首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of sex determination in mammals appears highly conserved: the presence of a Y chromosome triggers the male developmental pathway, whereas the absence of a Y chromosome results in a default female phenotype. However, if the Y chromosome fails to initiate the male pathway (referred to as Y*), XY* females can result, as is the case in several species of South American field mice (genus Akodon). The breeding genetics in this system inherently select against the Y* chromosome such that the frequency of XY* females should decrease rapidly to very low frequencies. However, in natural populations of Akodon, XY* females persist at substantial frequencies; for example, 10% of females are XY* in A. azarae and 30% in A. boliviensis. We develop a mathematical model that considers the potential roles of three evolutionary forces in maintaining XY* females: Y-to-Y* chromosome transitions (mutation), chromosome segregation distortion (meiotic drive), and differential fecundity (selection). We then test the predictions of our model using data from breeding colonies of A. azarae. We conclude that any single force is inadequate to maintain XY* females. However, a combination of segregation bias of the male and female Y chromosomes during spermatogenesis/oogenesis and increased fecundity in XY* females could account for the observed frequencies of XY* females.  相似文献   

2.
Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY1Y2 and X1X1X2X2/X1X2Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor, the collared lemming, Dirostonyx torquatus, and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.  相似文献   

3.
The existence of fertile A. azarae females with a chromosome sex pair indistinguishable from that of males was reported more than 35 years ago. These heterogametic females were initially thought to occur due to an extreme process of dosage compensation in which X inactivation was restricted to Xp and complemented by a deletion of Xq (Xx females). Later on, a C-banding analysis of A. mollis variant females showed that these specimens were in fact XY* sex reversed and not Xx females. The finding of positive testing for Zfy and Sry multiple-copy genes in Akodon males and heterogametic females confirmed the XY* assumption. At the present time, XY* sex reversed females have been found to exist in nine Akodon species. Akodon heterogametic females produce X and Y* oocytes, which upon sperm fertilization give rise to viable XX (female), XY* (female), and XY (male) embryos, and to non-viable Y*Y zygotes. Heterozygous females exhibit a better reproductive performance than XX females in order to compensate the Y*Y zygote wastage. XY* sex reversed females are assumed to occur due to a deficient Sry expression resulting in the development of ovaries instead of testes. Moreover, the appearance of Y* elements is a highly recurrent event. It is proposed that homozygosity for an autosomal or pseudoautosomal recessive mutation (s-) inhibits Sry expression giving rise to XY* embryos with ovary development. Location of the Y* chromosome in the female germ cell lineage produces an ovary-specific imprinting of the Sry* gene maintaining its defective expression through generations independently from the presence or absence of s- homozygosity. By escaping the ovary-specific methylation some Y* chromosomes turn back to normal Ys producing Y oocytes capable of generating normal male embryos when fertilized by an X sperm. Fluctuations in the rate of variant females in field populations and in laboratory colonies of Akodon depend on the balance between the appearance of new variant females (s-/s-, XY* specimens) and the extinction of sex reversed specimens due to imprinting escape.  相似文献   

4.
X inactivation is a fundamental mechanism in eutherian mammals to restore a balance of X-linked gene products between XY males and XX females. However, it has never been extensively studied in a eutherian species with a sex determination system that deviates from the ubiquitous XX/XY. In this study, we explore the X inactivation process in the African pygmy mouse Mus minutoides, that harbours a polygenic sex determination with three sex chromosomes: Y, X, and a feminizing mutant X, named X*; females can thus be XX, XX*, or X*Y, and all males are XY. Using immunofluorescence, we investigated histone modification patterns between the two X chromosome types. We found that the X and X* chromosomes are randomly inactivated in XX* females, while no histone modifications were detected in X*Y females. Furthermore, in M. minutoides, X and X* chromosomes are fused to different autosomes, and we were able to show that the X inactivation never spreads into the autosomal segments. Evaluation of X inactivation by immunofluorescence is an excellent quantitative procedure, but it is only applicable when there is a structural difference between the two chromosomes that allows them to be distinguished.  相似文献   

5.
Sex determination in vertebrates is accomplished through a highly conserved genetic pathway. But surprisingly, the downstream events may be activated by a variety of triggers, including sex determining genes and environmental cues. Amongst species with genetic sex determination, the sex determining gene is anything but conserved, and the chromosomes that bear this master switch subscribe to special rules of evolution and function. In mammals, with a few notable exceptions, female are homogametic (XX) and males have a single X and a small, heterochromatic and gene poor Y that bears a male dominant sex determining gene SRY. The bird sex chromosome system is the converse in that females are the heterogametic sex (ZW) and males the homogametic sex (ZZ). There is no SRY in birds, and the dosage-sensitive Z-borne DMRT1 gene is a credible candidate sex determining gene. Different sex determining switches seem therefore to have evolved independently in different lineages, although the complex sex chromosomes of the platypus offer us tantalizing clues that the mammal XY system may have evolved directly from an ancient reptile ZW system. In this review we will discuss the organization and evolution of the sex chromosomes across a broad range of mammals, and speculate on how the Y chromosome, and SRY, evolved.  相似文献   

6.
A 15-year cytogenetic survey on one population of the leaf litter frog Eleutherodactylus maussi in northern Venezuela confirmed the existence of multiple XXAA male symbol /XAA(Y) female symbol sex chromosomes which originated by a centric (Robertsonian) fusion between the original Y chromosome and an autosome. 95% of the male individuals in this population are carriers of this Y-autosome fusion. In male meiosis the XAA(Y) sex chromosomes pair in the expected trivalent configuration. In the same population, 5% of the male animals still possess the original, free XY sex chromosomes. In a second population of E. maussi analyzed, all male specimens are characterized by these ancestral XY chromosomes which form normal bivalents in meiosis. E. maussi apparently represents the first vertebrate species discovered in which a derived Y-autosome fusion still coexists with the ancestral free XY sex chromosomes. The free XY sex chromosomes, as well as the multiple XA(Y) sex chromosomes are still in a very primitive (homomorphic) stage of differentiation. With no banding technique applied it is possible to distinguish the Y from the X. DNA flow cytometric measurements show that the genome of E. maussi is among the largest in the anuran family Leptodactylidae. The present study also supplies further data on differential chromosome banding and fluorescence in situ hybridization experiments in this amphibian species.  相似文献   

7.
Comparative mapping and sequencing show that turnover of sex determining genes and chromosomes, and sex chromosome rearrangements, accompany speciation in many vertebrates. Here I review the evidence and propose that the evolution of therian mammals was precipitated by evolution of the male‐determining SRY gene, defining a novel XY sex chromosome pair, and interposing a reproductive barrier with the ancestral population of synapsid reptiles 190 million years ago (MYA). Divergence was reinforced by multiple translocations in monotreme sex chromosomes, the first of which supplied a novel sex determining gene. A sex chromosome‐autosome fusion may have separated eutherians (placental mammals) from marsupials 160 MYA. Another burst of sex chromosome change and speciation is occurring in rodents, precipitated by the degradation of the Y. And although primates have a more stable Y chromosome, it may be just a matter of time before the same fate overtakes our own lineage. Also watch the video abstract .  相似文献   

8.
Molecular and evolutionary analysis of a plant Y chromosome.   总被引:1,自引:0,他引:1  
Plants have evolved a great diversity of sex determination systems. Among these, the XY system, also found in mammals, is one of the most exciting since it gives the opportunity to compare the evolution of sex chromosomes in two different kingdoms. Whereas genetic and molecular mechanisms controlling sex determination in drosophila and mammals, have been well studied, very little is known about such processes in plants. White campion (Silene latifolia) is an example of plant with X and Y chromosomes. What is the origin of the X and Y chromosomes? How did they evolve from a pair of autosomes? In our laboratory, we have isolated the first active genes located on a plant Y chromosome. We are using them as markers to trace the origin and evolution of sex chromosomes in the Silene genus.  相似文献   

9.
Mammals present an XX/XY system of chromosomal sex determination, males being the heterogametic sex. Comparative studies of the gene content of sex chromosomes from the major groups of mammals reveal that most Y genes have X-linked homologues and that X and Y share homologous pseudoautosomal regions. These observations, together with the presence of the two homologous regions (pseudoautosomal regions) at the tips of the sex chromosomes, suggest that these chromosomes began as an ordinary pair of homologous autosomes. Birds present a ZW/ZZ system of chromosomal sex determination where females are the heterogametic sex. In this case, avian sex chromosomes are derived from different pairs of autosomes than mammals. The evolutionary pathway from the autosomal homomorphic departure to the present-day heteromorphic sex chromosomes in mammals includes suppression of X-Y recombination, differentiation of the nascent non-recombining regions, and progressive autosomal addition and attrition of the sex chromosomes. Recent results indicate that the event marking the beginning of the differentiation between the extant X and Y chromosomes occurred about 300 million years ago.  相似文献   

10.
All therian mammals have a similar XY/XX sex‐determination system except for a dozen species. The African pygmy mouse, Mus minutoides, harbors an unconventional system in which all males are XY, and there are three types of females: the usual XX but also XX* and X*Y ones (the asterisk designates a sex‐reversal mutation on the X chromosome). The long‐term evolution of such a system is a paradox, because X*Y females are expected to face high reproductive costs (e.g., meiotic disruption and loss of unviable YY embryos), which should prevent invasion and maintenance of a sex‐reversal mutation. Hence, mechanisms for compensating for the costs could have evolved in M. minutoides. Data gathered from our laboratory colony revealed that X*Y females do compensate and even show enhanced reproductive performance in comparison to the XX and XX*; they produce significantly more offspring due to (i) a higher probability of breeding, (ii) an earlier first litter, and (iii) a larger litter size, linked to (iv) a greater ovulation rate. These findings confirm that rare conditions are needed for an atypical sex‐determination mechanism to evolve in mammals, and provide valuable insight into understanding modifications of systems with highly heteromorphic sex chromosomes.  相似文献   

11.
The wolf fish Hoplias malabaricus includes well differentiated sex systems (XY and X1X2Y in karyomorphs B and D, respectively), a nascent XY pair (karyomorph C) and not recognized sex chromosomes (karyomorph A). We performed the evolutionary analysis of these sex chromosomes, using two X chromosome-specific probes derived by microdissection from the XY and X1X2Y sex systems. A putative-sex pair in karyomorph A was identified, from which the differentiated XY system was evolved, as well as the clearly evolutionary relationship between the nascent XY system and the origin of the multiple X1X2Y chromosomes. The lack of recognizable signals on the sex chromosomes after the reciprocal cross-FISH experiments highlighted that they evolved independently from non-homologous autosomal pairs. It is noteworthy that these distinct pathways occur inside the same nominal species, thus exposing the high plasticity of sex chromosome evolution in lower vertebrates. Possible mechanisms underlying this sex determination liability are also discussed.  相似文献   

12.
Chromosomal sex determination is phylogenetically widespread, having arisen independently in many lineages. Decades of theoretical work provide predictions about sex chromosome differentiation that are well supported by observations in both XY and ZW systems. However, the phylogenetic scope of previous work gives us a limited understanding of the pace of sex chromosome gain and loss and why Y or W chromosomes are more often lost in some lineages than others, creating XO or ZO systems. To gain phylogenetic breadth we therefore assembled a database of 4724 beetle species’ karyotypes and found substantial variation in sex chromosome systems. We used the data to estimate rates of Y chromosome gain and loss across a phylogeny of 1126 taxa estimated from seven genes. Contrary to our initial expectations, we find that highly degenerated Y chromosomes of many members of the suborder Polyphaga are rarely lost, and that cases of Y chromosome loss are strongly associated with chiasmatic segregation during male meiosis. We propose the “fragile Y” hypothesis, that recurrent selection to reduce recombination between the X and Y chromosome leads to the evolution of a small pseudoautosomal region (PAR), which, in taxa that require XY chiasmata for proper segregation during meiosis, increases the probability of aneuploid gamete production, with Y chromosome loss. This hypothesis predicts that taxa that evolve achiasmatic segregation during male meiosis will rarely lose the Y chromosome. We discuss data from mammals, which are consistent with our prediction.  相似文献   

13.
Deltamys Thomas 1917 is a poorly studied and rarely collected taxon of Akodontini (Sigmodontinae). The single described species, Deltamys kempi (DKE), has a basic karyotype with a diploid number of 2n = 37 in males and 2n = 38 in females, a fundamental number FN = 38 for both sexes, and an X(1)X(1)X(2)X(2)/X(1)X(2)Y sex determination system. Herein, a new allopatric form, Deltamys sp. (DSP), is reported, based on specimens from southern Brazil, with 2n = 40, FN = 40 and XX/XY sex chromosomes. We describe the karyotype and mechanism of chromosomal differentiation between both Deltamys complements. Phylogenetic analyses, based on the complete sequence (1,140 bp) of the mitochondrial cytochrome b gene, grouped Deltamys sp. as sister species to D. kempi, with up to 12% genetic divergence between them. The GTG-banding patterns show complete autosomal correspondence between D. kempi and Deltamys sp. and identify a tandem rearrangement involving DSP7, DSP19 and DKE4 that is responsible for the differences in 2n and FN. Chromosome painting with Akodon paranaensis chromosome 21 (a small metacentric akodont marker) paint revealed total homology with the smallest acrocentric Deltamys sp. chromosome, DSP19. This suggests the occurrence of a pericentric inversion or centromeric shift when compared to other akodontines, with a posterior tandem rearrangement giving rise to DKE4. In DKE, large blocks of pericentromeric constitutive heterochromatin are present on the autosomes and the X, and the Y/autosome has an entirely heterochromatic short arm. In DSP, small heterochromatic blocks are observed on autosomes and X, and the Y is a very small, mostly heterochromatic acrocentric. The cytogenetic analyses suggest that the Deltamys sp. karyotype is ancestral, with the derived condition resulting from a tandem fusion (DSP7 + DSP19) and the Y/autosome translocation giving rise to the multiple sex chromosome system. The autosomal rearrangements, the differences in CBG-banding patterns and Ag-NOR localization, as well as the presence of X(1)X(1)X(2)X(2)/X(1)X(2)Y and XX/XY sex determination mechanisms, possibly acting as a reproductive barrier, and the phylogenetic position within the Deltamys genus, with high genetic divergence, call for a taxonomic review of the genus.  相似文献   

14.
15.
In species with fertile XY females, such as South American field mice (genus Akodon), there are two types of mitochondrial DNA (mtDNA), one passing from XX females and one from XY females. The XX mothers pass their mtDNA to their XX daughters. The XY mothers, however, produce both XX and XY daughters. Because of this breeding scheme, the XY mtDNA remains isolated whereas the XX lineage is continuously invaded by XY mtDNA haplotypes. Using a set of recursion equations, I predicted that XY mtDNA haplotypes should rapidly spread through entire populations composed of both XX and XY females. I examined patterns of nucleotide polymorphism and divergence from the mtDNA control region as well as phylogenetic patterns for evidence of an mtDNA sweep. I compared patterns in two sister species, Akodon boliviensis and Akodon azarae, that are composed of 35% and 10% XY females, respectively. Akodon boliviensis XY females are found in all clades of a phylogenetic mtDNA tree consistent with the spread of mtDNA haplotypes. In addition, A. azarae mtDNA haplotypes showed no deviations from neutrality. These results, in combination with high levels of mtDNA nucleotide diversity in XY females, suggest an ancient origin (>10(4) generations) of XY females in both A. boliviensis and A. azarae.  相似文献   

16.
Extensive cytogenetic analyses on a population of the leptodactylid frog Eleutherodactylus riveroi in northern Venezuela revealed the existence of multiple XXAA male/XYAA female/XAA(Y) female sex chromosomes. The XAA(Y) karyotype originated by a centric (Robertsonian) fusion between the original, free Y chromosome and an autosome. 46.2% of the male individuals in this population are carriers of this Y-autosome fusion. In male meiosis the XAA(Y) sex chromosomes pair in the expected trivalent configuration. In the same population 53.8% of the male animals still possess the original, free XY sex chromosomes. E. riveroi is only the second vertebrate species discovered in which a derived Y-autosome fusion coexists with the ancestral free XY sex chromosomes. The free XY sex chromosomes, as well as the multiple XA(Y) sex chromosomes are still in a very primitive (homomorphic) stage of differentiation. With no banding technique applied it is possible to distinguish the Y from the X. Various banding techniques and in situ hybridizations have been carried out to characterize the karyotypes. DNA flow cytometric measurements show that the genome size of E. riveroi resembles that of other Eleutherodactylus species. The cytogenetic data obtained in E. riveroi are compared with those of the sole other vertebrate known to possess the extremely rare, multiple XXAA male/XYAA female/XAA(Y) female sex chromosomes. Surprisingly enough, this vertebrate again is a frog belonging to the genus Eleutherodactylus [E. ((maussi) biporcatus] which lives exactly in the same habitat in northern Venezuela as does E. riveroi.  相似文献   

17.
Most turtle species possess temperature-dependent sex determination (TSD), but genotypic sex determination (GSD) has evolved multiple times independently from the TSD ancestral condition. GSD in animals typically involves sex chromosomes, yet the sex chromosome system of only 9 out of 18 known GSD turtles has been characterized. Here, we combine comparative genome hybridization (CGH) and BAC clone fluorescent in situ hybridization (BAC FISH) to identify a macro-chromosome XX/XY system in the GSD wood turtle Glyptemys insculpta (GIN), the youngest known sex chromosomes in chelonians (8–20 My old). Comparative analyses show that GIN-X/Y is homologous to chromosome 4 of Chrysemys picta (CPI) painted turtles, chromosome 5 of Gallus gallus chicken, and thus to the X/Y sex chromosomes of Siebenrockiella crassicollis black marsh turtles. We tentatively assign the gene content of the mapped BACs from CPI chromosome 4 (CPI-4) to GIN-X/Y. Chromosomal rearrangements were detected in G. insculpta sex chromosome pair that co-localize with the male-specific region of GIN-Y and encompass a gene involved in sexual development (Wt1—a putative master gene in TSD turtles). Such inversions may have mediated the divergence of G. insculpta sex chromosome pair and facilitated GSD evolution in this turtle. Our results illuminate the structure, origin, and evolution of sex chromosomes in G. insculpta and reveal the first case of convergent co-option of an autosomal pair as sex chromosomes within chelonians.  相似文献   

18.
The chromosomes of 26 taxa from Mexico of the tribes Passalini (three species) and Proculini (23 species) have been studied, increasing the karyotypically known species of the family Passalidae to 56. Karyotypic dynamism is high since the diploid number varies from 18 to 44 in the tribe Proculini. and from 25 to 31 in the tribe Passalini. In addition, supernumerary chromosomes, chromosome heteromorphism, translocations and possible sex multivalents have been found. These results contrast with the numerical conservatism found in related families of the superfamily Scarabaeoidea. However, both tribes are conservative with regard to sex determination, as all species of Proculini have male XY chromosomes whereas species of the Passalini have male XO chromosomes. It is postulated that differences in patterns shown by these two tribes are mainly due to population structure, because many species of Proculini are endemic to restricted areas of Meso and South America, favouring the settlement of karyotypic changes, whereas species of Passalini are distributed over large areas in the lowlands. It is also postulated that the ancestral karyotypic formula of the family is close to 12–14 pairs of autosomes although the ancestral male sex determination may be either XY or XO. At present only a weak relationship between morphological and karyotypic evolution has been found, which together with the marked numerical variability found within and between genera make it difficult to obtain phylogenetic conclusions from karyotypic results.  相似文献   

19.
The genus Rumex includes hermaphroditic, polygamous, gynodioecious, monoecious, and dioecious species, with the dioecious species being represented by different sex-determining mechanisms and sex-chromosome systems. Therefore, this genus represents an exceptional case study to test several hypotheses concerning the evolution of both mating systems and the genetic control of sex determination in plants. Here, we compare nuclear intergenic transcribed spacers and chloroplast intergenic sequences of 31 species of Rumex. Our phylogenetic analysis supports a systematic classification of the genus, which differs from that currently accepted. In contrast to the current view, this new phylogeny suggests a common origin for all Eurasian and American dioecious species of Rumex, with gynodioecy as an intermediate state on the way to dioecy. Our results support the contention that sex determination based on the balance between the number of X chromosomes and the number of autosomes (X/A balance) has evolved secondarily from male-determining Y mechanisms and that multiple sex-chromosome systems, XX/XY1Y2, were derived twice from an XX/XY system. The resulting phylogeny is consistent with a classification of Rumex species according to their basic chromosome number, implying that the evolution of Rumex species might have followed a process of chromosomal reduction from x = 10 toward x = 7 through intermediate stages (x = 9 and x = 8).  相似文献   

20.
Squamate reptiles possess two general modes of sex determination: (1) genotypic sex determination (GSD), where the sex of an individual is determined by sex chromosomes, i.e. by sex‐specific differences in genotype; and (2) temperature‐dependent sex determination (TSD), where sex chromosomes are absent and sex is determined by nongenetic factors. After gathering information about sex‐determining mechanisms for more than 400 species, we employed comparative phylogenetic analyses to reconstruct the evolution of sex determination in Squamata. Our results suggest relative uniformity in sex‐determining mechanisms in the majority of the squamate lineages. Well‐documented variability is found only in dragon lizards (Agamidae) and geckos (Gekkota). Polarity of the sex‐determining mechanisms in outgroups identified TSD as the ancestral mode for Squamata. After extensive review of the literature, we concluded that to date there is no known well‐documented transition from GSD to TSD in reptiles, although transitions in the opposite direction are plentiful and well corroborated by cytogenetic evidence. We postulate that the evolution of sex‐determining mechanisms in Squamata was probably restricted to the transitions from ancestral TSD to GSD. In other words, transitions were from the absence of sex chromosomes to the emergence of sex chromosomes, which have never disappeared and constitute an evolutionary trap. This evolutionary trap hypothesis could change the understanding of phylogenetic conservatism of sex‐determining systems in many large clades such as butterflies, snakes, birds, and mammals. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 168–183.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号