首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
原核生物同一种群的每个细胞都是和外界环境直接接触的,它们主要通过开启或关闭某些基因的表达来适应环境条件。所以,环境因子往往是调控的效应因子,必须严格调控转录来确保细胞对环境改变做出有效且充分的反应。原核生物基因的表达受多种因素的调控,而对于大多数细菌来说,调控基因表达的关键步骤是启动子识别和RNA聚合酶启动转录。在细菌的细胞中,可以通过调节RNA聚合酶的活性以及改变RNA聚合酶对启动子的结合来优化基因的转录过程以适应不同环境变化。总结了目前已发现的参与细菌细胞转录调节的各类因子,从这些因子对启动子的作用、RNA聚合酶的作用以及两者的相互作用等方面阐述它们调控基因表达的分子机制。总结多种基因调控的作用,加深对转录起始过程的认识,希望能对未来调控转录起始过程来实现目标基因的高效表达和不利基因的抑制表达提供思路,为以后的工业菌株改造提供依据。  相似文献   

3.
4.
Structural basis of eukaryotic gene transcription   总被引:7,自引:0,他引:7  
  相似文献   

5.
6.
7.
8.
9.
Dengue virus RNA-dependent RNA polymerase specifically binds to the viral genome by interacting with a promoter element known as stem-loop A (SLA). Although a great deal has been learned in recent years about the function of this promoter in dengue virus-infected cells, the molecular details that explain how the SLA interacts with the polymerase to promote viral RNA synthesis remain poorly understood. Using RNA binding and polymerase activity assays, we defined two elements of the SLA that are involved in polymerase interaction and RNA synthesis. Mutations at the top of the SLA resulted in RNAs that retained the ability to bind the polymerase but impaired promoter-dependent RNA synthesis. These results indicate that protein binding to the SLA is not sufficient to induce polymerase activity and that specific nucleotides of the SLA are necessary to render an active polymerase-promoter complex for RNA synthesis. We also report that protein binding to the viral RNA induces conformational changes downstream of the promoter element. Furthermore, we found that structured RNA elements at the 3' end of the template repress dengue virus polymerase activity in the context of a fully active SLA promoter. Using assays to evaluate initiation of RNA synthesis at the viral 3'-UTR, we found that the RNA-RNA interaction mediated by 5'-3'-hybridization was able to release the silencing effect of the 3'-stem-loop structure. We propose that the long range RNA-RNA interactions in the viral genome play multiple roles during RNA synthesis. Together, we provide new molecular details about the promoter-dependent dengue virus RNA polymerase activity.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
细菌中cAMP受体蛋白(CRP)对依赖其的启动子的转录起始调控机制及其他调控作用已经得到详细深入的研究。CRP由cAMP激活,并与之结合形成CRP-cAMP复合体,后者与启动子上的特异位点结合,然后与RNA聚合酶相互作用,增强其与启动子的结合能力,从而起始转录。CRP-cAMP复合体与启动子不同的结合方式决定了CRP-9RNA聚合酶之间存在多种不同的作用方式。除了在碳源代谢方面的重要调控作用,CRP对细菌其他代谢途径也有调控作用。  相似文献   

18.
The kinetics of interaction of Esigma(70) RNA polymerase (R) with the lambdaP(R) promoter (P) were investigated by filter binding over a broad range of temperatures (7.3-42 degrees C) and concentrations of RNA polymerase (1-123 nM) in large excess over promoter DNA. Under all conditions examined, the kinetics of formation of competitor-resistant complexes (I(2), RP(o)) are single-exponential with first order rate constant beta(CR). Interpretation of the polymerase concentration dependence of beta(CR) in terms of the three step mechanism of open complex formation yields the equilibrium constant K(1) for formation of the first kinetically significant intermediate (I(1)) and the forward rate constant (k(2)) for the conformational change converting I(1) to the second kinetically significant intermediate I(2): R + P-->(K(1))<--I(1)(k(2))-->I(2). Use of rapid quench mixing allows K(1) and k(2) to be individually determined over the entire temperature range investigated, previously not possible at this promoter using manual mixing. Given the large (>60 bp) interface formed in I(1), its relatively small binding constant K(1) at 37 degrees C at this [salt] (approximately 6 x 10(6) M(-1)) strongly argues that binding free energy is used to drive large-scale structural changes in polymerase and/or promoter DNA or other coupled processes. Evidence for coupling of protein folding is provided by the large and negative activation heat capacity of k(a)[DeltaC(o,++)(a)= -1.5(+/-0.2)kcal K(-1)], now shown to originate directly from formation of I(1) [DeltaC(o)(1)= -1.4(+/-0.3)kcal K(-1)] rather than from the formation of I(2) as previously proposed. The isomerization I(1)-->I(2) exhibits relatively slow kinetics and has a very large temperature-independent Arrhenius activation energy [E(act)(2)= 34(+/-2)kcal]. This kinetic signature suggests that formation of the transition state (I(1)-I(2)++ involves large conformational changes dominated by changes in the exposure of polar and/or charged surface to water. Structural and biochemical data lead to the following hypotheses to interpret these results. We propose that formation of I(1) involves coupled folding of unstructured regions of polymerase (beta, beta' and sigma(70)) and bending of promoter DNA (in the -10 region). We propose that interactions with region 2 of sigma(70) and possibly domain 1 of beta induce a kink at the -11/-12 base pairs of the lambdaP(R) promoter which places the downstream DNA (-5 to +20) in the jaws of the beta and beta' subunits of polymerase in I(1). These early interactions of beta and beta' with the DNA downstream of position -5 trigger jaw closing (with coupled folding) and subsequent steps of DNA opening.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号