首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anomalies in the ultrastructure of chloroplasts, from transgenic ipt tobacco, overproducing endogenous cytokinins (CKs) were studied. Detailed analyses of CKs and their metabolites showed that Pssu-ipt tobacco contained enhanced contents of CKs both in leaves and in isolated chloroplasts. The role of CKs in the formation of anomalous structures is suggested. Pssu-ipt chloroplasts frequently formed the distinct peripheral reticulum with a system of caverns that often involved mitochondria and/or peroxisomes. Large crystalloids, which were found in chloroplasts of Pssu-ipt, occupied up to 16% of chloroplast volume. We suggested that the crystalloids were formed by LHC II aggregates. This was supported by analysis of the fluorescence emission spectra at 77°K, chlorophyll a/b ratio, immunogold staining of the structures, and crystallographic unit size analysis.  相似文献   

2.
Synková  H.  Pechová  R.  Valcke  R. 《Photosynthetica》2003,41(1):117-126
Changes in chloroplast ultrastructure and total content of endogenous cytokinins (CK) were studied during different phases of plant development in transgenic Pssu-ipt tobacco (Nicotiana tabacum L. cv. Petit Havana SR1). Permanent overproduction of CK was found in both rooted (SE) and grafted (G) Pssu-ipt plants in all phases of plant development with the peak in vegetative and flowering phase in the latter ones. No such a correlation was observed in SE on the contrary to control non-transgenic plants (SR1) and grafts (SRG), which showed also CK increase at juvenile and flowering phases. No significant differences in parameters of chloroplast ultrastructure, such as length of chloroplast, starch content, granum width, and number of thylakoids per granum, were proved between chloroplasts from young mature leaves of control and transgenic tobacco during plant ontogeny. Nevertheless, several anomalies in the ultrastructure of cell organelles were found in Pssu-ipt tobacco. Amoeboid shape of chloroplasts was often observed in connection with tubular clusters resembling peripheral reticulum. The distinct crystalline structures located in chloroplasts might be formed by LHC protein aggregates. Smaller crystals of unknown composition were found also in mitochondria. Numerous crystalline cores were present in peroxisomes. The alterations might be the result of imbalance of phytohormone content, degradation effect of CK overproduction, or the example of acclimation to permanent stress.  相似文献   

3.
4.
We transformed tobacco plants (Mcotiana tabacum L, Xanthi) by introducing a sense construct ofNtFtsZ1-2. This tobacco nuclear gene encodes a chloroplast-localized homologue of FtsZ, the bacterial cell-division protein. The overexpressing plants contained enlarged chloroplasts in their leaf mesophyll cells. In the T1 progeny, we observed three different phenotypes: 1 ) plants with cells containing many small chloroplasts, which was the same as for wild-type plants; 2) plants in which the celts contained one to three enlarged chloroplasts (severe type); and 3) plants whose cells contained a combination of many small chloroplasts and one to three enlarged chloroplasts (intermediate type). The outward appearance of the severe and intermediate types of transgenic plants did not differ noticeably from the wild-types. However, the severe-type plants were most retarded in their growth under both high- and low-light conditions, followed by the intermediate-types. Under medium levels of light, the two types of transgenic plants exhibited growth rates comparable to that of the wild types. Based on the overall results, we suggest that many small chloroplasts, rather than a few large chloroplasts, are required for efficient use of light energy in the mesophyll cells.  相似文献   

5.
Methionine biosynthesis has taken different evolutionary pathways in bacteria, fungi and plants. To gain insight into these differences and to search for new ways of manipulating methionine biosynthesis in plants, the yeast (Saccharomyces cerevisiae) Met2 gene and the bacteria (Leptospira meyeri) MetX gene, both encoding homoserine O-acetyltransferase, were expressed in tobacco plants. We found protein aggregates in extracts of these transgenic plants, whose levels were much higher in plants grown at 35 °C than at 25 °C. It appears that the yeast and the bacterial proteins are heat labile and tend to change their intracellular conformation. These conformational changes of the transgenic proteins were more prominent at high temperature and most probably triggered aggregation of the yeast and the bacterial proteins. Moreover, plants expressing the yeast gene that grew at 35 °C over-accumulated stress-associated metabolites, such as phenolic compounds, including tannins, as well as the amino acid arginine. In addition, the transgenic plants expressing high levels of the foreign genes show growth retardation, which further suggests that, these plants suffer from internal stress. The changes in protein conformation and the consequent triggering of stress response may account for the ability of these transgenic plants to tolerate more extreme heat stress (60 °C) than the wild-type plants.  相似文献   

6.
We previously reported that applications of chloramphenicol to the chlorina wheat mutant, CD3, decreased the leaf Chl a/b ratio and enhanced accumulations of LHC proteins and LHC complexes during greening (Duysen et al. 1985). We have now examined Chl degradation and the change in Chl a/b ratios in wheat leaves kept in the dark as a measure of LHC destruction. Chl b was stable in chloroplasts of the CD3 wheat kept in darkness up to 5 days. Chloramphenicol significantly increased Chl b accumulations and impaired Chl a degradation in both CD3 mutant and normal wheat relative to untreated plants. Our Chl data suggest that the chloramphenicol induced accumulation of the LHC complex in the mutant wheat results from enhanced processing of LHC into the membrane rather than impairment of LHC degradation. The photosystem I (PSI) fraction of the CD3 wheat mutant was examined relative to that of normal wheat after 3 days greening. PSI was deficient in 25, 26, 26.5 kD LHCI protein in the mutant but both wheats accumulated low quantities of the 27–29 kD LHCII protein as detected by Western blot analysis. Chloramphenicol enhanced accumulations of several LHCI proteins primarily near 25 kD in the mutant and the 27–29 kD LHCII protein in normal wheat. The fluorescence emission and absorbance spectra suggest that chloramphenicol enhances accumulations of dissociated LHC in the PSI preparation of normal and CD3 mutant wheat.A contribution of North Dakota Agricultural Experiment Station. Published with approval of the Director as Journal Paper Number 1563.  相似文献   

7.
Pisum sativum (L.) plants were grown under “white” luminescent lamps, W [45 μ mol(quantum) m−2 s−1] or under the same irradiation supplemented with narrow spectrum red light-emitting diodes (LEDs), RE [λmax = 660 nm, Δλ = 20 nm, 40 μmol(quantum) m−2 s−1]. Significant differences in the chlorophyll (Chl) a fluorescence parameters, degree of State 1–State 2 transition, and the pigment-protein contents were found in plants grown under differing spectral composition. Addition of red LEDs to the “white light” resulted in higher effective quantum yield of photosystem 2 (PS2), i.e. F′v/F′m, linear electron transport (ϕPS2), photochemical quenching (qP), and lower non-photochemical quenching (qN as well as NPQ). The RE plants were characterised by higher degree State 1–State 2 transition, i.e. they were more effective in radiant energy utilisation. Judging from the data of “green” electrophoresis of Chl containing pigment-protein complexes of plants grown under various irradiation qualities, the percentage of Chl in photosystem 2 (PS2) reaction centre complexes in RE plants was higher and there was no difference in the total Chl bound with Chl-proteins of light-harvesting complexes (LHC2). Because the ratio between oligomeric and monomeric LHC2 forms was higher in RE plants, we suggest higher LHC2 stability in these ones.  相似文献   

8.
Overexpression of antifungal pathogenesis-related (PR) proteins in crop plants has the potential for enhancing resistance against fungal pathogens. Thaumatin-like proteins (TLPs) are one group (PR-5, permatins) of antifungal PR-proteins isolated from various plants. In the present study, a plasmid containing a cDNA of rice tlp (D34) under the control of the CaMV-35S promoter was introduced into tobacco plants through Agrobacterium-mediated transformation system. A considerable overproduction of TLP was observed in transformed tobacco plants by Western blot analysis. There was a large accumulation of tlp mRNA in transgenic plants as revealed by Northern blot analysis. Southern blot analysis of the DNA from transgenic tobacco plants confirmed the presence of the rice tlp gene in the genomic DNA of transgenic tobacco plants. Immunoblot analysis of intracellular and extracellular proteins of transgenic tobacco leaves using a Pinto bean TLP antibody demonstrated that the 23-kDa TLP was secreted into the extracellular matrix. T2 progeny of regenerated plants transformed with TLP gene were tested for their disease reaction to Alternaria alternata, the brown spot pathogen. Transgenic tobacco plants expressing TLP at high levels showed enhanced tolerance to necrotization caused by the pathogen. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
10.
11.
Choudhury  N.K.  Behera  R.K. 《Photosynthetica》2001,39(4):481-488
Exposure of plants to irradiation, in excess to saturate photosynthesis, leads to reduction in photosynthetic capacity without any change in bulk pigment content. This effect is known as photoinhibition. Photoinhibition is followed by destruction of carotenoids (Cars), bleaching of chlorophylls (Chls), and increased lipid peroxidation due to formation of reactive oxygen species if the excess irradiance exposure continues. Photoinhibition of photosystem 2 (PS2) in vivo is often a photoprotective strategy rather than a damaging process. For sustainable maintenance of chloroplast function under high irradiance, the plants develop various photoprotective strategies. Cars perform essential photoprotective roles in chloroplasts by quenching the triplet Chl and scavenging singlet oxygen and other reactive oxygen species. Recently photoprotective role of xanthophylls (zeaxanthin) for dissipation of excess excitation energy under irradiance stress has been emphasised. The inter-conversion of violaxanthin (Vx) into zeaxanthin (Zx) in the light-harvesting complexes (LHC) serves to regulate photon harvesting and subsequent energy dissipation. De-epoxidation of Vx to Zx leads to changes in structure and properties of these xanthophylls which brings about significant structural changes in the LHC complex. This ultimately results in (1) direct quenching of Chl fluorescence by singlet-singlet energy transfer from Chl to Zx, (2) trans-thylakoid membrane mediated, pH-dependent indirect quenching of Chl fluorescence. Apart from these, other processes such as early light-inducible proteins, D1 turnover, and several enzymatic defence mechanisms, operate in the chloroplasts, either for tolerance or to neutralise the harmful effect of high irradiance.  相似文献   

12.
Light‐harvesting complex (LHC)‐like (LIL) proteins contain two transmembrane helices of which the first bears a chlorophyll (Chl)‐binding motif. They are widespread in photosynthetic organisms, but almost nothing is known about their expression and physiological functions. We show that two LIL3 paralogues (LIL3:1 and LIL3:2) in Arabidopsis thaliana are expressed in photosynthetically active tissues and their expression is differentially influenced by light stress. Localization studies demonstrate that both isoforms are associated with subcomplexes of LHC antenna of photosystem II. Transgenic plants with reduced amounts of LIL3:1 exhibited a slightly impaired growth and have reduced Chl and carotenoid contents as compared to wild‐type plants. Ectopic overexpression of either paralogue led to a developmentally regulated switch to co‐suppression of both LIL3 isoforms, resulting in a circular chlorosis of the leaf rosettes. Chlorotic sectors show severely diminished levels of LIL3 isoforms and other proteins, and thylakoid morphology was changed. Additionally, the levels of enzymes involved in Chl biosynthesis are altered in lil3 mutant plants. Our data support a role of LIL3 paralogues in the regulation of Chl biosynthesis under light stress and under standard growth conditions as well as in a coordinated ligation of newly synthesized and/or rescued Chl molecules to their target apoproteins.  相似文献   

13.
Expression of the Cry2Aa2 protein was targeted specifically to the green tissues of transgenic tobacco Nicotiana tabacum cv. Xanthi plants. This deployment was achieved by using the promoter region of the gene encoding the Solanum tuberosum leaf and stem specific (ST-LS1) protein. The accumulated levels of toxin in the leaves were found to be effective in achieving 100 mortality of Heliothis virescens larvae. The levels of Cry2Aa2 expression in the leaves of these transgenic plants were up to 0.21 of the total soluble proteins. Bioassays with R1 transgenic plants indicated the inheritance of cry2Aa2 in the progeny plants. Tissue-specific expression of the Bt toxin in transgenic plants may help in controlling the potential occurrence of insect resistance by limiting the amount of toxin to only predated tissues. The results reported here validate the use of the ST-LS1 gene promoter for a targeted expression of Bt toxins in green tissues of plants.  相似文献   

14.
Higher plant chloroplast division involves some of the same types of proteins that are required in prokaryotic cell division. These include two of the three Min proteins, MinD and MinE, encoded by the min operon in bacteria. Noticeably absent from annotated sequences from higher plants is a MinC homologue. A higher plant functional MinC homologue that would interfere with FtsZ polymerization, has yet to be identified. We sought to determine whether expression of the bacterial MinC in higher plants could affect chloroplast division. The Escherichia coli minC (EcMinC) gene was isolated and inserted behind the Arabidopsis thaliana RbcS transit peptide sequence for chloroplast targeting. This TP-EcMinC gene driven by the CaMV 35S2 constitutive promoter was then transformed into tobacco (Nicotiana tabacum L.). Abnormally large chloroplasts were observed in the transgenic plants suggesting that overexpression of the E. coli MinC perturbed higher plant chloroplast division.  相似文献   

15.
In tobacco leaves inoculated with tobacco mosaic virus (TMV), changes in chlorophyll (Chl) and carotenoid contents, parameters of slow Chl fluorescence kinetics, i.e. the maximum quantum yield of photosystem (PS2) photochemistry Fv/Fm, the effective quantum yield of photochemical energy conversion in PS2 Φ2, ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS2 Fv/F0, non-photochemical quenching (NPQ), and photochemical activities of isolated chloroplasts from systemically infected tobacco leaves were investigated. We compared two successive stages of infection, the first in the stage of vein clearing at 9th day post inoculation (dpi) and the second at 22nd dpi when two different regions, i.e. light- (LGI) or dark-green (DGI) islands in the infected leaf were apparent and symptoms were fully developed. These two different regions were measured separately. The Chl and carotenoid contents in infected leaves decreased with a progression of infection and were lowest in LGI in the second stage. Also the ratio of Chl a/b declined in similar manner. The maximum quantum yield of PS2 photochemistry Fv/Fm, was decreased in the following order: first stage, DGI, and LGI. The same is true for the ratio Fv/F0. The decrease of Φ2 in infected leaves declined as compared to their controls. On the contrary, NPQ increased in infected leaves, the highest value was found in the first infection stage. Photochemical activities of the whole electron transport chain in isolated chloroplasts dramatically declined with the progression of symptoms, the lowest value was in LGI. Similarly, but to a lesser extent, the activity of PS2 in isolated chloroplasts decreased in infected leaves. Generally, the most marked impairment of the photosynthetic apparatus was manifested in the LGI of infected leaves.  相似文献   

16.
The nuclear-encoded Chl a/b and Chl a/c antenna proteins of photosynthetic eukaryotes are part of an extended family of proteins that also includes the early light-induced proteins (ELIPs) and the 22 kDa intrinsic protein of PS II (encoded by psbS gene). All members of this family have three transmembrane helices except for the psbS protein, which has four. The amino acid sequences of these proteins are compared and related to the three-dimensional structure of pea LHC II Type I (Kühlbrandt and Wang, Nature 350: 130–134, 1991). The similarity of psbS to the three-helix members of the family suggests that the latter arose from a four-helix ancestor that lost its C-terminal helix by deletion. Strong internal similarity between the two halves of the psbS protein suggests that it in turn arose as the result of the duplication of a gene encoding a two-helix protein. Since psbS is reported to be present in at least one cyanobacterium, the ancestral four-helix protein may have been present prior to the endosymbiotic event or events that gave rise to the photosynthetic eukaryotes. The Chl a/b and Chl a/c antenna proteins, and the immunologically-related proteins in the rhodophytes may have had a common ancestor which was present in the early photosynthetic eukaryotes, and predated their division into rhodophyte, chromophyte and chlorophyte lineages. The LHC I-LHC II divergence probably occurred before the separation of higher plants from chlorophyte algae and euglenophytes, and the different Types of LHC I and LHC II proteins arose prior to the separation of angiosperms and gymnosperms.Abbreviations CAB Chl a/b-binding - ELIP early light-induced protein - FCP fucoxanthin-Chl a/c protein - PCR polymerase chain reaction - TMH trans-membrane helix  相似文献   

17.
The nature and importance of the DNA repair system in the chloroplasts of higher plants under oxidative stress or UV radiation‐induced genotoxicity was investigated via gain‐of‐functional approaches exploiting bacterial RecAs. For this purpose, transgenic tobacco (Nicotiana tabacum) plants and cell suspensions overexpressing Escherichia coli or Pseudomonas aeruginosa RecA fused to a chloroplast‐targeting transit peptide were first produced. The transgenic tobacco plants maintained higher amounts of chloroplast DNA compared with wild‐type (WT) upon treatments with methyl viologen (MV), a herbicide that generates reactive oxygen species (ROS) in chloroplasts. Consistent with these results, the transgenic tobacco leaves showed less bleaching than WT following MV exposure. Similarly, the MV‐treated transgenic Arabidopsis plants overexpressing the chloroplast RecA homologue RECA1 showed weak bleaching, while the recA1 mutant showed opposite results upon MV treatment. In addition, when exposed to UV‐C radiation, the dark‐grown E. coli RecA‐overexpressing transgenic tobacco cell suspensions, but not their WT counterparts, resumed growth and greening after the recovery period under light conditions. Measurements of UV radiation‐induced chloroplast DNA damage using DraI assays (Harlow et al. 1994) with the chloroplast rbcL DNA probe and quantitative PCR analyses showed that the transgenic cell suspensions better repaired their UV‐C radiation‐induced chloroplast DNA lesions compared with WT. Taken all together, it was concluded that RecA‐overexpressing transgenic plants are endowed with an increased chloroplast DNA maintenance capacity and enhanced repair activities, and consequently have a higher survival tolerance to genotoxic stresses. These observations are made possible by the functional compatibility of the bacterial RecAs in chloroplasts.  相似文献   

18.
Transgenic Pssu-ipt tobacco with elevated content of endogenous cytokinins grown under in vitro conditions exhibited elevated activities of antioxidant enzymes (i.e. catalase, ascorbate peroxidase, guaiacol and syringaldazine peroxidase, glutathione reductase) and some of enzymes involved in anaplerotic pathways such as glucose-6-phosphate dehydrogenase, glycolate oxidase, NADP-malic enzyme, NADP-isocitrate dehydrogenase, and glutamate dehydrogenase compared to control non-transgenic SR1 tobacco. Higher activities of peroxidases, NADP-malic enzyme, and glutamate dehydrogenase were maintained in transgenic grafts after several weeks of the growth under ex vitro conditions, while transgenic rooted plants showed only the increase in activity of glycolate oxidase compared to control non-transformed tobacco. Total activities of superoxide dismutase were lower in both types of Pssu-ipt tobacco contrary to controls under both growth conditions. The presence of PR-1 protein and proteins with elevated activities of chitinase was proved in the extracellular fluid in both transgenic types under both in vitro and ex vitro conditions.  相似文献   

19.
In order to study chloroplast biogenesis, we chose natural variegated Epipremnum aureum (golden pothos) and regenerated pale yellow, variegated and green plants from all three types of tissue explants. The percentage of three types of regenerated shoots from three different explants was very close. Regenerated plants have been maintained for a year and show no sign of a colour switch. By comparing their protein profiles, two major differences between pale yellow and green plants were observed at the 15 and 40 to 50 kDa proteins. Moreover, pale yellow plants had unexpected high molecular mass proteins (greater than 60 kDa). Both variegated and green plants had more chlorophyll (Chl) a than Chl b, the ratios were about 1.46 and 1.93, respectively. In contrast, the pale yellow plants not only had less total Chl, but also the reduction of Chl a was much greater than Chl b, resulting in a higher content of Chl b than Chl a. Microscopic analysis revealed that pale yellow plants contained predominantly undeveloped chloroplasts with low Chl contents, even though their mesophyll cells were similar to green and variegated plants. PCR amplification of chloroplast DNA with 14 universal chloroplast primers did not reveal any difference among these regenerated plants.  相似文献   

20.
The antiviral activity of the type-2 ribosome-inactivating protein (RIP) IRAb from Iris was analyzed by expressing IRAb in tobacco (Nicotiana tabacum L. cv. Samsun NN) plants and challenging the transgenic plants with tobacco mosaic virus (TMV). Although constitutive expression of IRAb resulted in an aberrant phenotype, the plants were fertile. Transgenic tobacco lines expressing IRAb showed a dose-dependent enhanced resistance against TMV infection but the level of protection was markedly lower than in plants expressing IRIP, the type-1 RIP from Iris that closely resembles the A-chain of IRAb. To verify whether IRIP or IRAb can also confer systemic protection against viruses, transgenic RIP-expressing scions were grafted onto control rootstocks and leaves of the rootstocks challenged with tobacco etch virus (TEV). In spite of the strong local antiviral effect of IRIP and IRAb the RIPs could not provide systemic protection against TEV. Hence our results demonstrate that expression of the type-1 and type-2 RIPs from Iris confers tobacco plants local protection against two unrelated viruses. The antiviral activity of both RIPs was not accompanied by an induction of pathogenesis-related proteins. It is suggested that the observed antiviral activity of both Iris RIPs relies on their RNA N-glycohydrolase activity towards TMV RNA and plant rRNA.Abbreviations GUS -Glucuronidase - IRAb Iris agglutinin b - IRIP Iris type-1 RIP - PAG Polynucleotide:adenosine glycosylase - PAP Phytolacca americana antiviral protein - PR Pathogenesis-related - RIP Ribosome-inactivating protein - TCS Trichosanthin - TEV Tobacco etch virus - TMV Tobacco mosaic virus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号