首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synaptic inhibition by GABA(A) and glycine receptors, which are ligand-gated anion channels, depends on the electrochemical potential for chloride. Several potassium-chloride cotransporters can lower the intracellular chloride concentration [Cl(-)](i), including the neuronal isoform KCC2. We show that KCC2 knockout mice died immediately after birth due to severe motor deficits that also abolished respiration. Sciatic nerve recordings revealed abnormal spontaneous electrical activity and altered spinal cord responses to peripheral electrical stimuli. In the spinal cord of wild-type animals, the KCC2 protein was found at inhibitory synapses. Patch-clamp measurements of embryonic day 18.5 spinal cord motoneurons demonstrated an excitatory GABA and glycine action in the absence, but not in the presence, of KCC2, revealing a crucial role of KCC2 for synaptic inhibition.  相似文献   

2.
Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABA(A) receptors (GABA(A)Rs). The impact of changes in steady state Cl(-) gradient is relatively straightforward to understand, but how dynamic interplay between Cl(-) influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl(-) load on a fast time scale, whereas Cl(-)extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl(-) gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABA(A)R-mediated inhibition, but increasing GABA(A)R input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl(-). Furthermore, if spiking persisted despite the presence of GABA(A)R input, Cl(-) accumulation became accelerated because of the large Cl(-) driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl(-) and pH regulation. Several model predictions were tested and confirmed by [Cl(-)](i) imaging experiments. Our study has thus uncovered how Cl(-) regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K(-) accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention.  相似文献   

3.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated Cl(-) channel functional in neonatal rat spinal motoneurons. The present study investigated the developmental (P1-P8) expression of CFTR, its impact on motoneuron excitability and Cl(-) homeostasis in relation to canonical Cl(-) transporters. The Cl(-) outward transporter KCC2 gene was upregulated in females over males and increased from P1 to P8. The gene activities of the Cl(-) inward transporter NKCC1 and CFTR were positively correlated and grew between P1 and P8. P1 motoneuronal somata were immunopositive for CFTR whose expression later (P8) extended to cell processes. KCC2 immunopositivity outlined somata and cell processes at P1 and P8. Electrophysiological recording with sharp electrodes showed that the CFTR blocker glibenclamide increased motoneuron input resistance, suggesting functional CFTR in P1-P8 motoneurons. Whole cell patch-clamping of spinal motoneurons to study CFTR contribution to postnatal synaptic Cl(-) regulation indicated that glibenclamide or the selective CFTR blocker diphenylamine-2,2'-dicarboxylic acid produced a negative shift in GABA/glycine reversal potential (E(GABA/Gly) ) of spontaneously occurring synaptic events measured after block of excitatory transmission. A similar effect on E(GABA/Gly) was induced by the NKCC1 inhibitor bumetanide. A 3D reconstructed motoneuron model suggested that CFTR activity contributes to set the E(GABA/Gly) positive to the resting potential. The functional outcome of these Cl(-) mediated synaptic events depended not only on the postnatal age of the animal but also on their timing with respect to the excitatory synaptic signals. We propose that CFTR operated together with NKCC1 to produce depolarizing GABA/glycine mediated synaptic events.  相似文献   

4.
GABAergic synaptic inhibition plays a critical role in regulating long-term potentiation (LTP) of glutamatergic synaptic transmission and circuit output. The K(+)-Cl(-) cotransporter 2 (KCC2) is an important factor in determining inhibitory GABAergic synaptic strength besides the contribution of GABA(A) receptor. Although much knowledge has been gained regarding activity-dependent downregulation of KCC2 in many pathological conditions, the potential change and contribution of KCC2 in LTP expression is still unknown. In this study, we found that downregulation of KCC2 was accompanied with the occurrence of LTP but not that of long-term depression in hippocampal CA1 region. Meanwhile, KCC2 level in CA3/DG and adjacent cortex was stable in the process of LTP expression in Schaffer collateral synapses. Blockade of NMDA receptor with APV not only prevented LTP induction also abolished the reduction of KCC2. Furthermore, the inhibition of KCC2 function with furosemide directly induced EPSP-spike (E-S) potentiation, an important component of LTP in hippocampus. The present data suggest a novel mechanism that LTP formation is accompanied by the downregulation of KCC2, which is underlying GABAergic strength and most likely contributes to the E-S potentiation following LTP.  相似文献   

5.

Background

Hypoglossal (XII) motoneurons innervate tongue muscles and are vital for maintaining upper-airway patency during inspiration. Depression of XII nerve activity by opioid analgesics is a significant clinical problem, but underlying mechanisms are poorly understood. Currently there are no suitable pharmacological approaches to counter opiate-induced suppression of XII nerve activity while maintaining analgesia. Ampakines accentuate α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor responses. The AMPA family of glutamate receptors mediate excitatory transmission to XII motoneurons. Therefore the objectives were to determine whether the depressant actions of μ-opioid receptor activation on inspiratory activity includes a direct inhibitory action at the inspiratory premotoneuron to XII motoneuron synapse, and to identify underlying mechanism(s). We then examined whether ampakines counteract opioid-induced depression of XII motoneuron activity.

Methodology/Principal Findings

A medullary slice preparation from neonatal rat that produces inspiratory-related output in vitro was used. Measurements of inspiratory burst amplitude and frequency were made from XII nerve roots. Whole-cell patch recordings from XII motoneurons were used to measure membrane currents and synaptic events. Application of the μ-opioid receptor agonist, DAMGO, to the XII nucleus depressed the output of inspiratory XII motoneurons via presynaptic inhibition of excitatory glutamatergic transmission. Ampakines (CX614 and CX717) alleviated DAMGO-induced depression of XII MN activity through postsynaptic actions on XII motoneurons.

Conclusions/Significance

The inspiratory-depressant actions of opioid analgesics include presynaptic inhibition of XII motoneuron output. Ampakines counteract μ-opioid receptor-mediated depression of XII motoneuron inspiratory activity. These results suggest that ampakines may be beneficial in countering opiate-induced suppression of XII motoneuron activity and resultant impairment of airway patency.  相似文献   

6.
Synaptic processes in various functional groups of thoracic motoneurons (Th9-Th11) evoked by stimulation of segmental nerves were investigated in anesthetized and decerebrate cats. No reciprocal relations were found between these groups of motoneurons. Only excitatory mono- and polysynaptic responses were recorded in the motoneurons of the principal intercostal nerve following stimulation of the homonymous nerve. Activation of the afferents of the external intercostal muscle and dorsal branches does not cause noticeable synaptic processes in these motoneurons; much more rarely it is accompanied by the development of low-amplitude polysynaptic EPSP's. In motoneurons of the dorsal branches, stimulation of homonymous nerves leads to the appearance of simple, short-latent EPSP's. Late responses of the IPSP or EPSP - IPSP type with a predominance of the inhibitory component were observed in most motoneurons of this type following activation of the afferent fibers of the principal intercostal nerve. In other motoneurons of the dorsal muscles, stimulation of the main intercostal nerve (and nerve of the external intercostal muscle) did not evoke apparent synpatic processes. EPSP's (mono- and polysynaptic) appeared in the motoneurons of the external intercostal muscle following stimulation of the homonymous and main intercostal nerves. Activation of the afferents of the dorsal branches was ineffective. The character of the synaptic responses of the respiratory motoneurons to segmental afferent stimulation, investigated under conditions of spontaneous respiration, was different. The characteristics of synaptic activation of thoracic motoneurons by segmental afferents under conditions of hyperventilation apnea and during spontaneous breathing of the animals are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 279–288, May–June, 1970.  相似文献   

7.
In the mature brain, the neurotransmitter GABA can cause a postsynaptic hyperpolarization via activation of chloride permeant GABAA receptor channels. This hyperpolarizing response critically depends on chloride extrusion via the KCl‐cotransporter KCC2 1 . Its knockdown in mice impairs synaptic inhibition by changing the electrochemical potential for chloride and thus increases neuronal excitability 2 3 . Two independent groups provide first evidence now, published in EMBO reports, that rare variants of KCC2 confer an increased risk of epilepsy in men 4 5 .  相似文献   

8.
We reported previously that intravenously administered d-glucose acts in the central nervous system to inhibit gastric motility induced by hypoglycemia in anesthetized rats. The purpose of this study was to determine whether this effect is due to inhibition of dorsal motor nucleus of the vagus (DMV) cholinergic motoneurons, which synapse with postganglionic cholinergic neurons, or to excitation of DMV cholinergic neurons, which synapse with postganglionic nonadrenergic, noncholinergic (NANC) neurons, particularly nitrergic neurons. Three approaches were employed: 1) assessment of the efficacy of d-glucose-induced inhibition of gastric motility in hypoglycemic rats with and without inhibition of nitric oxide synthase [10 mg/kg iv nitro-l-arginine methyl ester (l-NAME)], 2) assessment of the efficacy of intravenous bethanechol (30 mug.kg(-1).min(-1)) to stimulate gastric motility in hypoglycemic rats during the time of d-glucose-induced inhibition of gastric motility, and 3) determination of c-Fos expression in DMV neurons after intravenous d-glucose was administered to normoglycemic rats. Results obtained demonstrated that l-NAME treatment had no effect on d-glucose-induced inhibition of gastric motility; there was no reduction in the efficacy of intravenous bethanechol to increase gastric motility, and c-Fos expression was not induced by d-glucose in DMV neurons that project to the stomach. These findings indicate that excitation of DMV cholinergic motoneurons that synapse with postganglionic NANC neurons is not a significant contributing component of d-glucose-induced inhibition of gastric motility.  相似文献   

9.
Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.  相似文献   

10.
The neuron-specific K-Cl cotransporter (KCC2) is hypothesized to function as an active Cl- extrusion pathway important in postsynaptic inhibition mediated by ligand-gated anion channels, like gamma-aminobutyric acid type A (GABAA) and glycine receptors. To understand better the functional role of KCC2 in the nervous system, we developed polyclonal antibodies to a KCC2 fusion protein and used these antibodies to characterize and localize KCC2 in the rat cerebellum. The antibodies specifically recognized the KCC2 protein which is an approximately 140-kDa glycoprotein detectable only within the central nervous system. The KCC2 protein displayed a robust and punctate distribution in primary cultured retinal amacrine cells known to form exclusively GABAAergic synapses in culture. In immunolocalization studies, KCC2 was absent from axons and glia but was highly expressed at neuronal somata and dendrites, indicating a specific postsynaptic distribution of the protein. In the granule cell layer, KCC2 exhibited a distinct colocalization with the beta2/beta3-subunits of the GABAA receptor at the plasma membrane of granule cell somata and at cerebellar glomeruli. KCC2 lightly labeled the plasma membrane of Purkinje cell somata. Within the molecular layer, KCC2 exhibited a distinctly punctate distribution along dendrites, indicating it may be highly localized at inhibitory synapses along these processes. The distinct postsynaptic localization of KCC2 and its colocalization with GABAA receptor in the cerebellum are consistent with the putative role of KCC2 in neuronal Cl- extrusion and postsynaptic inhibition.  相似文献   

11.
The potassium chloride cotransporter KCC2 plays a major role in the maintenance of transmembrane chloride potential in mature neurons; thus KCC2 activity is critical for hyperpolarizing membrane currents generated upon the activation of gamma-aminobutyric acid type A and glycine (Gly) receptors that underlie fast synaptic inhibition in the adult central nervous system. However, to date an understanding of the cellular mechanism that neurons use to modulate the functional expression of KCC2 remains rudimentary. Using Escherichia coli expression coupled with in vitro kinase assays, we first established that protein kinase C (PKC) can directly phosphorylate serine 940 (Ser(940)) within the C-terminal cytoplasmic domain of KCC2. We further demonstrated that Ser(940) is the major site for PKC-dependent phosphorylation for full-length KCC2 molecules when expressed in HEK-293 cells. Phosphorylation of Ser(940) increased the cell surface stability of KCC2 in this system by decreasing its rate of internalization from the plasma membrane. Coincident phosphorylation of Ser(940) increased the rate of ion transport by KCC2. It was further evident that phosphorylation of endogenous KCC2 in cultured hippocampal neurons is regulated by PKC-dependent activity. Moreover, in keeping with our recombinant studies, enhancing PKC-dependent phosphorylation increased the targeting of KCC2 to the neuronal cell surface. Our studies thus suggest that PKC-dependent phosphorylation of KCC2 may play a central role in modulating both the functional expression of this critical transporter in the brain and the strength of synaptic inhibition.  相似文献   

12.
Previous studies have shown remarkable rostrocaudal selectivity by regenerating motoneurons to the rat serratus anterior (SA) muscle after freezing, crushing, or sectioning the long thoracic (LT) nerve. The LT nerve contains motoneurons from both the sixth and seventh cervical spinal nerves (C6 and C7), with C6 motoneurons as the major source of innervation throughout the muscle, and with C7 motoneurons innervating a larger percentage of muscle fibers caudally than rostrally. To determine if synaptic competition can play a role in neuromuscular topography, both the LT nerve and the branch carrying C6 (rostral) motoneurons to the LT nerve were crushed in newborn rats. This approach provides a temporal advantage to regenerating C7 (caudal) motoneurons. After an initial period during which C7 motoneurons reinnervated a larger proportion of muscle fibers than normal in all SA muscle sectors, C6 motoneurons regained their original proportion of rostral muscle fibers. Caudally, however, C7 motoneurons maintained an expanded territory. With this two-site crush method, the number of C6 motoneurons that reinnervate the SA muscle was significantly decreased from normal, whereas the number of C7 motoneurons remained the same. It is concluded that when C7 motoneurons are given a temporal advantage, synaptic specificity can be altered transiently in rostral muscle sectors and permanently in caudal sectors, and this is correlated with a disproportionate loss of C6 motoneurons. Moreover, this may be an important model for studies of synaptic competition, where terminals destined to be eliminated can be identified beforehand. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
In the immature central nervous system (CNS) GABA-mediated excitation is thought to be an important developmental signal. It depends on a high intracellular chloride concentration ([Cl(-)](i)) of the particular neuron. [Cl(-)](i) is a consequence of chloride transport processes across the plasma membrane. The ongoing expression of the KCl-co-transporter KCC2 eventually lowers [Cl(-)](i) in most CNS neurons and thus renders GABA hyperpolarizing. As NCBE, a sodium-dependent chloride-bicarbonate exchanger, also lowers [Cl(-)](i) and may thus modulate the GABA-response, we analyzed its expression during prenatal mouse development before establishment of the mature KCC2 expression. Indeed, NCBE is expressed very early in CNS neurons and precedes the expression of KCC2. Unlike KCC2, NCBE is expressed in the peripheral nervous system and in non-neuronal tissues as the choroid plexus, the dura, and some epithelia including the acid secreting epithelium of the stomach and the duodenal epithelium.  相似文献   

14.
15.
The neuron-specific potassium-chloride cotransporter 2 (KCC2) plays a crucial role, by controlling chloride extrusion, in the development and maintenance of inhibitory neurotransmission. Although it is now well established that activity-dependent mechanisms can down regulate KCC2 gene expression, the role of post-translational mechanisms in controlling KCC2 expression, specifically at the cell-surface, are poorly understood. We therefore set out to identify the mechanisms and motifs regulating KCC2 endocytosis, one important pathway that may control KCC2 membrane expression. Using a fluorescence-based assay, we show KCC2 when expressed in HEK293 cells is constitutively internalized via a dynamin- and clathrin-dependent pathway. Consistent with this, we demonstrate KCC2 from adult mouse brain associates in vivo with the clathrin-binding adaptor protein-2 (AP-2) complex. Using an endocytosis reporter system, we identify the presence of an autonomous endocytosis motif in the carboxyl cytoplasmic terminus of KCC2. By site-directed mutagenesis we define this novel KCC2 endocytic motif as a non-canonical di-leucine motif, (657)LLXXEE(662). Finally by mutating this motif in the context of full-length KCC2 we demonstrate that this novel KCC2 endocytic motif is essential for the constitutive internalization of KCC2 and for binding to the AP-2 complex. Subsequent sequence analysis reveals this motif is highly conserved between the closely related K(+)/Cl(-) family members that mediate chloride efflux, but absent from the more distant related cotransporters controlling chloride influx. In conclusion, our results indicate constitutive internalization of KCC2 is clathrin-mediated and dependent on the binding of AP-2 to this novel endocytic motif. Furthermore, that this process appears to be an evolutionarily conserved mechanism amongst functionally homologous cotransporters.  相似文献   

16.
Na-K-2Cl cotransporter (NKCC) and K-Cl cotransporter (KCC) play key roles in cell volume regulation and epithelial Cl(-) transport. Reductions in either cell volume or cytosolic Cl(-) concentration ([Cl(-)](i)) stimulate a corrective uptake of KCl and water via NKCC, whereas cell swelling triggers KCl loss via KCC. The dependence of these transporters on volume and [Cl(-)](i) was evaluated in model duck red blood cells. Replacement of [Cl(-)](i) with methanesulfonate elevated the volume set point at which NKCC activates and KCC inactivates. The set point was insensitive to cytosolic ionic strength. Reducing [Cl(-)](i) at a constant driving force for inward NKCC and outward KCC caused the cells to adopt the new set point volume. Phosphopeptide maps of NKCC indicated that activation by cell shrinkage or low [Cl(-)](i) is associated with phosphorylation of a similar constellation of Ser/Thr sites. Like shrinkage, reduction of [Cl(-)](i) accelerated NKCC phosphorylation after abrupt inhibition of the deactivating phosphatase with calyculin A in vivo, whereas [Cl(-)] had no specific effect on dephosphorylation in vitro. Our results indicate that NKCC and KCC are reciprocally regulated by a negative feedback system dually modulated by cell volume and [Cl(-)]. The major effect of Cl(-) on NKCC is exerted through the volume-sensitive kinase that phosphorylates the transport protein.  相似文献   

17.
We studied neuronal pathways from low-threshold muscle (group I, II) and cutaneous afferents (group A(alpha)beta) innervating the tail to motoneurons innervating trunk muscles (m. iliocostalis lumborum and m. obliquus externus abdominus) in 18 spinalized cats. Stimulation of group I muscle afferents produced excitatory postsynaptic potentials or excitatory postsynaptic potentials followed by inhibitory postsynaptic potentials in all motoneurons innervating the m. iliocostalis lumborum which showed effects (32%), and predominantly inhibitory postsynaptic potentials in motoneurons innervating the m. obliquus externus abdominus (47%). Stimulation of group I+II afferents produced significant increases of the incidence of motoneurons showing postsynaptic potentials (the notoneurons innervating the m. iliocostalis lumborum, 87%; the motoneurons innervating the m. obliquus externus abdominus, 82%). The effects of low threshold cutaneous afferents were bilateral, predominantly producing inhibitory postsynaptic potentials in motoneurons innervating both muscles. These results suggest that neuronal pathways from muscle afferents to back muscle motoneurons mainly increase the stiffness of the trunk to maintain its stability, while those to abdominal muscles help to extend the dorsal column by decreasing their activities. The results also indicate that neuronal pathways from cutaneous afferents to trunk motoneurons functionallY disconnect the tail from the trunk.  相似文献   

18.
Rats with type 2 diabetes exhibit decreased oxidative capacity, such as reduced oxidative enzyme activity, low-intensity staining for oxidative enzymes in fibers, and no high-oxidative type IIA fibers, in the skeletal muscle, especially in the soleus muscle. In contrast, there are no data available concerning the oxidative capacity of spinal motoneurons innervating skeletal muscle of rats with type 2 diabetes. This study examined the oxidative capacity of motoneurons innervating the soleus muscle of non-obese rats with type 2 diabetes. In addition, this study examined the effects of mild hyperbaric oxygen at 1.25 atmospheres absolute with 36 % oxygen for 10 weeks on the oxidative capacity of motoneurons innervating the soleus muscle because mild hyperbaric oxygen improves the decreased oxidative capacity of the soleus muscle in non-obese rats with type 2 diabetes. Spinal motoneurons innervating the soleus muscle were identified using nuclear yellow, a retrograde fluorescent neuronal tracer. Thereafter, the cell body sizes and succinate dehydrogenase activity of identified motoneurons were analyzed. Decreased succinate dehydrogenase activity of small-sized alpha motoneurons innervating the soleus muscle was observed in rats with type 2 diabetes. The decreased succinate dehydrogenase activity of these motoneurons was improved by mild hyperbaric oxygen. Therefore, we concluded that rats with type 2 diabetes have decreased oxidative capacity in motoneurons innervating the soleus muscle and this decreased oxidative capacity is improved by mild hyperbaric oxygen.  相似文献   

19.
Neural controlling mechanisms between the digastric (jaw-opening) and masseter (jaw-closing) muscles were studied in the cat. High threshold afferent impulses from the anterior belly of the digastric muscle to masseteric montoneurons in the trigeminal motor nucleus induced an EPSP-IPSP sequence of potentials with long latency, and high threshold afferent impulses from the masseter muscle also exerted a similar effect on digastric motoneurons in the same nucleus innervating the anterior belly of the digastric muscle. These results suggest that reciprocal inhibition via Ia interneurons as observed between the flexor and extensor muscles in the spinal cord does not exist between the digastric and masseter muscles in the cat. However, the respective motoneurons innervating the masseter and digastric muscles receive inputs of early excitation-late inhibition via high threshold afferent nerve fibers from each antagonistic muscle. As such, since EPSPs preceding IPSPs are recognized, these high threshold afferent impulses may exert not only a reciprocal inhibitory effect, but also a synchronous excitatory or inhibitory effect on the antagonistic motoneurons.  相似文献   

20.
Norepinephrine has powerful and diverse modulatory effects on hypoglossal (XII) motoneuron activity, which is important in maintaining airway patency. The objective was to test two hypotheses that alpha2-adrenoceptor-mediated, presynaptic inhibition of glutamatergic inspiratory drive (Selvaratnam SR, Parkis MA, and Funk GD. Brain Res 805: 104-115, 1998) and postsynaptic inhibition of the hyperpolarization-activated inward current (Ih) (Parkis MA and Berger AJ. Brain Res 769: 108-118, 1997) modulate XII inspiratory activity. Nerve and whole cell recordings were applied to rhythmic medullary slice preparations from neonatal rats (postnatal days 0-4) to monitor XII inspiratory burst amplitude and motoneuron properties. Application of an alpha2-receptor agonist (clonidine, 1 mM) to the XII nucleus reduced inspiratory burst amplitude to 71 +/- 3% of control but had no effect on inspiratory synaptic currents. It also reduced the Ih current by approximately 40%, but an Ih current blocker (ZD7288), at concentrations that blocked approximately 80% of Ih, had no effect on inspiratory burst amplitude. The clonidine inhibition was unaffected by the GABAA antagonist (+)bicuculline but attenuated by the alpha2-antagonist rauwolscine and the imidazoline 1 (I1) antagonist efaroxan. The I1 agonist rilmenidine, but not the alpha2-agonist UK14304, inhibited XII output. Clonidine also reduced action potential amplitude or impaired repetitive firing. Although a contribution from alpha2, and in particular I1, receptors remains possible, results demonstrate that 1) noradrenergic modulation of XII inspiratory activity is unlikely to involve alpha2-receptor-mediated presynaptic inhibition of glutamate release or modulation of Ih; 2) inhibition of repetitive firing is a major factor underlying the inhibition of XII output by clonidine; and 3) Ih is present in neonatal XII motoneurons but does not contribute to shaping their inspiratory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号