首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical perturbation by rubbing of the first internode of 11–12 day old plants of Phaseolus vulgaris L. cv. Cherokee wax induces the rapid deposition of callose in the cells of phloem and other tissues. Callose deposition begins immediately after mechanical perturbation, and shows a minor transient peak 1.5 h, and a major peak 6 h later. The callose gradually disappears and is gone after 3 days. If the stems are perturbed every day, the amount of callose decreases by day 2 but then gradually increases again through day 12. Both the top and bottom of the internode produce callose in response to mechanical perturbation. The evolution of ethylene in response to mechanical perturbation begins after 1 h, peaks at 2–3 h and is gone by 5–6 h. A spray of 10−2 M 2-deoxy-D-glucose (DDG) completely blocks stem thickening, callose deposition and ethylene evolution due to mechanical perturbation. DDG at 10−5 to 10−4 M blocks callose production in mechanically perturbed stem segments and increases ethylene evolution from unperturbed stem segments to greater levels than those obtained by mechanically perturbed segments. It is concluded that mechanical perturbation of bean stems tissue induces deposition of callose more rapidly than it induces evolution of ethylene and that DDG can block both processes.  相似文献   

2.
Symplastic intercellular transport in plants is achieved by plasmodesmata (PD). These cytoplasmic channels are well known to interconnect plant cells to facilitate intercellular movement of water, nutrients, and signaling molecules including hormones. However, it is not known whether Al may affect this cell-to-cell transport process, which is a critical feature for roots as organs of nutrient/water uptake. We have microinjected the dye lucifer yellow carbohydrazide into peripheral root cells of an Al-sensitive wheat (Triticum aestivum cv Scout 66) either before or after Al treatment and followed the cell-to-cell dye-coupling through PD. Here we show that the Al-induced root growth inhibition is closely associated with the Al-induced blockage of cell-to-cell dye coupling. Immunofluorescence combined with immuno-electron microscopic techniques using monoclonal antibodies against 1-->3-beta-D-glucan (callose) revealed circumstantial evidence that Al-induced callose deposition at PD may responsible for this blockage of symplastic transport. Use of 2-deoxy-D-glucose, a callose synthesis inhibitor, allowed us to demonstrate that a reduction in callose particles correlated well with the improved dye-coupling and reduced root growth inhibition. While assessing the tissue specificity of this Al effect, comparable responses were obtained from the dye-coupling pattern in tobacco (Nicotiana tabacum) mesophyll cells. Analyses of the Al-induced expression of PD-associated proteins, such as calreticulin and unconventional myosin VIII, showed enhanced fluorescence and co-localizations with callose deposits. These results suggest that Al-signal mediated localized alterations to calcium homeostasis may drive callose formation and PD closure. Our data demonstrate that extracellular Al-induced callose deposition at PD could effectively block symplastic transport and communication in higher plants.  相似文献   

3.
Abstract: Callose, or β-1,3-glucan, is a plant cell wall polysaccharide that occurs endogenously at distinct sites in a variety of tissues. Callose is also formed in response to stress involving cell membrane perturbation. In sections of chemically-fixed nodule tissue of the actinorhizal host, Datisca glomerata, callose was cytochemically detected within the Frankia -infected cortical cells, as an extensive network of wall material surrounding the microsymbiont, but not in uninfected cortical cells. Callose formation was completely inhibited within the infected cells when 2-deoxy-D-glucose, an inhibitor of callose formation, was included in the tissue fixative. The study concludes that callose deposition in the Datisca nodule infected zone is apparently a stress response to tissue preparation and fixation. However, the rapidity and extent of callose deposition primarily at the symbiotic interface in Frankia -infected cells suggests an unusual predisposition to biosynthesis of β-1,3-glucan in the nodule cortical cells that is related to their interaction with the microsymbiont.  相似文献   

4.
Plasmodesmata are often characterised by their size exclusion limit (SEL), which is the molecular weight of the largest dye, introduced by microinjection, that will move from cell to cell. In this study, we investigated whether commonly used techniques for isolation and manipulation of tissues, and microinjection of fluorescent dyes, affected the SEL, and whether any such effects could be ameliorated by inhibiting callose deposition. We examined young root epidermal cells of Arabidopsis thaliana and staminal hair cells of Tradescantia virginiana, two tissues often used in experiments on symplastic transport. Transport in root tips dissected from the main plant body and in stamen hairs removed from the base of the stamen filament was compared with transport in undissected roots and stamen hairs attached to the base of the filament, respectively. Tissues were microinjected with fluorescent dyes (457 Da to > 3 kDa) with or without prior incubation in the callose deposition inhibitors 2-deoxy-D-glucose or aniline blue fluorochrome. In both tissues, dissection reduced the SEL, which was largely prevented by prior incubation in 2-deoxy-D-glucose but not by incubation in aniline blue fluorochrome. Thus, standard methods for tissue preparation can cause sufficient callose deposition to reduce cell-to-cell transport, and this needs to be considered in studies employing microinjection. Introduction of the dyes by pressure injection rather than iontophoresis decreased the SEL in A. thaliana but increased it in T. virginiana, showing that these two injection techniques do not necessarily give identical results and that plasmodesmata in different tissues may respond differently to similar experimental procedures.  相似文献   

5.
Fluorescence staining and morphometrical measurements revealed that callose was a component of newly formed cell plates of symmetrically dividing cells and asymmetrically dividing antheridial mother cells during gibberellic acid-induced antheridiogenesis as well as in walls of young growing cells of Anemia phyllitidis gametophytes. Callose in cell walls forms granulations characteristic of pit fields with plasmodesmata. 2-deoxy-d-glucose (DDG), eliminated callose granulations and reduced its amount estimated by measurements of fluorescence intensity. This effect was accompanied by reduction of antheridia and cell numbers as well as size and atrophy of particular cells and whole gametophytes. It is suggested that inhibition of glucose metabolism and/or signalling, might decrease callose synthesis in A. phyllitidis gametophytes leading to its elimination from cell plates of dividing cells and from walls of differentiating ones as well as from plasmodesmata resulting in inhibition of cytokinesis, cell growth and disruption of the intercellular communication system, thus disturbing developmental programs and leading to cell death.  相似文献   

6.
Li W  Zhao Y  Liu C  Yao G  Wu S  Hou C  Zhang M  Wang D 《Plant cell reports》2012,31(5):905-916
Callose is a β-l,3-glucan with diverse roles in the viral pathogenesis of plants. It is widely believed that the deposition of callose and hypersensitive reaction (HR) are critical defence responses of host plants against viral infection. However, the sequence of these two events and their resistance mechanisms are unclear. By exploiting a point inoculation approach combined with aniline blue staining, immuno-electron microscopy and external sphincters staining with tannic acid, we systematically investigated the possible roles of callose deposition during viral infection in soybean. In the incompatible combination, callose deposition at the plasmodesmata (PD) was clearly visible at the sites of inoculation but viral RNA of coat protein (CP-RNA) was not detected by RT-PCR in the leaf above the inoculated one (the upper leaf). In the compatible combination, however, callose deposition at PD was not detected at the site of infection but the viral CP-RNA was detected by RT-PCR in the upper leaf. We also found that in the incompatible combination the fluorescence due to callose formation at the inoculation point disappeared following the injection of 2-deoxy-d-glucose (DDG, an inhibitor of callose synthesis). At same time, in the incompatible combination, necrosis was observed and the viral CP-RNA was detected by RT-PCR in the upper leaf and HR characteristics were evident at the inoculation sites. These results show that, during the defensive response of soybean to viral infection, callose deposition at PD is mainly responsible for restricting the movement of the virus between cells and it occurs prior to the HR response.  相似文献   

7.
Jaffe MJ  Leopold AC 《Planta》1984,161(1):20-26
In etiolated corn (Zea mays L.) and etiolated pea (Pisum sativum L.) seedlings, a gravitropic stimulation induces the deposition of callose. In the corn coleoptiles this occurs within 5 min of gravity stimulation, and prior to the beginning of curvature. Both gravitropic curvature and callose deposition reach their maxima by 12 h. Within the first 2 h more callose is deposited on the upper (concave) side, but after 2–3 h, this deposition pattern is reversed. An inhibitor of protein glycosylation, 2-deoxy-d-glucose (DDG), inhibits callose production and considerably retards gravitropic bending in both species of plants. Mannose can relieve the inhibition of gravitropic bending by DDG. The pea mutant Ageotropum, which does not respond to gravity when etiolated, also fails to produce callose in response to a gravitic stimulus. These correlations indicate that callose deposition may be a biochemical component of gravitropism in plant shoots.Abbreviation DDG 2-deoxy-d-glucose  相似文献   

8.
Solutions to some key problems in the relationships between the structure and functions of plasmodesmata, a component of the plant intercellular communication system, are proposed on the basis of the theory of osmotic flows through porous membranes. The theory accounts for structural characteristics of plasmodesmata, such as their dimension, shape, and length. It considers the steric and adsorption potentials of the solution–cell wall interaction and estimates water and solute (e.g., sucrose) flows under the sustained difference of osmotic pressures at the ends of plasmodesmata. The theory predicts that the water flow through plasmodesmata increases with the widening of the neck constriction and reaches its peak when its size is equal to the diameter of the solute molecule. The water-flow direction was found to depend on the opening of the annulus in neck constrictions at negative adsorption potentials of the plasmodesmata channel walls. Taking into account the presence of sphincters in the neck constrictions, our data suggest the role of plasmodesmata as a modulator of osmotic water fluxes in plants.  相似文献   

9.
Summary The fine structure of plasmodesmata in a number of plant tissues has been examined following fixation in glutaraldehyde. The structure of plasmodesmata is not constant. Variations occur between species, tissues and between different cellular situations in a single tissue. The nature of these variations is described and related to current theories of the formation and function of plasmodesmata. Evidence is presented that the young cell wall after division contains a large number of plasmodesmata, probably functionally and structurally identical, and that the development process involves characteristic modifications both to the distribution of plasmodesmata within the wall, and to the structure of individual plasmodesmata. The probable importance of the endoplasmic reticulum is stressed in relation to the formation and functioning of plasmodesmata.  相似文献   

10.
It has been known for more than a century that sieve plates in the phloem in plants contain callose, a β-1,3-glucan. However, the genes responsible for callose deposition in this subcellular location have not been identified. In this paper we examine callose deposition patterns in T-DNA insertion mutants (cs7) of the Callose Synthase 7 (CalS7) gene. We demonstrated here that the CalS7 gene is expressed specifically in the phloem of vascular tissues. Callose deposition in the phloem, especially in the sieve elements, was greatly reduced in cs7 mutants. Ultrastructural analysis of developing sieve elements revealed that callose failed to accumulate in the plasmodesmata of incipient sieve plates at the early perforation stage of phloem development, resulting in the formation of sieve plates with fewer pores. In wild-type Arabidopsis plants, callose is present as a constituent polysaccharide in the phloem of the stem, and its accumulation can also be induced by wounding. Callose accumulation in both conditions was eliminated in mature sieve plates of cs7 mutants. These results demonstrate that CalS7 is a phloem-specific callose synthase gene, and is responsible for callose deposition in developing sieve elements during phloem formation and in mature phloem induced by wounding. The mutant plants exhibited moderate reduction in seedling height and produced aberrant pollen grains and short siliques with aborted embryos, suggesting that CalS7 also plays a role in plant growth and reproduction.  相似文献   

11.
Aluminum (Al)-induced damage to leaves and roots of two Al-resistant (cv. Atlas 66, experimental line PT741) and two Al-sensitive (cv. Scout 66, cv. Katepwa) lines ofTriticum aestivum L. was estimated using the deposition of (1, 3)--glucans (callose) as a marker for injury. Two-day-old seedlings were grown for forty hours in nutrient solutions with or without added Al, and callose deposition was quantified by spectrofluorometry (0–1000 µM Al) and localized by fluorescence microscopy (0 and 400 µM Al). Results suggested that Al caused little damage to leaves. No callose was observed in leaves with up to 400 µM Al treatment. In contrast, root callose concentration increased with Al treatment, especially in the Al-sensitive lines. At 400 µM Al, root callose concentration of Al-sensitive Scout 66 was nearly four-fold that of Al-resistant Atlas 66. After Al treatment, large callose deposits were observed in the root cap, epidermis and outer cortex of root tips of Scout 66, but not Atlas 66. The identity of callose was confirmed by a reduced fluorescence in Al-treated roots: firstly, after adding an inhibitor of callose synthesis (2-deoxy-D-glucose) to the nutrient solution, and secondly, after incubating root sections with the callosedegrading enzyme -D-glucoside glucohydrolase [EC 3.2.1.21]. Root callose deposition may be a good marker for Al-induced injury due to its early detection by spectrofluorometry and its close association with stress perception.Abbreviations DDG 2-deoxy-D-glucose - PAS periodic acid - Schiffs reagent - PE pachyman equivalents  相似文献   

12.
Specialized structures were observed in the sleeve of wall surrounding plasmodesmata in the rhizome tips of Nephrolepis exaltata and root tips of Spirodela oligorrhiza, Azolla pinnata, and Hordeum vulgare. Material was prepared either by fixation in glutaraldehyde/paraformaldehyde/tannic acid followed by cell wall digestion, or by rapid freezing and freeze substitution, prior to resin embedding. Two structures were identified: rings of electron-opaque material encircling the neck region of plasmodesmata and electron-opaque helices spiraling around the length of plasmodesmata. In some instances, particle-like subunits were observed in the electron-opaque rings. The possible role of these structures as external sphincters involved in the control of permeability of plasmodesmata is discussed.  相似文献   

13.
Biology of callose (β-1,3-glucan) turnover at plasmodesmata   总被引:1,自引:0,他引:1  
Zavaliev R  Ueki S  Epel BL  Citovsky V 《Protoplasma》2011,248(1):117-130
  相似文献   

14.
Radford JE  White RG 《Protoplasma》2011,248(1):205-216
Actin and myosin are components of plasmodesmata, the cytoplasmic channels between plant cells, but their role in regulating these channels is unclear. Here, we investigated the role of myosin in regulating plasmodesmata in a well-studied, simple system comprising single filaments of cells which form stamen hairs in Tradescantia virginiana flowers. Effects of myosin inhibitors were assessed by analysing cell-to-cell movement of fluorescent tracers microinjected into treated cells. Incubation in the myosin inhibitor, 2,3-butanedione monoxime (BDM) or injection of anti-myosin antibodies increased cell–cell transport of fluorescent dextrans, while treatment with the myosin inhibitor N-ethylmaleimide (NEM) decreased cell–cell transport. Pretreatment with the callose synthesis inhibitor, deoxy-d-glucose (DDG), enhanced transport induced by BDM treatment or injection of myosin antibodies but did not relieve NEM-induced reduction in transport. In contrast to the myosin inhibitors, cell-to-cell transport was unaffected by treatment with the actin polymerisation inhibitor, latrunculin B, after controlling for callose synthesis with DDG. Transport was increased following azide treatment, and reduced after injection of ATP, as in previous studies. We propose that myosin detachment from actin, induced by BDM, opens T. virginiana plasmodesmata whereas the firm attachment of myosin to actin, promoted by NEM, closes them.  相似文献   

15.

Background and Aims

Photosynthesis is one of the processes most susceptible to low-temperature inhibition in maize, a tropical C4 crop not yet fully adapted to a temperate climate. C4 photosynthesis relies on symplasmic exchange of large amounts of photosynthetic intermediates between Kranz mesophyll (KMS) and bundle sheath (BS) cells. The aim of this study was to test the hypothesis that the slowing of maize photosynthesis at low temperature is related to ultrastructural changes in the plasmodesmata between KM and BS as well as BS and vascular parenchyma (VP) cells.

Methods

Chilling-tolerant (CT) KW 1074 and chilling-sensitive (CS) CM 109 maize (Zea mays) lines were studied. The effect of moderate chilling (14 °C) on the rate of photosynthesis, photosynthate transport kinetics, and the ultrastructure of plasmodesmata linking the KMS, BS and VP cells were analysed. Additionally, the accumulation of callose and calreticulin was studied by the immunogold method.

Key Results

Chilling inhibited photosynthesis, photosynthate transfer to the phloem and photosynthate export from leaves in both lines. This inhibition was reversible upon cessation of chilling in the CT line but irreversible in the CS line. Simultaneously to physiological changes, chilling induced swelling of the sphincters of plasmodesmata linking KMS and BS cells and a decreased lumen of the cytoplasmic sleeve of plasmodesmata at the BS/VP interface in the CS line but not in the CT line. Accumulation of calreticulin, which occurred near the neck region of the closed plasmodesmata was observed after just 4 h of chilling and over-accumulation of callose at the KMS/BS and BS/VP interfaces occurred after 28 h of chilling.

Conclusions

Stronger chilling sensitivity of the CM 109 maize line compared with the KW 1074 line, shown by decreased photosynthesis and assimilate export from a leaf, is related to changes in the ultrastructure of leaf plasmodesmata at low temperature. The chain of reactions to chilling is likely to include calreticulin action resulting in rapid and efficient closure of the plasmodesmata at both KMS/BS and BS/VP interfaces. Callose deposition in a leaf was a secondary effect of chilling.  相似文献   

16.
Summary Onion (Allium cepa L. cv. Ebeneezer) roots from vermiculite culture were examined with transmission electron microscopy to detect the plasmodesmata in all tissues. In young root regions, plasmodesmata linked all living cells together in all directions. In old zones, the plasmodesmatal connections of the endodermis to its neighbor tissues were not interrupted by later suberin lamella and cellulosic wall deposition. Moreover, plasmodesmata in the fully mature endodermis usually exhibited a large central cavity. In the exodermis, however, upon deposition of suberin lamellae in long cells, all plasmodesmata that initially linked them to their adjacent cells were severed. Afterwards, the long cells lost the capability of forming wound pit callose and their protoplasts began to degenerate. The mature exodermal layer was symplastically bridged to its neighbors only by the short (passage) cells that lacked suberin lamellae. Compared to the long cells, the short cells not only had thicker cytoplasm surrounding their central vacuoles but also a higher density of mitochondria and rough endoplasmic reticulum, consistent with an active involvement in the transport processes of the root. The above results were obtained by an improved, extended transmission electron microscopy procedure devised to analyze plasmodesmata in cells with suberin lamellae. By prefixing root tissues in glutaraldehyde and acrolein, all cells were well preserved. Postfixation was carried out in osmium tetroxide at a low concentration (0.5%). Following dehydration in acetone and transfer to propylene oxide, infiltration with Spurr's resin was accomplished by incubating samples in the accelerator-free mixture for 4 days, then infiltrating samples in the accelerator-amended mixture for additional 4 days.Abbreviations IE immature exodermis - ME mature exodermis - TBO toluidine blue O - TEM transmission electron microscopy  相似文献   

17.
Faulkner C  Maule A 《Protoplasma》2011,248(1):27-38
The proteinaceous composition of plasmodesmata (PDs) is a puzzle for which pieces have proven particularly difficult to find. This review describes the numerous approaches that have been undertaken in the search for PD-associated proteins and what each has contributed to our understanding of PD structure and function. These approaches include immunolocalisation of known proteins, proteomic characterisation of PD-enriched tissue fractions, high-throughput screens of random cDNAs and mutant screens. In addition to components of the cytoskeleton, novel proteins with predicted or unknown functions have been identified. Many of these have properties that relate to the symplastic and/or apoplastic faces of the plasma membrane. Mutant screens have identified proteins involved in previously unconnected cell pathways such as ROS signalling, implicating ROS in PD formation and regulation. Proteins associated with callose synthesis and degradation have also been identified and characterised, providing considerable weight to the hypothesis that callose deposition around the neck of the PD pore is one mechanism by which the PD aperture is regulated. The techniques described in this review have been developed such that it is to be expected that a considerable number of new PD proteins will be identified in coming years to fill in further detail of the structure and functional mechanisms of these dynamic pores.  相似文献   

18.
Fine structure of plasmodesmata in mature leaves of sugarcane   总被引:1,自引:0,他引:1  
The fine structure of plasmodesmata in vascular bundles and contiguous tissues of mature leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) was studied with the transmission electron microscope. Tissues were fixed in glutaraldehyde, with and without the addition of tannic acid, and postfixed in OsO4. The results indicate that the fine structure of plasmodesmata in sugarcane differs among various cell combinations in a cell-specific manner, but that three basic structural variations can be recognized among plasmodesmata in the mature leaf: 1) Plasmodesmata between mesophyll cells. These plasmodesmata possess amorphous, electron-opaque structures, termed sphincters, that extend from plasma membrane to desmotubule near the orifices of the plasmodesmata. The cytoplasmic sleeve is filled by the sphincters where they occur; elsewhere it is open and entirely free of particulate or spokelike components. The desmotubule is tightly constricted and has no lumen within the sphincters, but between the sphincters it is a convoluted tubule with an open lumen. 2) Plasmodesmata that traverse the walls of chlorenchymatous bundle-sheath cells and mestome-sheath cells. In addition to the presence of sphincters, these plasmodesmata are modified by the presence of suberin lamellae in the walls. Although the plasmodesmata are quite narrow and the lumens of the desmotubules are constricted where they traverse the suberin lamellae, the cytoplasmic sleeves are still discernible and appear to contain substructural components there. 3) Plasmodesmata between parenchymatous cells of the vascular bundles. These plasmodesmata strongly resemble those found in the roots of Azolla, in that their desmotubules are closed for their entire length and their cytoplasmic sleeves appear to contain substructural components for their entire length. The structural variations exhibited by the plasmodesmata of the sugarcane leaf are compared with those proposed for a widely-adopted model of plasmodesmatal structure.Abbreviation ER endoplasmic reticulum This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

19.
Ruan YL  Xu SM  White R  Furbank RT 《Plant physiology》2004,136(4):4104-4113
Cotton fibers are single-celled hairs that elongate to several centimeters long from the seed coat epidermis of the tetraploid species (Gossypium hirsutum and Gossypium barbadense). Thus, cotton fiber is a unique system to study the mechanisms of rapid cell expansion. Previous work has shown a transient closure of plasmodesmata during fiber elongation (Y.-L. Ruan, D.J. Llewellyn, R.T. Furbank [2001] Plant Cell 13: 47-60). To examine the importance of this closure in fiber elongation, we compared the duration of the plasmodesmata closure among different cotton genotypes differing in fiber length. Confocal imaging of the membrane-impermeant fluorescent molecule carboxyfluorescein revealed a genotypic difference in the duration of the plasmodesmata closure that positively correlates with fiber length among three tetraploid genotypes and two diploid progenitors. In all cases, the closure occurred at the rapid phase of elongation. Aniline blue staining and immunolocalization studies showed that callose deposition and degradation at the fiber base correlates with the timing of plasmodesmata closure and reopening, respectively. Northern analyses showed that the expression of a fiber-specific beta-1,3-glucanase gene, GhGluc1, was undetectable when callose was deposited at the fiber base but became evident at the time of callose degradation. Genotypically, the level of GhGluc1 expression was high in the short fiber genotype and weak in the intermediate and long fiber genotypes. The data provide genotypic and developmental evidence that (1) plasmodesmata closure appears to play an important role in elongating cotton fibers, (2) callose deposition and degradation may be involved in the plasmodesmata closure and reopening, respectively, and (3) the expression of GhGluc1 could play a role in this process by degrading callose, thus opening the plasmodesmata.  相似文献   

20.
Localization of a centrin-like protein to higher plant plasmodesmata.   总被引:5,自引:0,他引:5  
Antibodies against centrin, the ubiquitous calcium-binding contractile protein, recognized a 17 kDa protein in extracts of onion root tips and cauliflower florets. Using immunofluorescence microscopy, anti-centrin antibodies were localized to the developing cell plate of onion and cauliflower root tip cells. In cauliflower florets, these antibodies localized to the walls in a punctate manner, consistent with the distribution of plasmodesmata as shown by colocalization with callose. Anti-centrin antibodies were localized to plasmodesmata of onion root tips and cauliflower florets with immunogold electron microscopy. Furthermore, this label was concentrated around the necks of plasmodesmata. In contrast, an antibody against calmodulin, which is a closely related calcium-binding protein, did not label plasmodesmata. We propose that centrin is a component of calcium-sensitive contractile nanofilaments in the neck region of plasmodesmata and facilitates the calcium-induced regulation of intercellular transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号