首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ATP-binding cassette (ABC) transporters belong to one of the largest families of membrane proteins, and are present in almost all living organisms from eubacteria to mammals. They exist on plasma membranes and intracellular compartments such as the mitochondria, peroxisomes, endoplasmic reticulum, Golgi apparatus and lysosomes, and mediate the active transport of a wide variety of substrates in a variety of different cellular processes. These include the transport of amino acids, polysaccharides, peptides, lipids and xenobiotics, including drugs and toxins. Three ABC transporters belonging to subfamily D have been identified in mammalian peroxisomes. The ABC transporters are half-size and assemble mostly as a homodimer after posttranslational transport to peroxisomal membranes. ABCD1/ALDP and ABCD2/ALDRP are suggested to be involved in the transport of very long chain acyl-CoA with differences in substrate specificity, and ABCD3/PMP70 is involved in the transport of long and branched chain acyl-CoA. ABCD1 is known to be responsible for X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisomal β-oxidation of very long chain fatty acids. Here, we summarize recent advances and important points in our advancing understanding of how these ABC transporters target and assemble to peroxisomal membranes and perform their functions in physiological and pathological processes, including the neurodegenerative disease, X-ALD. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.  相似文献   

2.
3.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.  相似文献   

4.
Glucose transporters: structure, function, and regulation   总被引:2,自引:0,他引:2  
Glucose is transported into the cell by facilitated diffusion via a family of structurally related proteins, whose expression is tissue-specific. One of these transporters, GLUT4, is expressed specifically in insulin-sensitive tissues. A possible change in the synthesis and/or in the amount of GLUT4 has therefore been studied in situations associated with an increase or a decrease in the effect of insulin on glucose transport. Chronic hyperinsulinemia in rats produces a hyper-response of white adipose tissue to insulin and resistance in skeletal muscle. The hyper-response of white adipose tissue is associated with an increase in GLUT4 mRNA and protein. In contrast, in skeletal muscle, a decrease in GLUT4 mRNA and a decrease (tibialis) or no change (diaphragm) in GLUT4 protein are measured, suggesting a divergent regulation by insulin of glucose transport and transporters in the 2 tissues. In rodents, brown adipose tissue is very sensitive to insulin. The response of this tissue to insulin is decreased in obese insulin-resistant fa/fa rats. Treatment with a beta-adrenergic agonist increases insulin-stimulated glucose transport, GLUT4 protein and mRNA. The data suggest that transporter synthesis can be modulated in vivo by insulin (muscle, white adipose tissue) or by catecholamines (brown adipose tissue).  相似文献   

5.
Monosaccharide transporters in plants: structure, function and physiology   总被引:2,自引:0,他引:2  
Monosaccharide transport across the plant plasma membrane plays an important role both in lower and higher plants. Algae can switch between phototrophic and heterotrophic growth and utilize organic compounds, such as monosaccharides as additional or sole carbon sources. Higher plants represent complex mosaics of phototrophic and heterotrophic cells and tissues and depend on the activity of numerous transporters for the correct partitioning of assimilated carbon between their different organs. The cloning of monosaccharide transporter genes and cDNAs identified closely related integral membrane proteins with 12 transmembrane helices exhibiting significant homology to monosaccharide transporters from yeast, bacteria and mammals. Structural analyses performed with several members of this transporter superfamily identified protein domains or even specific amino acid residues putatively involved in substrate binding and specificity. Expression of plant monosaccharide transporter cDNAs in yeast cells and frog oocytes allowed the characterization of substrate specificities and kinetic parameters. Immunohistochemical studies, in situ hybridization analyses and studies performed with transgenic plants expressing reporter genes under the control of promoters from specific monosaccharide transporter genes allowed the localization of the transport proteins or revealed the sites of gene expression. Higher plants possess large families of monosaccharide transporter genes and each of the encoded proteins seems to have a specific function often confined to a limited number of cells and regulated both developmentally and by environmental stimuli.  相似文献   

6.
Nitrate transporters in plants: structure, function and regulation   总被引:43,自引:0,他引:43  
Physiological studies have established that plants acquire their NO(-3) from the soil through the combined activities of a set of high- and low-affinity NO(-3) transport systems, with the influx of NO(-3) being driven by the H(+) gradient across the plasma membrane. Some of these NO(-3) transport systems are constitutively expressed, while others are NO(-3)-inducible and subject to negative feedback regulation by the products of NO(-3) assimilation. Here we review recent progress in the characterisation of the two families of NO(-3) transporters that have so far been identified in plants, their structure and their regulation, and consider the evidence for their roles in NO(-3) acquisition. We also discuss what is currently known about the genetic basis of NO(-3) induction and feedback repression of the NO(-3) transport and assimilatory pathway in higher plants.  相似文献   

7.
8.
This chapter concentrates mainly on structural and mechanistic aspects of ABC (ATP-binding cassette) transporters and, as an example of the physiological significance of these proteins, on lipid transport, vitally important for human health. The chapter considers those aspects of ABC transporter function that appear reasonably well established, those that remain controversial and what appear to be emerging themes. Although we have seen dramatic progress in ABC protein studies in the last 20 years, we are still far from a detailed molecular understanding of function. Nevertheless two critical steps - capture and release of allocrites (transport substrates) involving a binding cavity in the membrane domain, and hydrolysis of ATP by the NBD (nucleotide-binding domain) dimer - are now described by persuasive and testable models: alternating access, and sequential firing of catalysis sites respectively. However, these need to be tested rigorously by more structural and biochemical studies. Other aspects considered include the level at which ATP binding and dimer activation are controlled, the nature of the power stroke delivering mechanical energy for transport, and some unexpected and intriguing differences between importers and exporters. The chapter also emphasizes that some ABC transporters, although important for elimination of toxic compounds (xenobiotics), are also increasingly seen to play crucial roles in homoeostatic regulation of membrane biogenesis and function through translocation of endogenous allocrites such as cholesterol. Another emerging theme is the identification of accessory domains and partners for ABC proteins, resulting in a corresponding widening of the range of activities. Finally, what are the prospects for translational research and ABC transporters?  相似文献   

9.
ATP binding cassette (ABC) transporters comprise an extended protein family involved in the transport of a broad spectrum of solutes across membranes. They consist of a common architecture including two ATP-binding domains converting chemical energy into conformational changes and two transmembrane domains facilitating transport via alternating access. This review focuses on the biogenesis, and more precisely, on the degradation of mammalian ABC transporters in the endoplasmic reticulum (ER). We enlighten the ER-associated degradation pathway in the context of misfolded, misassembled or tightly regulated ABC transporters with a closer view on the cystic fibrosis transmembrane conductance regulator (CFTR) and the transporter associated with antigen processing (TAP), which plays an essential role in the adaptive immunity. Three rather different scenarios affecting the stability and degradation of ABC transporters are discussed: (1) misfolded domains caused by a lack of proper intra- and intermolecular contacts within the ABC transporters, (2) deficient assembly with auxiliary factors, and (3) arrest and accumulation of an intermediate or ‘dead-end’ state in the transport cycle, which is prone to be recognized by the ER-associated degradation machinery.  相似文献   

10.
ATP-结合盒(ATP-binding cassette,ABC)转运蛋白是目前已知最大、功能最广泛的蛋白质家族。多向耐药性(pleiotropic drug resistance,PDR)蛋白是该家族中仅存于植物和真菌中的一个亚族,结构域与其他亚族相反,即核苷酸结合域(nucleotide-binding domain,NBD)位于跨膜结构域(trans-membrane domain,TMD)的N端。目前已发现PDR型转运蛋白具有转运次生代谢产物和参与胁迫反应等方面的功能。植物PDR基因分为5个亚族:I族基因涉及多种生物和非生物胁迫反应,II ̄V族基因功能研究甚少。植物PDR基因在器官水平、化学及环境因素影响下具有特异性较好的表达谱。本文系统阐述了植物PDR型转运蛋白基因的进化、结构及其功能,为理解植物PDR型转运蛋白在生物分子转运和复杂生理功能方面提供一个基础框架。  相似文献   

11.
In this protocol, we describe a procedure for incorporating ATP-binding cassette (ABC) transporters into large unilamellar vesicles (LUVs) and assays to determine ligand binding and solute translocation by these membrane-reconstituted systems. The reconstitution technique as described has been optimized for ABC transporters but can be readily adapted for other types of transport systems. Purified transporters are inserted into detergent-destabilized preformed liposomes and detergent is subsequently removed by adsorption onto polystyrene beads. Next, Mg-ATP or an ATP-regenerating system is incorporated into the vesicle lumen by one or more cycles of freezing-thawing, followed by extrusion through polycarbonate filters to obtain unilamellar vesicles. Binding and translocation of substrates are measured using isotope-labeled ligands and rapid filtration to separate the proteoliposomes from the surrounding medium. Quantitative information is obtained about dissociation constants (K(d)) for ligand binding, number of binding-sites, transport affinities (K(m)), rates of transport, and the activities of transporter molecules with opposite orientations in the membrane. The full protocol can be completed within 4-5 d.  相似文献   

12.
Peroxisomes perform a range of different functions, dependent upon organism, tissue type, developmental stage or environmental conditions, many of which are connected with lipid metabolism. This review summarises recent research on ATP binding cassette (ABC) transporters of the peroxisomal membrane (ABC subfamily D) and their roles in plants, fungi and animals. Analysis of mutants has revealed that peroxisomal ABC transporters play key roles in specific metabolic and developmental functions in different organisms. A common function is import of substrates for beta-oxidation but much remains to be determined concerning transport substrates and mechanisms which appear to differ significantly between phyla.  相似文献   

13.
The ATP binding cassette (ABC) superfamily is a large, ubiquitous and diverse group of proteins, most of which mediate transport across biological membranes. ABC transporters have been shown to function not only as ATP-dependent pumps, but also as ion channels and channel regulators. Whilst members of this gene family have been extensively characterised in mammalian and microbial systems, the study of plant ABC transporters is a relatively new field of investigation. Sequences of over 20 plant ABC proteins have been published and include homologues of P-glycoprotein, MRP, PDR5 and organellar transporters. At present, functions have been assigned to a small proportion of these genes and only the MRP subclass has been extensively characterised. This review aims to summarise literature relevant to the study of plant ABC transporters, to review methods of cloning, to discuss the utility of yeast and mammalian systems as models and to speculate on possible roles of uncharacterised ABC transporters in plants.  相似文献   

14.
ABC transporters: bacterial exporters.   总被引:1,自引:0,他引:1       下载免费PDF全文
The ABC transporters (also called traffic ATPases) make up a large superfamily of proteins which share a common function and a common ATP-binding domain. ABC transporters are classified into three major groups: bacterial importers (the periplasmic permeases), eukaryotic transporters, and bacterial exporters. We present a comprehensive review of the bacterial ABC exporter group, which currently includes over 40 systems. The bacterial ABC exporter systems are functionally subdivided on the basis of the type of substrate that each translocates. We describe three main groups: protein exporters, peptide exporters, and systems that transport nonprotein substrates. Prototype exporters from each group are described in detail to illustrate our current understanding of this protein family. The prototype systems include the alpha-hemolysin, colicin V, and capsular polysaccharide exporters from Escherichia coli, the protease exporter from Erwinia chrysanthemi, and the glucan exporters from Agrobacterium tumefaciens and Rhizobium meliloti. Phylogenetic analysis of the ATP-binding domains from 29 bacterial ABC exporters indicates that the bacterial ABC exporters can be divided into two primary branches. One branch contains the transport systems where the ATP-binding domain and the membrane-spanning domain are present on the same polypeptide, and the other branch contains the systems where these domains are found on separate polypeptides. Differences in substrate specificity do not correlate with evolutionary relatedness. A complete survey of the known and putative bacterial ABC exporters is included at the end of the review.  相似文献   

15.
Intraprotein side chain contacts can couple the evolutionary process of amino acid substitution at one position to that at another. This coupling, known as residue coevolution, may vary in strength. Conserved contacts thus not only define 3-dimensional protein structure, but also indicate which residue-residue interactions are crucial to a protein's function. Therefore, prediction of strongly coevolving residue-pairs helps clarify molecular mechanisms underlying function. Previously, various coevolution detectors have been employed separately to predict these pairs purely from multiple sequence alignments, while disregarding available structural information. This study introduces an integrative framework that improves the accuracy of such predictions, relative to previous approaches, by combining multiple coevolution detectors and incorporating structural contact information. This framework is applied to the ABC-B and ABC-C transporter families, which include the drug exporter P-glycoprotein involved in multidrug resistance of cancer cells, as well as the CFTR chloride channel linked to cystic fibrosis disease. The predicted coevolving pairs are further analyzed based on conformational changes inferred from outward- and inward-facing transporter structures. The analysis suggests that some pairs coevolved to directly regulate conformational changes of the alternating-access transport mechanism, while others to stabilize rigid-body-like components of the protein structure. Moreover, some identified pairs correspond to residues previously implicated in cystic fibrosis.  相似文献   

16.
ABC (ATP-binding cassette) transporters are primary active membrane proteins that translocate solutes (allocrites) across lipid bilayers. The prototypical ABC transporter consists of four domains: two cytoplasmic NBDs (nucleotide-binding domains) and two TMDs (transmembrane domains). The NBDs, whose primary sequence is highly conserved throughout the superfamily, bind and hydrolyse ATP to power the transport cycle. The TMDs, whose primary sequence and protein fold can be quite disparate, form the translocation pathway across the membrane and generally (but not always) determine allocrite specificity. Structure determination of ABC proteins initially took advantage of the relative ease of expression and crystallization of the hydrophilic bacterial NBDs in isolation from the transporter complex, and revealed detailed information on the structural fold of these domains, the amino acids involved in the binding and hydrolysis of nucleotide, and the head-to-tail arrangement of the NBD-NBD dimer interface. More recently, several intact transporters have been crystallized and three types have, so far, been characterized: type I and II ABC importers, and ABC exporters. All three are present in prokaryotes, but only the ABC exporters appear to be present in eukaryotes. Their structural determination has provided insight into the mechanisms of energy and signal transduction between the NBDs and TMDs (i.e. between the ATP- and allocrite-binding sites) and, for some, the nature of the allocrite-binding site(s) within the TMDs. In this chapter, we focus primarily on the ABC exporters and describe the structural, biochemical and biophysical evidence for and against the controversial bellows-like mechanism proposed for allocrite efflux.  相似文献   

17.
Multidrug resistance ABC transporters   总被引:11,自引:0,他引:11  
Chang G 《FEBS letters》2003,555(1):102-105
Clinical multidrug resistance is caused by a group of integral membrane proteins that transport hydrophobic drugs and lipids across the cell membrane. One class of these permeases, known as multidrug resistance ATP binding cassette (ABC) transporters, translocate these molecules by coupling drug/lipid efflux with energy derived from the hydrolysis of ATP. In this review, we examine both the structures and conformational changes of multidrug resistance ABC transporters. Together with the available biochemical and structural evidence, we propose a general mechanism for hydrophobic substrate transport coupled to ATP hydrolysis.  相似文献   

18.
ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion.We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.  相似文献   

19.
Hinz A  Tampé R 《Biochemistry》2012,51(25):4981-4989
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.  相似文献   

20.
Sucrose transporters in plants: update on function and structure   总被引:29,自引:0,他引:29  
In plants, sucrose is the major transport form for photoassimilated carbon and is both a source of carbon skeletons and energy for plant organs unable to perform photosynthesis (sink organs). As a molecule translocated over distance, sucrose has to pass through a number of membranes. Membrane transport of sucrose has therefore been considered for a long time as a major determinant of plant productivity. After several decades of physiological and biochemical experiments measuring the activity of sucrose carriers, unequivocal evidence came from the first identification of a cDNA coding a sucrose carrier (SoSUT1, Riesmeier et al. (1992) EMBO J. 11, 4705-4713). At present 20 different cDNAs encoding sucrose carriers have been identified in different plant species, in both dicots and monocots (one case). The total number is increasing rapidly and most importantly, it can be guessed from the results obtained for Arabidopsis, that in each species, sucrose transporters represent a gene family. The sequences are highly conserved and those carriers display the typical 12 transmembrane alpha-helices of members of the Major Facilitator superfamily. Yeast expression of those carriers indicate that they are all influx carriers, all cotransport sucrose and proton and that their affinity for sucrose is surprisingly similar (0.2-2 mM). All their characteristics are in agreement with those demonstrated at the physiological level in plants. These characteristics are discussed in relation to the function in plants and the few data available on the structure of those transporters in relation to their function are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号