首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. When heat-synchronized cultures of Tetrahymena pyriformis , amicronucleate strain GL, were examined by electron microscopy, intramacronuclear microtubules were observed in dividing cells. These tubules have a diameter of 180–230 A and occur either singly or packed together in bundles. They are predominantly associated with outpocketings and invaginations of the nucleus. Sections as well as negatively stained preparations of isolated macronuclear envelopes indicate that the microtubules are inserted at the inner nuclear membrane.
The findings suggest that microtubules of the spindle type participate in the process of macronuclear division.  相似文献   

2.
Mitosis of the free-living flagellate Bodo saltans of the Ps+ strain characterized by the presence of prokaryotic cytobionts in the perinuclear space was studied. Division of B. saltans Ps+ nuclei occurs by the closed intranuclear type of mitosis without condensation of chromosomes. At the initial stages of nuclear division, consecutive anlage of two spatially separated microtubular spindles begins. The spindle containing about 20 microtubules appears first, then, at an angle of 30–40° to it, the second spindle containing half as many microtubules is formed. The microtubules of the first spindle are associated with 4 pairs of kinetochores, the microtubules of the second one—with 2 pairs. The kinetochores of B. saltans Ps+ have a pronounced laminar structure. Both spindles rest with their ends directly on the internal membrane of the nuclear envelope and form 4 well-pronounced poles. The equatorial phase of mitosis in B. saltans Ps+ is not revealed. The divergence of sister kinetochores towards the poles occurs independently in each spindle. At the elongation phase of mitosis, the poles of both spindles are united in pairs to form a single bipolar structure composed of two loose bundles of microtubules. At this stage of nuclear division, the kinetochores reach the poles of the subspindles and cease to be visible. At subsequent nuclear division stages the nucleus acquires a dumbbell shape. During the reorganization phase the sister nuclei are separated. In the perinuclear space of the interphase nuclei of B. saltans Ps+, 1–2 prokaryotic cytobionts are present. In the course of mitosis, these organisms divide intensively, such that their number can reach 20 and more per nucleus. During separation of sister nuclei, the “excessive” cytobionts are released into the cytoplasmic vacuoles formed by external membranes of the nuclear envelope.  相似文献   

3.
Syndinium and related organisms which parasitize a number of invertebrates have been classified with dinoflagellates on the basis of the morphology of their zoospores. We demonstrate here that with respect to chromosome structure and chemistry as well as nuclear division, they differ fundamentally from free-living dinoflagellates. Alkaline fast green staining indicates the presence of basic proteins in Syndinium chromosomes. Chromatin fibers are about 30 Å thick and do not show the arrangement characteristic of dinoflagellate chromosomes. The four V-shaped chromosomes are permanently attached at their apexes to a specific area of the nuclear membrane through a kinetochore-like trilaminar disk inserted into an opening of the membrane. Microtubules connect the outer dense layer of each kinetochore to the bases of the two centrioles located in a pocket-shaped invagination of the nuclear envelope. During division kinetochores duplicate, and each sister kinetochore becomes attached to a different centriole. As the centrioles move apart, apparently pushed by a bundle of elongating microtubules (central spindle), the daughter chromosomes are passively pulled apart. During the process of elongation of the central spindle, the cytoplasmic groove on the nuclear surface which contains the central spindle sinks into the nuclear space and is transformed into a cylindrical cytoplasmic channel. A constriction in the persisting nuclear envelope leads to the formation of two daughter nuclei.  相似文献   

4.
Summary The three-dimensional ultrastructural organization of the mitotic apparatus ofDimastigella mimosa was studied by computer-aided, serial-section reconstruction. The nuclear envelope remains intact during nuclear division. During mitosis, chromosomes do not condense, whereas intranuclear microtubules are found in close association with six pairs of kinetochores. No discrete microtubule-organizing centers, except kinetochore pairs, could be found within the nucleus. The intranuclear microtubules form six separate bundles oriented at different angles to each other. Each bundle contains up to 8 tightly packed microtubules which push the daughter kinetochores apart. At late anaphase only, midzones of these bundles align along an extended interzonal spindle within the narrow isthmus between segregating progeny nuclei. The nuclear division inD. mimosa can be described as closed intranuclear mitosis with acentric and separate microtubular bundles and weakly condensed chromosomes.Abbreviation MTOC microtubule-organizing center  相似文献   

5.
Mesosomes in Escherichia coli   总被引:14,自引:10,他引:4       下载免费PDF全文
When Escherichia coli was grown in a synthetic medium and fixed with osmium, sections of the cells revealed clearly defined mesosomes. These mesosomes appeared to develop, in dividing cells, as coiled infoldings of the cytoplasmic membrane. Mature mesosomes formed a link between the cytoplasmic membrane and the nucleus of the cell. The arrangement of the mesosomes in dividing cells led to the hypothesis that division of the nucleus in these cells is accomplished by two separate polar mesosomes. One mesosome is derived from the parent cell and is present at one pole of the daughter cell. The other is freshly synthesized at or near the newly forming pole of the daughter cell. While the old mesosome remains attached to the chromosome received from the parent cell, the newly synthesized mesosome becomes attached to and initiates replication of the new chromosome. As the cell grows and elongates, the two mesosomes, attached to their respective chromosomes move apart, thus effecting nuclear division.  相似文献   

6.
P Kovács  G Csaba  O T?r?k 《Histochemistry》1990,93(4):429-431
Binding of insulin and thyrotropic hormone (TSH) to the nuclear membrane of Chang liver cells was demonstrated by qualitative and quantitative cytofluorimetry, which failed to substantiate a similar binding affinity for BSA. It appears that in the dividing cell the binding structures (receptors) of the nuclear membrane migrate in the cytoplasm together with the chromosomes by the end of the prophase and become reorganized in the nucleus around the telophase. The fluorescence which indicated binding also appeared in the midbody region during division of the two daughter cells. These experimental observations strongly suggest that, after cell division, only part of the nuclear membrane's receptor complement has to be resynthesized in the daughter cells, because the receptor number required by a single cell is conserved in cytoplasmic membrane details of nuclear membrane origin.  相似文献   

7.
Summary Binding of insulin and thyrotropic hormone (TSH) to the nuclear membrane of Chang liver cells was demonstrated by qualitative and quantitative cytofluorimetry, which failed to substantiate a similar binding affinity for BSA. It appears that in the dividing cell the binding structures (receptors) of the nuclear membrane migrate in the cytoplasm together with the chromosomes by the end of the prophase and become reorganized in the nucleus around the telophase. The fluorescence which indicated binding also appeared in the midbody region during division of the two daughter cells. These experimental observations strongly suggest that, after cell division, only part of the nuclear membrane's receptor complement has to be resynthesized in the daughter cells, because the receptor number required by a single cell is conserved in cytoplasmic membrane details of nuclear membrane origin.  相似文献   

8.
The fine structure of cells of Saccharomyces cerevisiae engaged in the formation of ascospores was studied in electron micrographs of ultrathin sections. Although the mode of the first reduction division could not be clearly determined, the second nuclear division appeared to proceed in a manner similar to that observed previously during vegetative division. That is, division by constriction of the existing nucleus occurs without dissolution of the nuclear membrane and without involvement of discrete chromosomes. Variously shaped areas of low electron density were discerned within the nucleoplasm; these had not been previously seen in the vegetative nucleus. The significance of this nuclear differentiation and its possible similarity to nuclear structures reported in bacteria and an imperfect fungus are discussed. The cytoplasmic membrane appears first in the developing ascospore. The formation of an outer coat and an inner coat then follows. The cytoplasmic vacuole was observed not to be incorporated into the spore. An unusual intracytoplasmic membrane was observed in the spore and appeared to be at least temporarily continuous with the nuclear membrane.  相似文献   

9.
Sperm from the crayfish, Pacifastacus leniusculus, resemble other reptantian sperm in that they are composed of an acrosome, subacrosomal region, nucleus, membrane lamellar complex, and spikes which radiate from the nuclear compartment. The acrosome (PAS positive vesicle) can be subdivided into three regions: the apical cap, crystalline inner acrosomal material, and outer acrosomal material which is homogeneous except for a peripheral electron dense band. The nucleus contains uncondensed chromatin and bundles of microtubules which project into the spikes. The orientation of the microtubule bundles relative to the nuclear envelope near the base of the subacrosomal region suggests that the nuclear envelope may function in the organization of the spike microtubules.  相似文献   

10.
Summary In the bullfrog, the meninges surrounding the central nervous system include an arachnoid mater that contains layers of cells with abundant intermediate filaments (IFs) having unique organizational characteristics. This membrane contains an inner lamina of cells that resemble fibroblasts and an outer lamina of flattened cells that are almost filled with IFs. The IFs of the outer arachnoid are arranged in compact, arching bundles that lie parallel to the outer surface of the central nervous system. Thus, sections cut tangentially to the membrane reveal bending of filament bundles, whereas transverse sections do not. In some cells bordering the subdural space, bundles of filaments are organized into highly-ordered spiral arrays. Attachments to the numerous desmosomes and, apparently, to the nuclear envelope suggest anchoring of cytoplasmic structures by the IF system. Microtubules occur primarily near the plasma membrane and the nucleus. Numerous caveolae also are associated with the plasma membrane.The unusual abundance, organization, and cytoplasmic relations of IFs in the bullfrog arachnoid suggest that this membrane may serve as an important model for study of fundamental cytoskeletal relations and function.  相似文献   

11.
The morphology of budding and conjugating cells and associated changes in microtubules and actin distribution were studied in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) by phase-contrast and fluorescence microscopy. The non-budding interphase cell showed a nucleus situated in the central position and bundles of cytoplasmic microtubules either stretching parallel to the longitudinal cell axis or randomly distributed in the cell; none of these, however, had a character of astral microtubules. During mitosis, the nucleus divided in the daughter cell, cytoplasmic microtubules disappeared and were replaced by a spindle. The cytoplasmic microtubules reappeared after mitosis had finished. Actin patches were present both in the bud and the mother cell. Cells were induced to mate by transfer to ribitol- containing medium without nitrogen. Partner cells fused by conjugation projections where actin patches had been accumulated. Cell fusion resulted in a zygote that produced a basidium with parallel bundles of microtubules extended along its axis and with actin patches concentrated at the apex. The fused nucleus moved towards the tip of the basidium. During this movement, nuclear division was taking place; the nuclei were eventually distributed to basidiospores. Mitochondria appeared as vesicles of various sizes; their large amounts were found, often lying adjacent to microtubules, in the subcortical cytoplasm of both vegetative cells and zygotes.  相似文献   

12.
Summary Light microscopical observations on the cell division of the small dinoflagellate Woloszynskia micra are correlated for the first time with an electron microscopical study. In prophase, whilst the nucleus enlarges and becomes pearshaped, the chromosomes divide to give pairs of chromatids. This process starts at one end and works to the other giving Y- and V-shaped chromosomes as it occurs. Cytoplasmic invaginations pass through the nucleus and by the end of prophase these are seen to contain a number of microtubules of about 180 Å diameter. There is no connection between the microtubules in the nuclear in vagination and either the flagellar bases or the chromosomes. At anaphase the nucleus expands laterally and the sister chromatids move towards opposite ends. The cell hypocone is now partially divided and the two longitudinal flagella well separate. The nucleus completes its division into two daughter nuclei and for a time portions of the cytoplasmic invaginations remain visible. Cell cleavage is completed by the division of the epicone. The nuclear membrane remains intact throughout division and the nucleolus does not break down.The mitotic division in this organism, which is unusual in comparison with the mitosis of higher organisms, is discussed in the light of other types of mitosis which have been reported and of earlier light microscopical observations on dinoflagellates.  相似文献   

13.
14.
Summary Mitosis and cytokinesis have been studied in the green algaZygnema C. A. Agardh using interference-contrast light and transmission electron microscopy. At prophase, the nucleolus disintegrates and numerous extranuclear microtubules near the nuclear periphery penetrate into the nucleoplasm. When aligned in the equatorial plane of the open metaphase spindle the chromosomes are coated with persistent nucleolar fragments. At anaphase, vacuoles intrude into the interzonal spindle region and seemingly contribute to the anaphase movement of the chromosomes. At telophase, the spindle is persistent and the reforming nuclei are separated by cytoplasmic strands containing microtubules, interspersed with vacuoles. Extensive bundles of microtubules, dictyosomes and parallel, slightly inflated ER-profiles extend from the poles of the telophase nucleus along the longitudinal side of the chloroplast. Conceivably, these microtubules guide the nucleus during its post-mitotic migration towards its central interphase position between the two halves of the dividing chloroplast. Throughout the mitotic cycle, ubiquitous dictyosomes, positioned near the chloroplast core, seem very active. Arrays of microtubules run towards these dictyosomes and may conduct the dictyosome-vesicles to the cleavage plane. At metaphase, septum growth becomes visible as an annular ingrowth of the plasmalemma. At late telophase or at entering interphase, an extensive clump of vesicles, associated with longitudinal bundles of microtubules, appears between the leading edges of the advanced furrow. Apparent fusion of these vesicles with the head of the centripetally-growing furrow results in its completion. The pattern of mitosis and cytokinesis inZygnema is compared with that of closely related green algae.  相似文献   

15.
J. Gaertig  Anne Fleury 《Protoplasma》1992,167(1-2):74-87
Summary Indirect immunofluorescence has revealed various intracytoplasmic microtubular structures, which are transiently polymerized in specific subcellular locations during the developmental process of conjugation in the ciliateTetrahymena thermophila. These structures include: (1) micronuclear spindles, (2) perimicronuclear microtubules, (3) microtubular baskets surrounding migrating pronuclei, and (4) microtubules interconnecting the pronuclei with the conjugants' junctional zone. Furthermore, a peripheral network of intracytoplasmic microtubules related to the cell cortex is present in both vegetative cells and in conjugants. Comparative observations made on cells undergoing normal conjugation and defective conjugation (occurring either spontaneously or induced by taxol) has revealed some rules governing the pattern of deployment of conjugation-specific microtubules. The presence of perinuclear microtubular arrays during early postmeiotic stages of development is strictly limited to more anteriorly located nuclei which includes the selected haploid nucleus that further divides to form the stationary and migratory pronuclei. These perinuclear microtubules may be involved in the positional control of nuclear fates leading to effective nuclear selection. Microtubular bundles associated with pronuclei and connecting the junctional zone are only formed in the presence of functional pronuclei, and may be involved in the guidance of pronuclei leading to their fusion. The mechanism of cytoplasmic control of nuclear differentiation of derivatives of the zygotic nucleus appear to be associated with a coordinate action of two microtubular arrays: spindle microtubules of the second postzygotic division and the peripheral intracytoplasmic network of microtubules, leading to a proper subcortical positioning of the postzygotic nuclei at opposite poles of the cell.Abbreviations MTs Microtubules  相似文献   

16.
Summary The multicellular parasitic dinoflagellateHaplozoon axiothellae Siebert was studied with electron microscopy. The trophocyte (attachment cell) bears a suction apparatus with a movable protruding stylet that penetrates the epithelial cell of the host gut. The gonocytes are binucleate and divide frequently. Nuclear structure is similar to the mesokaryotic condition of other dinoflagellates although the chromosomes lack the helically coiled appearance of the DNA fibrils. During nuclear division the nucleus retains its envelope intact and cytoplasmic invaginations develop in which packets of parallel microtubules occur. The microtubules attach to the nuclear envelope opposite the site of chromosome attachment. The chromosomes remain condensed during interphase but the helically coiled DNA fibrils characteristic of the mesokaryotic condition are not evident.The theca which encloses all cells is composed of elements similar to those of typical free-living dinoflagellates, the outer cell membrane and flattened vesicles which contain either flat thin plates or larger spines. No subthecal microtubules are present. The theca grows inward following nuclear division and separates the daughter cells. Trichocysts, pusules, flagellar structures and chloroplasts are not present. The relationship ofHaplozoon to other free-living and parasitic dinoflagellates is discussed.  相似文献   

17.
Plant cells can exhibit highly complex nuclear organization. Through dye-labeling experiments in untransformed onion epidermal and tobacco culture cells and through the expression of green fluorescent protein targeted to either the nucleus or the lumen of the endoplasmic reticulum/nuclear envelope in these cells, we have visualized deep grooves and invaginations into the large nuclei of these cells. In onion, these structures, which are similar to invaginations seen in some animal cells, form tubular or planelike infoldings of the nuclear envelope. Both grooves and invaginations are stable structures, and both have cytoplasmic cores containing actin bundles that can support cytoplasmic streaming. In dividing tobacco cells, invaginations seem to form during cell division, possibly from strands of the endoplasmic reticulum trapped in the reforming nucleus. The substantial increase in nuclear surface area resulting from these grooves and invaginations, their apparent preference for association with nucleoli, and the presence in them of actin bundles that support vesicle motility suggest that the structures might function both in mRNA export from the nucleus and in protein import from the cytoplasm to the nucleus.  相似文献   

18.
Our previous studies showed that 10 percent dimethyl sulfoxide (DMSO) induces the formation of actin microfilament bundles in the cell nucleus together with the dislocation of cortical microfilaments from the plasma membrane. The present study investigated the effects of DMSO on diverse activities mediated by cellular microfilaments as the second step toward assessing potential differences between nuclear and cytoplasmic actins of dictyostelium mucoroides. DMSO was found to reversibly inhibit cell-to- glass as well as cell-to-cell adhesion, cell locomotion, and cell multiplication, whereas cytoplasmic streaming and phagocytosis were not obviously inhibited. Also, 5 percent DMSO inhibited cytokinesis but did not totally inhibit cell growth thus leading to the development of giant cells more than 10 times larger than normal cells. Transmission electron microscopy using serial thin sections showed the occurrence of multinucleation in the DMSO- induced giant cells. After the removal of DMSO, the giant multinuclear cells underwent multiple cytoplasmic cleavage producing normal-sized mononuclear cells. The nuclear division in the DMSO-induced giant cells was unique in that no spindle microtubules were formed, and vesicles appeared inside the nucleus forming a transverse partition of the nuclear envelope. The presence of actin filaments in those nuclei was demonstrated by a binding study with skeletal muscle myosin subfragment-1, and their possible involvement in this mode of nuclear division is discussed.  相似文献   

19.
The distribution of tubulin and centrin in vegetative cells and during gametogenesis of Ectocarpus siliculosus was studied by immunofluorescence. In interphase cells bundles of microtubules are focused on the centriolar region near the nuclear surface. Some of the bundles ensheath the nucleus while others traverse the cytoplasm in various directions, sometimes reaching the cell cortex. Evaluation of serial optical sections by confocal laser scanning microscopy (CLSM) revealed that the perinuclear and “cytoplasmic” microtubule bundles presumably constitute a single complex. In interphase cells centrin is localized as a single bright spot in the centriolar region. In dividing cells duplication and separation of the microtubular complex and the centrin spot takes place. In post-mitotic cells with two nuclei, the centrioles are located at opposite cell poles, short microtubule bundles emanate from them and partially encompass the nucleus. During gametogenesis a gradual transformation of the vegetative cytoskeleton to the gametic flagellar apparatus occurs.  相似文献   

20.
Actin cytoskeleton and microtubules were studied in a human fungal pathogen, the basidiomycetous yeast Cryptococcus neoformans (haploid phase of Filobasidiella neoformans), during its asexual reproduction by budding using fluorescence and electron microscopy. Staining with rhodamine-conjugated phalloidin revealed an F-actin cytoskeleton consisting of cortical patches, cables and cytokinetic ring. F-actin patches accumulated at the regions of cell wall growth, i. e. in sterigma, bud and septum. In mother cells evenly distributed F-actin patches were joined to F-actin cables, which were directed to the growing sterigma and bud. Some F-actin cables were associated with the cell nucleus. The F-actin cytokinetic ring was located in the bud neck, where the septum originated. Antitubulin TAT1 antibody revealed a microtubular cytoskeleton consisting of cytoplasmic and spindle microtubules. In interphase cells cytoplasmic microtubules pointed to the growing sterigma and bud. As the nucleus was translocated to the bud for mitosis, the cytoplasmic microtubules disassembled and were replaced by a short intranuclear spindle. Astral microtubules then emanated from the spindle poles. Elongation of the mitotic spindle from bud to mother cell preceded nuclear division, followed by cytokinesis (septum formation in the bud neck). Electron microscopy of ultrathin sections of chemically fixed and freeze-substituted cells revealed filamentous bundles directed to the cell cortex. The bundles corresponded in width to the actin microfilament cables. At the bud neck numerous ribosomes accumulated before septum synthesis. We conclude: (i) the topology of F-actin patches, cables and rings in C. neoformans resembles ascomycetous budding yeast Saccharomyces, while the arrangement of interphase and mitotic microtubules resembles ascomycetous fission yeast Schizosaccharomyces. The organization of the cytoskeleton of the mitotic nucleus, however, is characteristic of basidiomycetous yeasts. (ii) A specific feature of C. neoformans was the formation of a cylindrical sterigma, characterized by invasion of F-actin cables and microtubules, followed by accumulation of F-actin patches around its terminal region resulting in development of an isodiametrical bud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号