首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
In the last decade, several investigators have reported that autologous and homologous fresh frozen bones (FFB) are effective materials to restore alveolar ridges previous to insert dental implants. Recently we have used cryopreserved homologue grafts (CFFB). Here we reported a retrospective comparative study between implants inserted in FFB and CFFB evaluate their clinical outcome. Patients were treated with a split mouth scheme for bone grafting with FFB and CFFB and spiral family implants (SPI) were inserted in the same surgical time. Several variables (patient, grafts, anatomic site, implant, prosthetic restoration) were investigated. Implant’ failure and peri-implant bone resorption were considered as predictor of clinical outcome. A total of 84 SFIs were inserted in 12 patients. Implants were inserted to replace 8 incisors, 4 cuspids, 31 premolars and 41 molars. The mean follow-up was 14 months. Three out of 84 implants was lost (i.e. survival rate SVR = 96.4%) and no differences were detected among the studied variables. Similar result was obtained by analyzing the crestal bone resorption around implant’ neck (i.e. success rate). FFB and CFFB have high and comparable survival and success rate. Implants inserted with one step surgical procedure in native (i.e. not grafted) bone, FFB and CFFB have similar clinical outcome.  相似文献   

4.
The ideal arterial graft must share identical functional properties with the host artery. Surgical reconstruction of the common carotid artery (CA) is performed in several clinical situations, using expanded polytetrafluoroethylene prosthesis (ePTFE) or saphenous vein (SV) grafts. At date there is interest in obtaining an arterial graft that improves the results of that nowadays available. The use of a fresh or cryopreserved/defrosted artery appears as an interesting alternative. However, if the fresh and cryopreserved/defrosted arteries allow an adequate viscoelastic and functional matching with the host arteries needs to be established. The aims were to compare the viscoelastic and functional performance of: (1) conduits used in CA reconstruction (SV and ePTFE) with those of the fresh and cryopreserved/defrosted CA and femoral arteries (FA), and (2) normotensive and hypertensive patients’ arteries with those of the arterial substitutes in vitro analyzed. Pressure, diameter and wall thickness of the CA were recorded in 15 normotensive and 15 hypertensive patients (in vivo studies), and in SV, fresh and cryopreserved/defrosted CA and FA (obtained from 15 donors), and ePTFE segments (in vitro studies). From stress–strain relationship we calculated elastic and viscous modulus, and the characteristic impedance. The local buffer and conduit functions were quantified as the viscous/elastic quotient and the inverse of the characteristic impedance. Fresh and cryopreserved/defrosted CA and FA were more alike, both in viscoelastic and functional levels, respect to normotensive and hypertensive patients’ arteries, than the ePTFE and SV grafts. CA and FA cryografts could be considered an important alternative for carotid reconstruction.  相似文献   

5.
6.
7.
8.
Although it is generally accepted that relatively high efficiencies of somatic cell cloning in mammals can be achieved by using donor cells from the female reproductive system (e.g., cumulus/granulosa, oviduct, and mammary gland cells), there is little information on the possibility of using male-specific somatic cells as donor cells. In this study we injected the nucleus of immature mouse Sertoli cells isolated from the testes of newborn (Days 3-10) males into enucleated mature oocytes in order to examine the ability of their nuclei to support embryonic development. After activation of the oocytes that had received the freshly recovered immature Sertoli cells, some developed into the morula/blastocyst stage, depending on the age of the donor cells (22.0-37.4%). When transferred into pseudopregnant females, 7 (3.3%, 7 of 215) developed into normal pups at term. Nuclear transfer of immature Sertoli cells after 1 wk in culture also produced normal pups after embryo transfer (3.1%, 2 of 65). Even after cryopreservation in a conventional cryoprotectant solution, their ability as donor cells was maintained, as demonstrated by the birth of cloned young (6.7%, 7 of 105). Immature Sertoli cells transfected with green fluorescent protein gene also supported embryo development into morulae/blastocysts, which showed specific fluorescence. This study demonstrates that immature Sertoli cells, male-specific somatic cells, are potential donors for somatic cell cloning.  相似文献   

9.
10.
To analyse the influence of cold ischemic time (CIT) (2–24 h) and of cryopreservation (liquid phase) on the viability of the valvular fibroblasts and in the presence of apoptosis. Cardiac valves from 10 pigs were evaluated by anatomo-pathological study of the wall, muscle and leaflet. At the same time, the presence of cellular death due to apoptosis was investigated in two ways; directly on tissue by Apodetec system and by two-colour flow cytometry assay analyzing a suspension of fibroblast from valve leaflets using Anexina V and propidium iodure (PI). We established three groups of samples to compare different experimental conditions: 2 h of ischemia (group 1), 24 h of ischemia (group 2), and a programme of cryopreservation (−1°C/min) after 2 h of ischemia, followed by storage in liquid nitrogen during a week and thawing was performed (group 3). The analysis of viabilities showed slight differences between all three groups. The results indicated CIT of 24 h undergoing more structural affectation than CIT of 2 h. Flow cytometry analysis did not show important differences between groups; however cryopreserved samples (group 3) slightly less viability and a higher percentage of death by apoptosis than group 1 and 2 using flow cytometry. Apoptosis was confirmed on tissue from all valves but mainly in samples of group 2 and group 3. In summary, the viability of the valves in the case of ischemic times of 2 h, 24 h or after cryopreservation/thawing differs slightly. The death of the cells is mainly mediated by necrosis and not by apoptosis.  相似文献   

11.
Different ATPases may control the various functional changes that spermatozoa undergo just prior to fertilization, with the enzyme's specific location within the cell reflecting its function. The activities of Mg2+-ATPase, Ca2+Mg2+-ATPase, Na+K+-ATPase and Ca2+-ATPase were determined for head plasma membranes (HPM) and sperm body membrane (SBM) from both fresh (n = 4) and cryopreserved bovine spermatozoa (n = 4) and fresh homogenized whole spermatozoa (HWS) (n = 6). No activity of Ca2+Mg2+-ATPase was found in any preparation from spermatozoa. Ca2+-ATPase was detected in fresh SBM and HWS but not in HPM. Activity of Mg2+-ATPase and Na+K+-ATPase was higher in HPM than HWS or SBM (P < 0.01). Cryopeserving the whole sperm reduced the activities of all three enzymes, but Na+K+-ATPase was more sensitive to cryopreservation than Mg2+-ATPase (P ≤ 0.05). Enzyme location suggests that Ca2+-ATPase may be associated with events in the flagellum, while Mg2+-ATPase and Na+K+-ATPase may affect functions in the sperm head. Cryopreservation-induced damage to ATPases might be involved in reducing the fertilizing ability of cryopreserved spermatozoa.  相似文献   

12.
13.
A study of the in vitro growth model of human granulo-monopoietic precursors (CFU-GM) before and after cryopreservation using both leukocyte feeder layers and GCT conditioned medium as the source of colony stimulating activity (CSA) is reported. The number of colonies produced with fresh cells was linearly related to the amount of marrow seeded with both CSA sources, whereas after cryopreservation this was true with feeder layers, and with GCT only at relatively high cell concentrations. This might indicate the production of granulopoietic stimulators on the part of a second population that is at least partly resistant to freezing. It seems more likely, however, that these results depend mainly on a sublethal damage to CFU-GM induced by freezing, thus making the cells hyporesponsive to some forms of CSA, such as those contained in GCT conditioned medium.  相似文献   

14.
The surgical options in arterial reconstruction are: the use of autologous arteries; autologous veins; or expanded polytetrafluoroethylene (ePTFE) grafts. However, the development of intimal hyperplasia when using veins or ePTFE grafts has been associated with graft failure. Since autologous arteries are not always available, the use of cryopreserved arteries has to be considered. The aims of this study were: (a) to compare the viscoelastic properties of stored cryopreserved arteries and fresh arteries by in vitro analysis; and (b) to compare the viscoelastic properties of arteries measured non-invasively in normotensive patients, with fresh arteries, cryopreserved arteries, and ePTFE segments. The viscoelastic studies were performed in normotensive patients using stress-strain analysis with non-invasive measurement of pressure and diameter in the common carotid artery, and in vitro measurements of pressure and diameter in arteries and prostheses. The in vitro studies showed that the elastic modulus (E), viscous modulus (eta), Stiffness Index (SI), Peterson modulus (Ep), and the pulse wave velocity (PWV) values for human cryopreserved carotid arteries were similar to the values obtained non-invasively in normotensive subjects (P>0.05) and to human fresh vessels (P>0.05). In vitro, the SI, Ep, PWV, and E values of ePTFE were significantly higher than the observed values in subjects and with fresh and cryopreserved arteries (P<0.05); on the other hand the ePTFE eta values were the lowest (P<0.05). We concluded that cryopreserved arteries have similar viscoelastic properties to those obtained in vivo in the arteries of normotensive subjects and in vitro in fresh arteries. Consequently, we conclude that the cryopreservation procedure does not modify the mechanical properties of the arterial wall.  相似文献   

15.
16.
Controlled slow freezing and vitrification have been successfully used for ovine embryo cryopreservation. Selection of embryos for transfer is based on stereomicroscopical embryo scoring after thawing, but the subjectivity inherent to this selection step has been demonstrated by ultrastructural studies of controlled slow frozen, in vivo produced ovine morulae and blastocysts. These studies have shown that certain abnormalities remain undetected by stereomicroscopy only. In the present study, using ovine in vivo produced morulae and blastocysts, we have studied the ultrastructural alterations induced by open pulled straw vitrification (OPS) and controlled slow freezing, compared stereomicroscopical embryo scoring with light microscopy evaluation of embryo's semithin sections, and related the ultrastructural cellular damage with the embryo classification by stereomicroscopical embryo scoring of embryos’ and semithin section evaluation by light microscopy. The ultrastructural lesions found for OPS-vitrified and controlled slow frozen embryos were similar, independently of embryo stage. A significant higher number of grade 3 embryos was found at stereomicroscopical scoring after controlled slow freezing (P = 0.02), and a significant higher number of grade 3 blastocysts was found at semithin sectioning after OPS vitrification (P = 0.037). The extension of ultrastructural damage, especially of mitochondria and cytoskeleton, was related to the semithin classification but not to stereomicroscopical scoring at thawing. This suggests that semithin scoring is a useful tool for predicting ultrastructural lesions and new improvements in cryopreservation and thawing methods of ovine embryos are still warranted, including in the case of blastocysts cryopreserved by OPS vitrification.  相似文献   

17.
18.
The use of arterial homografts in clinical practice is becoming increasingly common, yet there is an urgent need to address one of the most well-established problems associated with their use: the loss of integrity of the endothelium following cryopreservation. The partial lack of endothelium causes contact between the extracellular matrix and blood flow, which, in turn, often gives rise to thrombosis and/or restenosis. Our objective was first to attempt to replace the arterial endothelial cells lost during the cryopreservation process by seeding autologous venous endothelial cells, and to evaluate the behaviour of venous and arterial endothelial cells in co-culture. The idea was to establish whether venous endothelial cells would be accepted by arterial endothelial cells and could therefore be used to restore the endothelial lining for the subsequent use of these vessels in in vivo grafting procedures. For the co-culture experiments, endothelial cells were obtained from the jugular vein and both iliac arteries of the minipig by treatment with 0.1% type I collagenase. The venous endothelial cells were fluorescently labelled with the membrane intercalating dye PKH26. Equal numbers of venous and arterial endothelial cells were mixed and co-cultured for 24h, 48h or 4 days. Cell viability, determined by 2% trypan blue staining and the TUNEL method, was established before and after fluorescence labelling. Cellular activity was determined by estimating PGI2 levels in the cultures. The proliferation index was established by [H(3)]thymidine (1muCi/ml) in the cell culture medium. For the in vivo tests, 5 cm length segments of minipig iliac artery were used to establish the groups: control (n = 6), fresh arterial segments; group I (n = 16), cryopreserved arterial segments and group II (n = 16), cryopreserved arterial segments seeded with autologous venous endothelial cells. The cryopreserved vessels in group II were seeded by flooding with a labelled venous endothelial cell suspension. Once seeded, the arterial segments were included in an in vitro flow circuit. All the specimens were processed for fluorescence and light microscopy, and scanning electron microscopy. The denuded endothelial surface was determined in each group. Cell death was evaluated by the TUNEL method. We confirmed the existence of intercellular PECAM1-type junctions between venous (PKH26+) and arterial cells in co-culture and the functional activity of the cells. The cryopreserved arterial segments showed a well-preserved wall structure. However, different size areas of marked endothelial denudation were detected. After seeding with labelled cells (PKH26+), these denuded areas of the cryopreserved artery were entirely covered by fluorescent cells. After seeding, a drop in the proportion of damaged endothelial cells was recorded. Despite some loss of seeded cells after inclusion in the in vitro flow circuit, the endothelial cell count was not significantly different to those recorded for control, non-cryopreserved specimens. In conclusion arterial and venous endothelial cells growing in co-culture modify their behaviour to form multilayers. The two cell populations form normal PECAM1 junctions and preserve their functional properties. Seeding autologous venous endothelial cells on the luminal surface of cryopreserved arterial segments serves to restore the integrity of the endothelial layer.  相似文献   

19.
Summary Dispersed cells from both fresh and cryopreserved human insulinoma have been maintained in cell culture. Initial yield of viable cells was 50% for fresh and 25% for cryopreserved tissue. Viability of cells in culture was documented by increasing numbers of cells (doubling time approximately 5 d initially and 2 d at the sixth subculture for both fresh and cryopreserved tissue) and continued release of insulin over time (approximately 100 ng/ml per 105 cells at 10 d and 175 ng/ml per 105 cells at 30 d of culture for both fresh and cryopreserved tissue). Evidence that cells growing in culture were beta cells was provided by: (a) recovery of intracellular and extracellular immunoreactive insulin (IRI), (b) electron microscopic morphology, and (c) immunohistochemical staining. Cells from fresh insulinoma incubated with increasing concentrations of extracellular glucose released increasing amounts of IRI up to approximately 15 mM glucose, which paralleled changes in plasma insulin obtained during a preoperative glucose tolerance test. Under an Intergovernmental Personnel Act Exchange from the Department of Surgery, University of California, Davis, Sacramento Medical Center.  相似文献   

20.
《Cytotherapy》2014,16(1):101-110
Background aimsHematopoietic stem cell cryopreservation significantly contributed to autologous stem cell transplantation (ASCT). Cryopreserved stem cell units (SCU) are expected to be used soon after harvesting for most purposes, but, in a number of cases, they remain stored for some time, creating an increasing load for SCU depositories. Disposal policies vary widely in each center, and the existing guidelines are insufficient.MethodsWe conducted a survey of seven Gruppo Italiano Trapianto di Midollo Osseo centers to investigate the outcome of SCU harvested from January 2005 to December 2009 for ASCT. The data from 1603 collections were gathered, for a total of 5822 SCU.ResultsIn our cohort, 79% of patients collected >5 × 106 CD34+ cells/kg, and 3.4% collected <2 × 106 CD34+ cells/kg. Up to 21% of all the patients and 42% of those with acute leukemia did not undergo reinfusion, and 37% of the cryopreserved SCU were excess, resulting from patients not reinfusing or partially reinfusing. Less than one-third of the excess SCU was disposed, and the major causes of disposal were death and, in a minority of cases, withdrawal of the indication for ASCT. In our analysis, very few first reinfusions occurred after 2 years, and those after 5 years were exceptional. Through the use of a multivariate analysis, we sought to identify the risk factors for collection non-use, independent of the centers' policies. Non-use of SCU was significantly associated with patients with acute leukemia, collections of <2 × 106 CD34/kg and lower age groups.ConclusionsThese data serve as a valid basis to support rational recommendations for cost-effective storage and disposal of SCU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号