the transport metabolite of reduced sulfur from bundle-sheath to mesophyll cells. This result was corroborated by tracer experiments, which showed that isolated bundle-sheath strands fed with [35S]sulfate secreted radioactive cyst(e)ine as the sole thiol into the resuspending medium. The results presented in this paper show that assimilatory sulfate reduction is restricted to the bundle-sheath cells, whereas the formation of glutathione takes place predominantly in the mesophyll cells, with cyst(e)ine functioning as a transport metabolite between the two cell types.  相似文献   

2.
The activity of the enzymes catalyzing the first two steps of sulfate assimilation, ATP sulfurylase and adenosine 5'-phosphosulfate reductase (APR), are confined to bundle sheath cells in several C(4) monocot species. With the aim to analyze the molecular basis of this distribution and to determine whether it was a prerequisite or a consequence of the C(4) photosynthetic mechanism, we compared the intercellular distribution of the activity and the mRNA of APR in C(3), C(3)-C(4), C(4)-like, and C(4) species of the dicot genus Flaveria. Measurements of APR activity, mRNA level, and protein accumulation in six Flaveria species revealed that APR activity, cysteine, and glutathione levels were significantly higher in C(4)-like and C(4) species than in C(3) and C(3)-C(4) species. ATP sulfurylase and APR mRNA were present at comparable levels in both mesophyll and bundle sheath cells of C(4) species Flaveria trinervia. Immunogold electron microscopy demonstrated the presence of APR protein in chloroplasts of both cell types. These findings, taken together with results from the literature, show that the localization of assimilatory sulfate reduction in the bundle sheath cells is not ubiquitous among C(4) plants and therefore is neither a prerequisite nor a consequence of C(4) photosynthesis.  相似文献   

3.
4.
The distribution of nitrite reductase (EC 1.7.7.1) and sulfite reductase (EC 1.8.7.1) between mesophyll ceils and bundle sheath cells of maize ( Zea mays L. cv. Seneca 60) leaves was examined. This examination was complicated by the fact that both of these enzymes can reduce both NO-2 and SO2-3 In crude extracts from whole leaves, nitrite reductase activity was 6 to 10 times higher than sulfite reductase activity. Heat treatment (10 min at 55°C) caused a 55% decrease in salfite reductase activity in extracts from bundle sheath cells and mesophyll cells, whereas the loss in nitrite reductase activity was 58 and 82% in bundle sheath cells and mesophyll cell extracts, respectively. This result was explained, together with results from the literature, by the hypothesis that sulfite reductase is present in both bundle sheath cells and mesophyll cells, and that nitrite reductase is restricted to the mesophyll cells. This hypothesis was tested i) by comparing the distribution of nitrite reductase activity and sulfite reductase activity between bundle sheath and mesophyll cells with the presence of the marker enzymes ribulose-l, 5-bisphosphate carboxylase (EC 4.1.1.39) and phosphoe-nolpyruvate carboxylase (EC 4.1.1.32), ii) by examining the effect of cultivation of maize plants in the dark without a nitrogen source on nitrite reductase activity and sulfite reductase activity in the two types of cells, and iii) by studying the action of S2-on the two enzyme activities in extracts from bundle sheath and mesophyll cells. The results from these experiments are consistent with the above hypothesis.  相似文献   

5.
Abstract: The significance of root nitrate reductase for sulfur assimilation was studied in tobacco (Nicotiana tabacum) plants. For this purpose, uptake, assimilation, and long-distance transport of sulfur were compared between wild-type tobacco and transformants lacking root nitrate reductase, cultivated either with nitrate or with ammonium nitrate. A recently developed empirical model of plant internal nitrogen cycling was adapted to sulfur and applied to characterise whole plant sulfur relations in wild-type tobacco and the transformant. Both transformation and nitrogen nutrition strongly affected sulfur pools and sulfur fluxes. Transformation decreased the rate of sulfate uptake in nitrate-grown plants and root sulfate and total sulfur contents in root biomass, irrespective of N nutrition. Nevertheless, glutathione levels were enhanced in the roots of transformed plants. This may be a consequence of enhanced APR activity in the leaves that also resulted in enhanced organic sulfur content in the leaves of the tranformants. The lack of nitrate reductase in the roots in the transformants caused regulatory changes in sulfur metabolism that resembled those observed under nitrogen deficiency. Nitrate nutrition reduced total sulfur content and all the major fractions analysed in the leaves, but not in the roots, compared to ammonium nitrate supply. The enhanced organic sulfur and glutathione levels in ammonium nitrate-fed plants corresponded well to elevated APR activity. But foliar sulfate contents also increased due to decreased re-allocation of sulfate into the phloem of ammonium nitrate-fed plants. Further studies will elucidate whether this decrease is achieved by downregulation of a specific sulfate transporter in vascular tissues.  相似文献   

6.
Plants cover their need for sulfur by taking up inorganic sulfate, reducing it to sulfide, and incorporating it into the amino acid cysteine. In herbaceous plants the pathway of assimilatory sulfate reduction is highly regulated by the availability of the nutrients sulfate and nitrate. To investigate the regulation of sulfate assimilation in deciduous trees we used the poplar hybrid Populus tremula × P. alba as a model. The enzymes of the pathway are present in several isoforms, except for sulfite reductase and -glutamylcysteine synthetase; the genomic organization of the pathway is thus similar to herbaceous plants. The mRNA level of APS reductase, the key enzyme of the pathway, was induced by 3 days of sulfur deficiency and reduced by nitrogen deficiency in the roots, whereas in the leaves it was affected only by the withdrawal of nitrogen. When both nutrients were absent, the mRNA levels did not differ from those in control plants. Four weeks of sulfur deficiency did not affect growth of the poplar plants, but the content of glutathione, the most abundant low molecular thiol, was reduced compared to control plants. Sulfur limitation resulted in an increase in mRNA levels of ATP sulfurylase, APS reductase, and sulfite reductase, probably as an adaptation mechanism to increase the efficiency of the sulfate assimilation pathway. Altogether, although distinct differences were found, e.g. no effect of sulfate deficiency on APR in poplar leaves, the regulation of sulfate assimilation by nutrient availability observed in poplar was similar to the regulation described for herbaceous plants.  相似文献   

7.
Adenosine 5'-phosphosulfate (APS) reductase (APR; EC 1.8.4.9) catalyzes the two-electron reduction of APS to sulfite and AMP, a key step in the sulfate assimilation pathway in higher plants. In spite of the importance of this enzyme, methods currently available for detection of APR activity rely on radioactive labeling and can only be performed in a very few specially equipped laboratories. Here we present two novel kinetic assays for detecting in vitro APR activity that do not require radioactive labeling. In the first assay, APS is used as substrate and reduced glutathione (GSH) as electron donor, while in the second assay APS is replaced by an APS-regenerating system in which ATP sulfurylase catalyzes APS in the reaction medium, which employs sulfate and ATP as substrates. Both kinetic assays rely on fuchsin colorimetric detection of sulfite, the final product of APR activity. Incubation of the desalted protein extract, prior to assay initiation, with tungstate that inhibits the oxidation of sulfite by sulfite oxidase activity, resulted in enhancement of the actual APR activity. The reliability of the two methods was confirmed by assaying leaf extract from Arabidopsis wild-type and APR mutants with impaired or overexpressed APR2 protein, the former lacking APR activity and the latter exhibiting much higher activity than the wild type. The assays were further tested on tomato leaves, which revealed a higher APR activity than Arabidopsis. The proposed APR assays are highly specific, technically simple and readily performed in any laboratory.  相似文献   

8.
Differential Localization of Antioxidants in Maize Leaves   总被引:22,自引:1,他引:21       下载免费PDF全文
The aim of this work was to determine the compartmentation of antioxidants between the bundle-sheath and mesophyll cells of maize (Zea mays L.) leaves. Rapid fractionation of the mesophyll compartment was used to minimize modifications in the antioxidant status and composition due to extraction procedures. The purity of the mesophyll isolates was assessed via the distribution of enzyme and metabolite markers. Ribulose-1,5 bisphosphate and ribulose-1,5-bisphosphate carboxylase/oxygenase were used as bundle-sheath markers and phosphoenolpyruvate carboxylase was used as the mesophyll marker enzyme. Glutathione reductase and dehydroascorbate reductase were almost exclusively localized in the mesophyll tissue, whereas ascorbate, ascorbate peroxidase, and superoxide dismutase were largely absent from the mesophyll fraction. Catalase, reduced glutathione, and monodehydroascorbate reductase were found to be approximately equally distributed between the two cell types. It is interesting that, whereas H2O2 levels were relatively high in maize leaves, this oxidant was largely restricted to the mesophyll compartment. We conclude that the antioxidants in maize leaves are partitioned between the two cell types according to the availability of reducing power and NADPH and that oxidized glutathione and dehydroascorbate produced in the bundle-sheat tissues have to be transported to the mesophyll for re-reduction to their reduced forms.  相似文献   

9.
In order to study the location of enzymes of photorespiration in leaves of the C3–C4 intermediate species Moricandia arvensis (L.). DC, protoplast fractions enriched in mesophyll or bundlesheath cells have been prepared by a combination of mechanical and enzymic techniques. The activities of the mitochondrial enzymes fumarase (EC 4.2.1.2) and glycine decarboxylase (EC 2.1.2.10) were enriched by 3.0- and 7.5-fold, respectively, in the bundle-sheath relative to the mesophyll fraction. Enrichment of fumarase is consistent with the larger number of mitochondria in bundle-sheath cells relative to mesophyll cells. The greater enrichment of glycine decarboxylase indicates that the activity is considerably higher on a mitochondrial basis in bundle-sheath than in mesophyll cells. Serine hydroxymethyltransferase (EC 2.1.2.1) activity was enriched by 5.3-fold and glutamate-dependent glyoxylate-aminotransferase (EC 2.6.1.4) activity by 2.6-fold in the bundle-sheath relative to the mesophyll fraction. Activities of serine- and alanine-dependent glyoxylate aminotransferase (EC 2.6.1.45 and EC 2.6.1.4), glycollate oxidase (EC 1.1.3.1), hydroxypyruvate reductase (EC 1.1.1.81), glutamine synthetase (EC 6.3.1.2) and phosphoribulokinase (EC 2.7.1.19) were not significantly different in the two fractions. These data provide further independent evidence to complement earlier immunocytochemical studies of the distribution of photorespiratory enzymes in the leaves of this species, and indicate that while mesophyll cells of M. arvensis have the capacity to synthesize glycine during photorespiration, they have only a low capacity to metabolize it. We suggest that glycine produced by photorespiratory metabolism in the mesophyll is decarboxylated predominantly by the mitochondria in the bundle sheath.Abbreviation RuBP ribulose 1,5-bisphosphate  相似文献   

10.
The cellular localization of the enzymes involved in primary nitrogen assimilation was investigated following separation of mesophyll protoplasts and bundle-sheath cells of maize (Zea mays L.) leaves. Determination of the enzymatic activities in the two types of cell revealed that nitrate and nitrite reductase are principally located in the mesophyll cells whereas glutamine synthetase (GS) and ferredoxin-dependent glutamate synthase (Fd-GOGAT) are present in both tissues with a preferential location in the bundle-sheath strands. In order to confirm the results obtained by this conventional biochemical method we have used an in-situ immunofluorescence technique to unambiguously localize GS and Fd-GOGAT at the cellular level. Thin-sectioned maize leaves treated with specific GS and Fd-GOGAT antisera followed by conjugation with fluorescein-isothiocyanate-labelled sheep anti-rabbit immunoglobulins clearly show that GS is equally distributed within the leaf whereas Fd-GOGAT is mostly present in the chloroplasts of the bundle-sheath cells. The cellular localization of nitrate reductase, nitrite reductase, GS-2 and Fd-GOGAT in maize leaf cell types strongly indicates that primary nitrogen assimilation functions in the mesophyll cells while photorespiratory nitrogen recycling is restricted to the bundle-sheath cells.  相似文献   

11.
12.
Inorganic sulfate (SO42-, S+VI) is reduced in vivo to sulfite (SO32-, S+IV) via phosphoadenylylsulfate (PAPS) reductase. Escherichia coli lacking glutathione reductase and glutaredoxins (gor-grxA-grxB-grxC-) barely grows on sulfate. We found that incubation of PAPS reductase with oxidized glutathione leads to enzyme inactivation with simultaneous formation of a mixed disulfide between glutathione and the active site Cys-239. A newly developed method based on thiol-specific fluorescent alkylation and gel electrophoresis showed that glutathionylated PAPS reductase is reduced by glutaredoxins via a monothiol mechanism. This glutathionylated species was also observed in poorly growing gor-grxA-grxB-grxC- cells expressing inactive glutaredoxin 2 (Grx2) C9S/C12S. However, it was absent in better growing cells expressing monothiol Grx2 C12S or wild type Grx2. Reversible glutathionylation may thus regulate the activity of PAPS reductase in vivo.  相似文献   

13.
14.
The enzyme catalysing the reduction of adenosine 5'-phosphosulfate (AdoPS) to sulfite in higher plants, AdoPS reductase, is considered to be the key enzyme of assimilatory sulfate reduction. In order to address its reaction mechanism, the APR2 isoform of this enzyme from Arabidopsis thaliana was overexpressed in Escherichia coli and purified to homogeneity. Incubation of the enzyme with [35S]AdoPS at 4 degrees C resulted in radioactive labelling of the protein. Analysis of APR2 tryptic peptides revealed 35SO2-3 bound to Cys248, the only Cys conserved between AdoPS and prokaryotic phosphoadenosine 5'-phosphosulfate reductases. Consistent with this result, radioactivity could be released from the protein by incubation with thiols, inorganic sulfide and sulfite. The intermediate remained stable, however, after incubation with sulfate, oxidized glutathione or AdoPS. Because truncated APR2, missing the thioredoxin-like C-terminal part, could be labelled even at 37 degrees C, and because this intermediate was more stable than the complete protein, we conclude that the thioredoxin-like domain was required to release the bound SO2-3 from the intermediate. Taken together, these results demonstrate for the first time the binding of 35SO2-3 from [35S]AdoPS to AdoPS reductase and its subsequent release, and thus contribute to our understanding of the molecular mechanism of AdoPS reduction in plants.  相似文献   

15.
Adenosine 5'-phosphosulphate reductase (APR) is considered to be a key enzyme of sulphate assimilation in higher plants. We analysed the diurnal fluctuations of total APR activity and protein accumulation together with the mRNA levels of three APR isoforms of Arabidopsis thaliana. The APR activity reached maximum values 4 h after light onset in both shoots and roots; the minimum activity was detected at the beginning of the night. During prolonged light, the activity remained stable and low in shoots, but followed the normal rhythm in roots. On the other hand, the activity decreased rapidly to undetectable levels within 24 h of prolonged darkness both in shoots and roots. Subsequent re-illumination restored the activity to 50% in shoots and to 20% in roots within 8 h. The mRNA levels of all three APR isoforms showed a diurnal rhythm, with a maximum at 2 h after light onset. The variation of APR2 mRNA was more prominent compared to APR1 and APR3. 35SO42- feeding experiments showed that the incorporation of 35S into reduced sulphur compounds in vivo was significantly higher in light than in the dark. A strong increase of mRNA and protein accumulation as well as enzyme activity during the last 4 h of the dark period was observed, implying that light was not the only factor involved in APR regulation. Indeed, addition of 0.5% sucrose to the nutrient solution after 38 h of darkness led to a sevenfold increase of root APR activity over 6 h. We therefore conclude that changes in sugar concentrations are also involved in APR regulation.  相似文献   

16.
17.
Zaharieva TB  Abadía J 《Protoplasma》2003,221(3-4):269-275
Summary.  The effects of Fe deficiency stress on the levels of ascorbate and glutathione, and on the activities of the enzymes ferric chelate reductase, glutathione reductase (EC 1.6.4.2), ascorbate free-radical reductase (EC 1.6.5.4) and ascorbate peroxidase (EC 1.11.1.11), have been investigated in sugar beet (Beta vulgaris L.) roots. Plasma membrane vesicles and cytosolic fractions were isolated from the roots of the plants grown in nutrient solutions in the absence or presence of Fe for two weeks. Plants responded to Fe deficiency not only with a 20-fold increase in root ferric chelate reductase activity, but also with moderately increased levels of the general reductants ascorbate (2-fold) and glutathione (1.6-fold). The enzymes of the ascorbate-glutathione cycle in roots were also affected by Fe deficiency. Glutathione reductase activity was enhanced 1.4-fold with Fe deficiency, associated to an increased ratio of reduced to oxidized glutathione, from 3.1 to 5.2. The plasma membrane fraction from iron-deficient roots showed 1.7-fold higher ascorbate free-radical reductase activity, whereas in the cytosolic fraction the enzyme activity was not affected by Fe deficiency. The activity of the cytosolic hemoprotein ascorbate peroxidase decreased approximately by 50% with Fe deprivation. These results show that sugar beet responds to Fe deficiency with metabolic changes affecting components of the ascorbate-glutathione cycle in root cells. This suggests that the ascorbate-glutathione cycle would play certain roles in the general Fe deficiency stress responses in strategy I plants. Received November 19, 2001; accepted September 30, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, CSIC, Apartado 202, 50080 Zaragoza, Spain.  相似文献   

18.
With the objective of studying the role of glutathione reductase (GR) in the accumulation of cysteine and methionine, we generated transgenic tobacco and Arabidopsis lines overexpressing the cytosolic AtGR1 and the plastidic AtGR2 genes. The transgenic plants had higher contents of cysteine and glutathione. To understand why cysteine levels increased in these plants, we also used gr1 and gr2 mutants. The results showed that the transgenic plants have higher levels of sulfite, cysteine, glutathione and methionine, which are downstream to adenosine 5′ phosphosulfate reductase (APR) activity. However, the mutants had lower levels of these metabolites, while the sulfate content increased. A feeding experiment using 34SO42– also showed that the levels of APR downstream metabolites increased in the transgenic lines and decreased in gr1 compared with their controls. These findings, and the results obtained from the expression levels of several genes related to the sulfur pathway, suggest that GR plays an essential role in the sulfur assimilation pathway by supporting the activity of APR, the key enzyme in this pathway. GR recycles the oxidized form of glutathione (GSSG) back to reduce glutathione (GSH), which serves as an electron donor for APR activity. The phenotypes of the transgenic plants and the mutants are not significantly altered under non‐stress and oxidative stress conditions. However, when germinating on sulfur‐deficient medium, the transgenic plants grew better, while the mutants were more sensitive than the control plants. The results give substantial evidence of the yet unreported function of GR in the sulfur assimilation pathway.  相似文献   

19.
To acquire iron, many plant species reduce soil Fe(III) to Fe(II) by Fe(III)-chelate reductases embedded in the plasma membrane of root epidermal cells. The reduced product is then taken up by Fe(II) transporter proteins. These activities are induced under Fe deficiency. We describe here the FRO1 gene from pea (Pisum sativum), which encodes an Fe(III)-chelate reductase. Consistent with this proposed role, FRO1 shows similarity to other oxidoreductase proteins, and expression of FRO1 in yeast conferred increased Fe(III)-chelate reductase activity. Furthermore, FRO1 mRNA levels in plants correlated with Fe(III)-chelate reductase activity. Sites of FRO1 expression in roots, leaves, and nodules were determined. FRO1 mRNA was detected throughout the root, but was most abundant in the outer epidermal cells. Expression was detected in mesophyll cells in leaves. In root nodules, mRNA was detected in the infection zone and nitrogen-fixing region. These results indicate that FRO1 acts in root Fe uptake and they suggest a role in Fe distribution throughout the plant. Characterization of FRO1 has also provided new insights into the regulation of Fe uptake. FRO1 expression and reductase activity was detected only in Fe-deficient roots of Sparkle, whereas both were constitutive in brz and dgl, two mutants with incorrectly regulated Fe accumulation. In contrast, FRO1 expression was responsive to Fe status in shoots of all three plant lines. These results indicate differential regulation of FRO1 in roots and shoots, and improper FRO1 regulation in response to a shoot-derived signal of iron status in the roots of the brz and dgl mutants.  相似文献   

20.
The effect of chilling on diurnal changes in activity of adenosine 5'-phosphosulfate sulfotransferase, glutathione reductase (EC 1.6.4.2) and glutathione transferase (EC 2.5.1.18) was analysed in the second leaf of Z 7, a chilling-tolerant, and Penjalinan, a chilling-sensitive maize (Zea mays L.) genotype. Nitrate reductase (EC 1.6.6.1) was measured for comparison. All enzyme activities examined changed with a typical diurnal rhythm in both genotypes cultivated at 25°C. Adenosine 5'-phosphosulfate sulfotransferase and nitrate reductase activity peaked during the light period, then decreased and reached lowest levels at the end of the dark period. Glutathione reductase activity increased in the dark and decreased during the light period. Maximum glutathione transferase activities were measured in the middle of the light period, minimal ones in the middle of the dark period. At 12°C these diurnal changes were eliminated in all enzymes examined of both genotypes.
The average adenosine 5'-phosphosulfate sulfotransferase and glutathione reductase activity were higher in the chilling-tolerant Z 7 than in the sensitive Penjanilan at 12°C in the light. Increased levels of both enzymes may contribute in establishing increased levels of cysteine and reduced glutathione in the chilling-tolerant Z 7. Indeed it has been shown before that the chilling-tolerant maize genotypes contain higher levels of both compounds at low temperatures than chilling-sensitive ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号