首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The insulin-degrading activity of liver supernatants and epididymal adipose-tissue homogenates from genetically obese–hyperglycaemic mice (ob ob) and their lean litter mates was studied by measurement of radioactive trichloroacetic acid-soluble degradation products of the insulin molecule. Optimum assay conditions for the decomposition of the hormone were devised. The properties of the degrading activity suggested the presence of enzymic insulin destruction in both the liver and epididymal adipose tissue. There was no difference in insulin degradation in liver samples from obese and lean mice when the results were related to the protein content of the supernatants. The epididymal adipose-tissue homogenates from obese mice displayed about eightfold higher degrading activity per unit of protein than did homogenates from lean animals. The physiological significance of this finding is discussed in the light of the increased fat depots, hyperphagia, raised serum insulin concentrations and increased insulin tolerance previously recorded in this strain of mice.  相似文献   

2.
Diurnal variations in food consumption and plasma concentrations of glucose and insulin were determined at 3-hourly intervals in obese hyperglycaemic mice (C57BL/6J ob/ob) and lean mice (C57BL/6J+/+). In lean mice, food consumption and plasma insulin concentrations increased during the light period and were reduced during the dark period, whereas plasma glucose concentrations were maximal at the beginning of the light period and declined to a minimum during the early dark period. In ob/ob mice, the plasma glucose concentration declined temporarily at the beginning of both the light and the dark period and became elevated towards the ends of these periods, but there were no significant diurnal variations of food consumption or plasma insulin concentrations. These observations indicate differences in the diurnal regulation of glucose homeostasis in lean and ob/ob mice.  相似文献   

3.
This study evaluates the role of adrenal hormones in the development of hyperinsulinaemia and impaired glucose homeostasis in genetically obese hyperglycaemic C57BL/6J ob/ob mice. Lean (+/?) and obese mice were bilaterally adrenalectomised or sham operated at 5 weeks of age, and glucose tolerance was examined after 7 and 14 days. Adrenalectomy temporarily reduced food intake and body weight gain in lean mice, and improved glucose tolerance without a significant change in plasma insulin concentrations at both intervals studied. In obese mice adrenalectomy permanently reduced body weight gain and food intake to values comparable with lean mice. Glucose tolerance was improved in adrenalectomised obese mice at both intervals studied, resulting in plasma glucose concentrations similar to adrenalectomised lean mice. Plasma insulin concentrations during the tolerance tests were reduced in adrenalectomised obese mice, but remained higher than in lean mice. Adrenalectomy did not improve the poor insulin response to parenteral glucose in obese mice. The results indicate that adrenal hormones play an important role in the development of glucose intolerance and contribute to the hyperinsulinaemia in obese (ob/ob) mice, in part by promoting hyperphagia.  相似文献   

4.
5.
Obesity is a major risk factor for insulin resistance. Resistin, an adipocyte-derived hormone-like molecule, is considered to serve as an important link between obesity and insulin resistance. However, the physiological role of resistin and the mechanism by which it neutralizes insulin action are still unclear. There are also conflicting reports that cast doubt on the cause of insulin resistance. In this study, we developed an enzyme-linked immunosorbent assay (ELISA) system for quantification of mouse resistin levels, analyzed in relation to insulin resistance. C57BL/6J mice fed high-fat diet compared with normal diet had low resistin levels (by 70%, P<0.01) in epididymal adipose tissues. Genetically obese mice, db/db and KK-A(y), had hyperinsulinemia and hyperglycemia but low resistin levels (decreases by 83 and 90%, both P<0.01) compared with C57/BL6J mice in epididymal adipose tissues. Serum resistin levels determined by Western blotting showed a similar pattern to those in adipose tissues. Resistin levels in adipose tissues correlated with serum adiponectin concentrations positively (r=0.49). Our results indicate that the novel ELISA system is suitable for measurement of resistin levels in adipose tissues. The results do not support a role for resistin in insulin resistance.  相似文献   

6.
In this study, susceptibility of inbred C57BL/6 and outbred NMRI mice to monosodium glutamate (MSG) obesity or diet-induced obesity (DIO) was compared in terms of food intake, body weight, adiposity as well as leptin, insulin and glucose levels. MSG obesity is an early-onset obesity resulting from MSG-induced lesions in arcuate nucleus to neonatal mice. Both male and female C57BL/6 and NMRI mice with MSG obesity did not differ in body weight from their lean controls, but had dramatically increased fat to body weight ratio. All MSG obese mice developed severe hyperleptinemia, more remarkable in females, but only NMRI male mice showed massive hyperinsulinemia and an extremely high HOMA index that pointed to development of insulin resistance. Diet-induced obesity is a late-onset obesity; it developed during 16-week-long feeding with high-fat diet containing 60 % calories as fat. Inbred C57BL/6 mice, which are frequently used in DIO studies, both male and female, had significantly increased fat to body weight ratio and leptin and glucose levels compared with their appropriate lean controls, but only female C57BL/6 mice had also significantly elevated body weight and insulin level. NMRI mice were less prone to DIO than C57BL/6 ones and did not show significant changes in metabolic parameters after feeding with high-fat diet.  相似文献   

7.
We have studied the properties of muscle insulin receptors obtained from genetically or experimentally-induced obese mice that are both insulin-resistant. Insulin receptors, partially purified by wheat germ agglutinin--agarose chromatography, were studied in a cell-free system for autophosphorylation, for their ability to phosphorylate a synthetic glutamate--tyrosine copolymer and for their binding characteristics. Insulin receptor number was decreased by 25% in muscles from obese mice without any change in their binding affinity. The insulin stimulatory action on its beta-subunit receptor phosphorylation was diminished in preparations from genetically- or experimentally-induced obese mice to a higher degree than the decrease in insulin receptor number. HPLC analysis of the phosphopeptides generated by trypsin treatment of the labeled receptor beta-subunit was identical in lean and obese mice. Similar alteration of the kinase activity was found in obese mice when the phosphorylation of casein or polyglutamate--tyrosine was measured. Trypsin treatment of the receptor preparations was less effective in stimulating the kinase activity in obese mice than in lean mice. These results suggest that the defect in insulin receptor kinase activity reflects an alteration in the transmission of the message from the alpha- to the beta-subunit or an impairment of the enzyme functioning by environmental conditions.  相似文献   

8.
Energy is stored predominately as lipid in white adipose tissue (WAT) in distinct anatomical locations, with each site exerting different effects on key biological processes, including glucose homeostasis. To determine the relative contributions of subcutaneous and visceral WAT on glucose homeostasis, comparable amounts of adipose tissue from abdominal subcutaneous inguinal WAT (IWAT), intra-abdominal retroperitoneal WAT (RWAT), male gonadal epididymal WAT (EWAT), or female gonadal parametrial WAT (PWAT) were removed. Gonadal fat removal in both male and female chow-fed lean mice resulted in lowered glucose levels across glucose tolerance tests. Female lean C57BL/6J mice as well as male and female lean FVBN mice significantly improved glucose tolerance, indicated by decreased areas under glucose clearance curves. For the C57BL/6J mice maintained on a high-fat butter-based diet, glucose homeostasis was improved only in female mice with PWAT removal. Removal of IWAT or RWAT did not affect glucose tolerance in either dietary condition. We conclude that WAT contribution to glucose homeostasis is depot specific, with male gonadal EWAT contributing to glucose homeostasis in the lean state, whereas female gonadal PWAT contributes to glucose homeostasis in both lean and obese mice. These data illustrate both critical differences among various WAT depots and how they influence glucose homeostasis and highlight important differences between males and females in glucose regulation.  相似文献   

9.
A method for the preparation of isolated adipocytes from obese mice is described. Similar yields of adipocytes (50--60%), as judged by several criteria, are obtained from obese mice and lean controls. Few fat-globules and no free nuclei were observed in cell preparations, which are metabolically active, respond to hormonal control and appear to be representative of intact adipose tissue. Noradrenaline-stimulated lipolysis was inhibited by insulin, equally in adipocytes from lean and obese mice. Inhibition in obese cells required exogenous glucose, and the insulin dose--response curve was shifted to the right. Basal lipogenesis from glucose was higher in adipocytes from obese mice, and the stimulatory effect of insulin was greater in cells from obese mice compared with lean controls. A rightward shift in the insulin dose--response curve was again observed with cells from obese animals. This suggests that adipose tissue from obese mice is insulin-sensitive at the high blood insulin concentrations found in vivo. The resistance of obese mice to the hypoglycaemic effect of exogenous insulin and their impaired tolerance to glucose loading appear to be associated with an impaired insulin response by muscle rather than by adipose tissue.  相似文献   

10.
The lipolytic response of isolated adipocytes from genetic obese (C57/BL/64 ob/ob) and lean (C57BL/6J +/?) mice to ACTH-(1-24), isoproterenol and glucagon has been studied. The mean cell idameter of adipocytes form ob/ob mice was approximately twice that of lean controls. The adipocytes from obese mice contained on the average approximately six times the amount of triacylglycerol present in the smaller lean mouse adipocyte. Lipolysis was calculated both on a per cell basis (10(5) cells) and per mu mole of triacylglycerol and when expressed on a cell number basis, the larger adipocytes from obese mice showed an ACTH-(1-24) stimulated glycerol release which was quantitatively similar to that of smaller adipocytes from lean mice. When expressed per mu mole of triacylglycerol, the smaller cells from lean animals appeared to be dramatically more responsive to either isoproterenol or ACTH-(1-24). On either basis, ACTH-(1-24) stimulated glycerol release from obese mouse cells was greater than the isoproterenol response. The obese mouse of adipocyte showed selective loss of response to isoproterenol compared to its lean control.  相似文献   

11.
Obese C57BL/6J-OB mice (ob/ob) and their lean littermates (?/+) were fed either torula yeast-based diet (TY) or brewer's yeast-based diet (BY) for a 23-d experimental period. Obese mice fed the BY diet had significantly lower liver weights than did mice fed the TY diet. Likewise, plasma glucose and insulin were significantly lower in obese mice fed the brewer's yeast diet (BY) than the torula yeast diet (TY). Liver weight and plasma glucose and insulin of lean mice were not significantly affected by diet during the experimental period. Despite the low Cr content of both TY and BY diets, bone Cr of the TY and BY groups was significantly higher than concentrations previously reported for the groups fed casein-based diets. The obese mouse may be particularly sensitive to Cr, making it a valuable model for elucidating effects of other dietary components on chromium status.  相似文献   

12.
1. 1. Genetically obese mice (C5 7BL/6J-ob/ob, Jackson Laboratories) have much higher levels of hepatic acetyl-CoA carboxylase activity than their lean siblings, under a variety of nutritional states. However, when these mice are fasted for 48 h and then refed a fat-free diet for 48 h, the activity of this enzyme in the lean group shows about a 9-fold increase over the measured under normal dietary conditions, while obese mice show only 1 2-fold increase. The acetyl-CoA carboxylase activity observed under the dietary conditions is thus comparable in both lean and obese animals. Oil feeding or fasting for 48 h markedly depresses the activity of this enzyme in both groups and seems to be an effective means of reducing acetyl-CoA carboxylase activity in the obese mice, particularly, to far below the values found under normal dietary conditions.
2. 2. Both acetyl-CoA carboxylase and fatty acid synthetase purified from livers of obese and lean mice show comparable specific activities and no demonstrable differences with respect to their kinetic properties. Acetyl-CoA carboxylase from the two sources is also identical with respect to sensitivity to reagents and other inhibitors (such as malonyl-CoA, palmitoyl-CoA, etc.), to heat inactivation and in its sedimentation properties.
These results suggest quantitative differences rather than differences in the catalytic and regulatory properties of the obese and lean enzymes.  相似文献   

13.
Cyclic AMP phosphodiesterase activity was examined in particulate (30,000 X g for 30 min sediment) and supernatant subcellular fractions of epididymal fat cells isolated from obese-hyperglycemic (ob/ob) mice and their lean (+/?) LITTERMATES. The activity of the enzyme(s) was measured during both the early onset phase (5-6 weeks of age) and the static (5 months of age) of the obese-hyperglycemia syndrome. Fat cell particulate and supernate cyclic AMP phosphodiesterase activity of obese-hyperglycemic mice and their lean littermates at both ages displayed nonlinear Lineweaver-Burk kinetic plots. The maximum velocities of the fat cell particulate cyclic AMP phosphodiesterase activity of the obese mice were 67% and 84% lower than those of their lean littermates at 5-6 weeks and 5 months of age, respectively. Incubating fat cells obtained from either lean or obese mice of both age groups with 30 to 240 microunits of insulin per ml for 15 min increased the activity of the particulate, low Km cyclic AMP phosphodiesterase. This increase in activity was manifest as an increase in the maximum velocity of the enzyme(s) with no significant alteration of the affinity of the enzyme(s) for cyclic AMP.  相似文献   

14.
Fucoxanthin, a marine carotenoid found in edible brown seaweeds, attenuates white adipose tissue (WAT) weight gain and hyperglycemia in diabetic/obese KK-Ay mice, although it does not affect these parameters in lean C57BL/6J mice. In perigonadal and mesenteric WATs of KK-Ay mice fed fucoxanthin, mRNA expression levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α), which are considered to induce insulin resistance, were markedly reduced compared to control mice. In contrast to KK-Ay mice, fucoxanthin did not alter MCP-1 and TNF-α mRNA expression levels in the WAT of lean C57BL/6J mice. Interleukin-6 (IL-6) and plasminogen activator inhibitor-1 mRNA expression levels in WAT were also decreased by fucoxanthin in KK-Ay mice. In differentiating 3T3-F442A adipocytes, fucoxanthinol, which is a fucoxanthin metabolite found in WAT, attenuated TNF-α-induced MCP-1 and IL-6 mRNA overexpression and protein secretion into the culture medium. In addition, fucoxanthinol decreased TNF-α, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) mRNA expression in RAW264.7 macrophage-like cells stimulated by palmitic acid. These findings indicate that fucoxanthin regulates mRNA expression of inflammatory adipocytokines involved in insulin resistance, iNOS, and COX-2 in WAT and has specific effects on diabetic/obese KK-Ay mice, but not on lean C57BL/6J mice.  相似文献   

15.
Obstructive sleep apnea (OSA) causes intermittent hypoxia (IH) during sleep. Both obesity and OSA are associated with insulin resistance and systemic inflammation, which may be attributable to tissue hypoxia. We hypothesized that a pattern of hypoxic exposure determines both oxygen profiles in peripheral tissues and systemic metabolic outcomes, and that obesity has a modifying effect. Lean and obese C57BL6 mice were exposed to 12 h of intermittent hypoxia 60 times/h (IH60) [inspired O? fraction (Fi(O?)) 21-5%, 60/h], IH 12 times/h (Fi(O?) 5% for 15 s, 12/h), sustained hypoxia (SH; Fi(O?) 10%), or normoxia while fasting. Tissue oxygen partial pressure (Pti(O?)) in liver, skeletal muscle and epididymal fat, plasma leptin, adiponectin, insulin, blood glucose, and adipose tumor necrosis factor-α (TNF-α) were measured. In lean mice, IH60 caused oxygen swings in the liver, whereas fluctuations of Pti(O?) were attenuated in muscle and abolished in fat. In obese mice, baseline liver Pti(O?) was lower than in lean mice, whereas muscle and fat Pti(O?) did not differ. During IH, Pti(O?) was similar in obese and lean mice. All hypoxic regimens caused insulin resistance. In lean mice, hypoxia significantly increased leptin, especially during SH (44-fold); IH60, but not SH, induced a 2.5- to 3-fold increase in TNF-α secretion by fat. Obesity was associated with striking increases in leptin and TNF-α, which overwhelmed effects of hypoxia. In conclusion, IH60 led to oxygen fluctuations in liver and muscle and steady hypoxia in fat. IH and SH induced insulin resistance, but inflammation was increased only by IH60 in lean mice. Obesity caused severe inflammation, which was not augmented by acute hypoxic regimens.  相似文献   

16.
Insulin is known to play a specific role in the biosynthesis of pancreatic amylase. In the insulin resistant adult C57 BL/6J--ob/ob mouse there is a reduction of pancreatic amylase content. The differences of enzyme content could not be explained by differences of food intake between obese and lean mice, but are more likely to be the consequence of insulin resistance at the level of the exocrine pancreas. By contrast, greater pancreatic content of amylase and lipase seen in young obese mice (less than 2-months old) was associated with the greater food intake of these mice with respect to lean controls.  相似文献   

17.
The strain distribution for macronutrient diet selection was described in 13 mouse strains (AKR/J, NZB/B1NJ, C57BL/6J, C57BL/6ByJ, DBA/2J, SPRET/Ei, CD-1, SJL/J, SWR/J, 129/J, BALB/cByJ, CAST/Ei, and A/J) with the use of a self-selection protocol in which separate carbohydrate, fat, and protein diets were simultaneously available for 26-30 days. Relative to carbohydrate, nine strains consumed significantly more calories from the fat diet; two strains consumed more calories from carbohydrate than from fat (BALB/cByJ, CAST/Ei). Diet selection by SWR/J mice was variable over time, resulting in a lack of preference. One strain (A/J) failed to adapt to the diet paradigm due to inadequate protein intake. Comparisons of proportional fat intake across strains revealed that fat selection/consumption ranged from 26 to 83% of total energy. AKR/J, NZB/B1NJ, and C67BL/6J mice self-selected the highest proportion of dietary fat, whereas the CAST/Ei and BALB/cByJ strains chose the lowest. Finally, epididymal fat depot weight was correlated with fat consumption. There were significant positive correlations in AKR/J and C57BL/6J mice, which are highly sensitive to dietary obesity. However, absolute fat intake was inversely correlated with epididymal fat in two of the lean strains: SWR/J and CAST/Ei. We hypothesize that the SWR/J and CAST/Ei strains are highly sensitive to a negative feedback signal generated by increasing body fat, but the AKR/J and C67BL/6J mice are not. The variation in dietary fat selection across inbred strains provides a tool for dissecting the complex genetics of this trait.  相似文献   

18.
The protein bands of adipocyte plasma membranes from the genetically obese diabetic mice C57BL/KsJ db/db (db/db mice) showed slight but significant changes compared with their lean littermates. The treatment for 1 week with a new antidiabetic agent, AS-6, caused the changes to revert toward the condition in the lean littermates. In the absence of insulin, the plasma membrane and mitochondria mixture (P3 fraction) of the lean littermates densely labeled 55000 and 57000 dalton protein bands by phosphorylating with (a-32P)-ATP, whereas the labeling was less in the P3 from AS-6 treated and untreated db/db mice. Insulin inhibited phosphorylation of these bands in P3 from the lean littermates and untreated db/db mice, while the hormone enhanced the labeling in AS-6 treated db/db mice compared with the basal condition without insulin. Ca2+ greatly enhanced the labeling in all three groups, whereas Mg2+ mimicked the insulin action diminishing the labeling of these bands in the lean and untreated db/db groups. However, Mg2+ enhanced the phosphorylation in the P3 from AS-6 treated db/db mice compared with the basal condition.  相似文献   

19.
C57BL/6J obese (ob/ob) and lean mice fed ad libitum on a normal mouse chow diet (Normal), were compared with lean mice of the same age and strain fed ad libitum on a high-fat diet, consisting of the Normal diet with the addition of beef lard (Lard), from age 3 months for 34 days. The lard-fed mice were seen to have significantly higher (P<0.05) body weight in this 34-day period than that of the other two groups fed on the Normal diet. Epididymal fat depot and adipocyte cell size were significantly larger (P<0.05) in the Lard-fed lean mice and in the obese (ob/ob) mice than were those of the Normal-fed lean mice. Dietary Lard intake did not significantly affect concentrations of plasma triglyceride although those of plasma cholesterol were significantly increased (P<0.05). The development of obesity in these Lard-fed mice appeared to be accelerated and significant.  相似文献   

20.
Examination of the thyroid hormone levels of C57BL/6J ob/ob mice and their lean littermates between the ages of 6 days and 22 weeks revealed that obese mice have significantly reduced hormone concentrations between 10 and 21 days of age. Thereafter, the values remained equal to, or above those or their lean littermates. The present data indicate that the hypometabolism and abnormal thermal regulation of weanling mice could be a result of diminished thyroid hormone levels, but that other mechanisms must be responsible for the persistence of these abnormalities in adult ob/ob mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号