首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of modification of heme carboxylic groups by omega-aminoenantic acid and L-phenylalamine on the peroxidase activity of hemoglobin were studied. For this purpose the peroxidase activities of the original compounds--hemin, hemin-aminoenantic acid, hemin-phenylalanine and hemoglobins prepared from the hemin and globin compounds--hemoglobin, aminoenantyl-hemoglobin and phenylalanine hemoglobin--were determined. The dependence of the peroxidase activity of these compounds on their concentrations and pH was analyzed. It was shown that 40--50% modification of the heme carboxylic groups by amino acids decreases the peroxidase activity of the modified hemins and that of modified hemoglobins reconstructed from these hemins and globin. A decrease of the catalytic activity of the hemoglobin derivatives is due to a lower peroxidase activity (as compared to hemin) of the modified hemins. It is thus concluded that the amino acid modification of the carboxylic groups of heme does not affect the heme-protein interactions in the hemoglobin molecule.  相似文献   

2.
We have recently reported that nitric oxide inhalation in individuals with sickle cell anemia increases the level of NO bound to hemoglobin, with the development of an arterial-venous gradient, suggesting delivery to the tissues. A recent model suggests that nitric oxide, in addition to its well-known reaction with heme groups, reacts with the β-globin chain cysteine 93 to form S-nitrosohemoglobin (SNO-Hb) and that SNO-Hb would preferentially release nitric oxide in the tissues and thus modulate blood flow. However, we have also recently determined that the primary NO hemoglobin adduct formed during NO breathing in normal (hemoglobin A) individuals is nitrosyl (heme)hemoglobin (HbFeIINO), with only a small amount of SNO-Hb formation. To determine whether the NO is transported as HbFeIINO or SNO-Hb in sickle cell individuals, which would have very different effects on sickle hemoglobin polymerization, we measured these two hemoglobin species in three sickle cell volunteers before and during a dose escalation of inhaled NO (40, 60, and 80 ppm). Similar to our previous observations in normal individuals, the predominant species formed was HbFeIINO, with a significant arterial-venous gradient. Minimal SNO-Hb was formed during NO breathing, a finding inconsistent with significant transport of NO using this pathway, but suggesting that this pathway exists. These results suggest that NO binding to heme groups is physiologically a rapidly reversible process, supporting a revised model of hemoglobin delivery of NO in the peripheral circulation and consistent with the possibility that NO delivery by hemoglobin may be therapeutically useful in sickle cell disease.  相似文献   

3.
We have recently reported that nitric oxide inhalation in individuals with sickle cell anemia increases the level of NO bound to hemoglobin, with the development of an arterial-venous gradient, suggesting delivery to the tissues. A recent model suggests that nitric oxide, in addition to its well-known reaction with heme groups, reacts with the β-globin chain cysteine 93 to form S-nitrosohemoglobin (SNO-Hb) and that SNO-Hb would preferentially release nitric oxide in the tissues and thus modulate blood flow. However, we have also recently determined that the primary NO hemoglobin adduct formed during NO breathing in normal (hemoglobin A) individuals is nitrosyl (heme)hemoglobin (HbFeIINO), with only a small amount of SNO-Hb formation. To determine whether the NO is transported as HbFeIINO or SNO-Hb in sickle cell individuals, which would have very different effects on sickle hemoglobin polymerization, we measured these two hemoglobin species in three sickle cell volunteers before and during a dose escalation of inhaled NO (40, 60, and 80 ppm). Similar to our previous observations in normal individuals, the predominant species formed was HbFeIINO, with a significant arterial-venous gradient. Minimal SNO-Hb was formed during NO breathing, a finding inconsistent with significant transport of NO using this pathway, but suggesting that this pathway exists. These results suggest that NO binding to heme groups is physiologically a rapidly reversible process, supporting a revised model of hemoglobin delivery of NO in the peripheral circulation and consistent with the possibility that NO delivery by hemoglobin may be therapeutically useful in sickle cell disease.  相似文献   

4.
The homodimeric hemoglobin from the mollusk Scapharca inaequivalvis possesses a single reactive cysteine residue per monomer, Cys92, which is located in the subunit interface in the vicinity of the heme group. The interplay between the heme iron and Cys92 towards the reaction with NO has been investigated by the combined use of electrospray mass spectrometry, FTIR and UV-Visible spectroscopy. When the ferrous liganded or unliganded protein reacts with free NO in solution Cys92 is not modified, but undergoes nitrosation when the hemoglobin is exposed to the nitric oxide releaser S-nitrosocysteine. When the ferric protein reacts with free NO under anaerobic conditions the heme iron is reduced and Cys92 is nitrosated. At variance with other hemeproteins investigated to date, in Scapharca HbI the heme-iron NO driven reduction is not accompanied by the formation of a ferric iron nitrosyl intermediate in detectable amounts. The results are consistent with the hypothesis that the nitrosating agent is the NO(+) species, which is generated during the NO driven reduction of the ferric heme iron. The possible reaction mechanism is discussed in comparison with recent findings on human hemoglobin and myoglobin.  相似文献   

5.
The heme of neuronal nitric oxide synthase (nNOS) participates in O2 activation but also binds self-generated NO, resulting in reversible feedback inhibition. We utilized mutagenesis to investigate if a conserved tryptophan residue (Trp409), which engages in pi-stacking with the heme and hydrogen bonds to its axial cysteine ligand, helps control catalysis and regulation by NO. Mutants W409F and W409Y were hyperactive regarding NO synthesis without affecting cytochrome c reduction, reductase-independent N-hydroxyarginine oxidation, or Arg and tetrahydrobiopterin binding. In the absence of Arg electron flux through the heme was slower in the W409 mutants than in wild-type. However, less NO complex accumulated during NO synthesis by the mutants. To understand the mechanism, we compared the kinetics of heme-NO complex formation, rate of heme reduction, kcat prior to and after NO complex formation, NO binding affinity, NO complex stability, and its reaction with O2. During the initial phase of NO synthesis, heme-NO complex formation was three and five times slower in W409F and W409Y, which corresponded to a slower heme reduction. NO complex formation inhibited wild-type turnover 7-fold but reduced mutant turnover less than 2-fold, giving mutants higher steady-state activities. NO binding kinetics were similar among mutants and wild type, although mutants also formed a 417 nm ferrous-NO complex. Oxidation of ferrous-NO complex was seven times faster in mutants than in wild type. We conclude that mutant hyperactivity primarily derives from slower heme reduction and faster oxidation of the heme-NO complex by O2. In this way Trp409 mutations minimize NO feedback inhibition by limiting buildup of the ferrous-NO complex during the steady state. Conservation of W409 among NOS suggests that this proximal Trp may regulate NO feedback inhibition and is important for enzyme physiologic function.  相似文献   

6.
Staphylococcus aureus causes life-threatening disease in humans. The S. aureus surface protein iron-regulated surface determinant H (IsdH) binds to mammalian hemoglobin (Hb) and extracts heme as a source of iron, which is an essential nutrient for the bacteria. However, the process of heme transfer from Hb is poorly understood. We have determined the structure of IsdH bound to human Hb by x-ray crystallography at 4.2 Å resolution, revealing the structural basis for heme transfer. One IsdH molecule is bound to each α and β Hb subunit, suggesting that the receptor acquires iron from both chains by a similar mechanism. Remarkably, two near iron transporter (NEAT) domains in IsdH perform very different functions. An N-terminal NEAT domain binds α/β globin through a site distant from the globin heme pocket and, via an intervening structural domain, positions the C-terminal heme-binding NEAT domain perfectly for heme transfer. These data, together with a 2.3 Å resolution crystal structure of the isolated N-terminal domain bound to Hb and small-angle x-ray scattering of free IsdH, reveal how multiple domains of IsdH cooperate to strip heme from Hb. Many bacterial pathogens obtain iron from human hemoglobin using proteins that contain multiple NEAT domains and other domains whose functions are poorly understood. Our results suggest that, rather than acting as isolated units, NEAT domains may be integrated into higher order architectures that employ multiple interaction interfaces to efficiently extract heme from host proteins.  相似文献   

7.
Human apohemoglobin (globin) was spin-labeled at the beta-93 sulfhydryl groups with 2,2,5,5-tetramethyl-3-aminopyrrolidine-I-oxyl. Spin-labeled globin exhibited an EPR spectra that is less immobilized than that of spin-labeled hemoglobin, indicating the conformational difference in the vicinity of the label between hemoglobin and globin. Spectrophotometric titration of spin-labeled globin with protohemin showed that 1 mol of globin (on the tetramer basis) combines with 4 mol of hemin, producing a holomethemoglobin spectrophotometrically indistinguishable from native methemoglobin. The EPR spectrum was also changed strikingly upon the addition of protohemin. This change, however, was not proportional to the amount of hemin added, but marked changes occurred after 3 to 4 mol of hemin were mixed with 1 mol of spin-labeled globin. The EPR spectrum of spin-labeled hemoglobin thus prepared was identical with that prepared by direct spin labeling to methemoglobin. These results suggest the preferential binding of hemin to alpha-globin chains in the course of heme binding by globin. This assumption was further confirmed by preparing spin-labeled semihemoglobin in which only one kind of chain contained hemin (alpha h betaO SL and alpha O beta h SL). The EPR spectrum of the alpha h beta O SL molecule showed a slightly immobilized EPR spectrum, similar to that of spin-labeled globin mixed with 50% of the stoichiometric amount of hemin. On the other hand, the alpha O beta h SL molecule showed a distinctly different EPR signal from that of globin half-saturated with hemin, and showed an intermediate spectrum between those of beta h SL and alpha h beta h SL. These results indicate that heme binding to globin chains brings about a major conformational change in the protein moiety and that chain-chain association plays a secondary role. We conclude that hemin binds preferentially to alpha-globin chains and that the conformation of globin changes rapidly to that of methemoglobin after all four hemes are attached to globin heme pockets.  相似文献   

8.
We have used optical, EPR and M?ssbauer spectroscopies to study the formation of heme-NO complex upon the addition of nitrite to reduced cytochrome cd1 from Thiobacillus denitrificans. The reduced d1 heme binds NO under both alkaline and acidic conditions, but the binding of NO to the reduced c heme was strongly pH-dependent. The M?ssbauer data showed unambiguously that at pH 7.6 the c heme does not complex NO, whereas at pH 5.8 approximately half of the reduced c heme binds NO. This observation was confirmed by EPR studies, which showed that the spin concentration of the heme-NO EPR signal increased from 2 spins/molecule at pH 8.0 to approximately 3 spins/molecule at pH 5.8. Optical absorption study also showed strong pH dependence in the binding of NO to the reduced c heme. We have also analyzed the M?ssbauer spectra of the ferrous d1 heme-NO complex using a spin-Hamiltonian formalism. The magnetic hyperfine coupling tensor was found to be consistent with the unpaired electron residing on a sigma orbital.  相似文献   

9.
Neuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO). This reaction is regulated by redox-sensitive surface thiols, cysteine 55 and 46, which regulate the fraction of the five-coordinated heme, nitrite binding, and NO formation. Replacement of the distal histidine by leucine or glutamine leads to a stable five-coordinated geometry; these neuroglobin mutants reduce nitrite to NO ~2000 times faster than the wild type, whereas mutation of either Cys-55 or Cys-46 to alanine stabilizes the six-coordinate structure and slows the reaction. Using lentivirus expression systems, we show that the nitrite reductase activity of neuroglobin inhibits cellular respiration via NO binding to cytochrome c oxidase and confirm that the six-to-five-coordinate status of neuroglobin regulates intracellular hypoxic NO-signaling pathways. These studies suggest that neuroglobin may function as a physiological oxidative stress sensor and a post-translationally redox-regulated nitrite reductase that generates NO under six-to-five-coordinate heme pocket control. We hypothesize that the six-coordinate heme globin superfamily may subserve a function as primordial hypoxic and redox-regulated NO-signaling proteins.  相似文献   

10.
A very short hemoglobin (CerHb; 109 amino acids) binds O(2) cooperatively in the nerve tissue of the nemertean worm Cerebratulus lacteus to sustain neural activity during anoxia. Sequence analysis suggests that CerHb tertiary structure may be unique among the known globin fold evolutionary variants. The X-ray structure of oxygenated CerHb (R factor 15.3%, at 1.5 A resolution) displays deletion of the globin N-terminal A helix, an extended GH region, a very short H helix, and heme solvent shielding based on specific aromatic residues. The heme-bound O(2) is stabilized by hydrogen bonds to the distal TyrB10-GlnE7 pair. Ligand access to heme may take place through a wide protein matrix tunnel connecting the distal site to a surface cleft located between the E and H helices.  相似文献   

11.
An aspartic proteinase that binds heme with a 1:1 stoichiometry was isolated and cloned from the eggs of the cattle tick Boophilus microplus. This proteinase, herein named THAP (tick heme-binding aspartic proteinase) showed pepstatin-sensitive hydrolytic activity against several peptide and protein substrates. Although hemoglobin was a good substrate for THAP, low proteolytic activity was observed against globin devoid of the heme prosthetic group. Hydrolysis of globin by THAP increased as increasing amounts of heme were added to globin, with maximum activation at a heme-to-globin 1:1 ratio. Further additions of heme to the reaction medium inhibited proteolysis, back to a level similar to that observed against globin alone. The addition of heme did not change THAP activity toward a synthetic peptide or against ribonuclease, a non-hemeprotein substrate. The major storage protein of tick eggs, vitellin (VT), the probable physiological substrate of THAP, is a hemeprotein. Hydrolysis of VT by THAP was also inhibited by the addition of heme to the incubation media. Taken together, our results suggest that THAP uses heme bound to VT as a docking site to increase specificity and regulate VT degradation according to heme availability.  相似文献   

12.
The rate that hemoglobin reacts with nitric oxide (NO) is limited by how fast NO can diffuse into the heme pocket. The reaction is as fast as any ligand/protein reaction can be and the result, when hemoglobin is in its oxygenated form, is formation of nitrate in what is known as the dioxygenation reaction. As nitrate, at the concentrations made through the dioxygenation reaction, is biologically inert, the only role hemoglobin was once thought to play in NO signaling was to inhibit it. However, there are now several mechanisms that have been discovered by which hemoglobin may preserve, control, and even create NO activity. These mechanisms involve compartmentalization of reacting species and conversion of NO from or into other species such as nitrosothiols or nitrite which could transport NO activity. Despite the tremendous amount of work devoted to this field, major questions concerning precise mechanisms of NO activity preservation as well as if and how Hb creates NO activity remain unanswered.  相似文献   

13.
A native globin from the dimeric hemoglobin, hemoglobin I, of the mollusc Scapharca inaequivalvis has been obtained with the acid-acetone method. The globin has a lower sedimentation coefficient than the native protein at neutral pH; its reconstitution product with natural heme has the same physicochemical and functional properties as the native protein. proto- and meso-cobalt hemoglobin I have been prepared and characterized. proto-Cobalt hemoglobin I binds oxygen reversibly with a lower affinity and a lower cooperativity than native hemoglobin I; thus, the changes in the functional properties brought about by substitution of iron with cobalt are similar to those observed in human hemoglobin A. The EPR spectra of deoxy-proto-cobalt hemoglobin I and of the photolysis product of oxy-meso-cobalt hemoglobin I indicate that two histidine residues are the apical heme ligands. The broad signal at g = 2.38 in deoxy-proto-cobalt hemoglobin I points to a constrained structure of the heme site in this derivative which results from a distorted coordination of the hindered proximal histidine. A similar structure has been proposed previously for the alpha chains in deoxy-cobalt hemoglobin A.  相似文献   

14.
Hemoglobin adducts are useful for the identification and quantification of electrophilic agents in vivo. A modified Edman degradation method has been extensively used for monitoring exposure to ethylene oxide through gas chromatographic-mass spectrometric measurements of hydroxyethyl adducts to the N-terminal valines in hemoglobin. In a ring test, four laboratories using different versions of the method analyzed eight human globin samples with low adduct levels from ethylene oxide. Measurements of the same adduct by a radioimmunoassay were also included. Strong correlation between the measurements by the different laboratories shows that the method in principle works well. However, there were some systematic quantitative differences.  相似文献   

15.
S-nitrosylation-induced conformational change in blackfin tuna myoglobin   总被引:1,自引:0,他引:1  
S-nitrosylation is a post-translational protein modification that can alter the function of a variety of proteins. Despite the growing wealth of information that this modification may have important functional consequences, little is known about the structure of the moiety or its effect on protein tertiary structure. Here we report high-resolution x-ray crystal structures of S-nitrosylated and unmodified blackfin tuna myoglobin, which demonstrate that in vitro S-nitrosylation of this protein at the surface-exposed Cys-10 directly causes a reversible conformational change by "wedging" apart a helix and loop. Furthermore, we have demonstrated in solution and in a single crystal that reduction of the S-nitrosylated myoglobin with dithionite results in NO cleavage from the sulfur of Cys-10 and rebinding to the reduced heme iron, showing the reversibility of both the modification and the conformational changes. Finally, we report the 0.95-A structure of ferrous nitrosyl myoglobin, which provides an accurate structural view of the NO coordination geometry in the context of a globin heme pocket.  相似文献   

16.
Carbon monoxide -- a "new" gaseous modulator of gene expression   总被引:19,自引:0,他引:19  
Carbon monoxide (CO) is an odorless, tasteless and colorless gas which is generated by heme oxygenase enzymes (HOs). HOs degrade heme releasing equimolar amounts of CO, iron and biliverdin, which is subsequently reduced to bilirubin. CO shares many properties with nitric oxide (NO), an established cellular messenger. Both CO and NO are involved in neural transmission and modulation of blood vessel function, including their relaxation and inhibition of platelet aggregation. CO, like NO, binds to heme proteins, although CO binds only ferrous (FeII) heme, whereas NO binds both ferrous and ferric (FeIII). CO enhances the activity of guanylate cyclase although it is less potent than NO. In contrast, CO inhibits other heme proteins, such as catalase or cytochrome p450. The effects of CO on gene expression can be thus varied, depending on the cellular microenvironment and the metabolic pathway being influenced. In this review the regulation of gene expression by HO/CO in the cardiovascular system is discussed. Recent data, derived also from our studies, indicate that HO/CO are significant modulators of inflammatory reactions, influencing the underlying processes such as cell proliferation and production of cytokines and growth factors.  相似文献   

17.
In addition to interacting with hemoglobin as a heme ligand to form nitrosylhemoglobin, NO can react with cysteine sulfhydryl groups to form S-nitrosocysteine or cysteine oxides such as cysteinesulfenic acid. Both modes of interaction are very sensitive to the quaternary structure of hemoglobin. To directly view the interaction of NO with quaternary-T deoxyhemoglobin, crystallographic studies were carried out on crystals of deoxyhemoglobin that were exposed to gaseous NO under a variety of conditions. Consistent with previous spectroscopic studies in solution, these crystallographic studies show that the binding of NO to the heme groups of crystalline wild-type deoxyhemoglobin ruptures the Fe-proximal histidine bonds of the alpha-subunits but not the beta-subunits. This finding supports Perutz's theory that ligand binding induces tension in the alpha Fe-proximal histidine bond. To test Perutz's theory, deoxy crystals of the mutant hemoglobin betaW37E were exposed to NO. This experiment was carried out because previous studies have shown that this mutation greatly reduces the quaternary constraints that oppose the ligand-induced movement of the alpha-heme Fe atom into the plane of the porphyrin ring. As hypothesized, the Fe-proximal histidine bonds in both the beta- and the alpha-subunits remain intact in crystalline betaW37E after exposure to NO. With regard to S-nitrosocysteine or cysteine oxide formation, no evidence for the reaction of NO with any cysteine residues was detected under anaerobic conditions. However, when deoxyhemoglobin crystals are first exposed to air and then to NO, the appearance of additional electron density indicates that Cys93(F9)beta has been modified, most likely to cysteinesulfenic acid. This modification of Cys93(F9)beta disrupts the intrasubunit salt bridge between His146(HC3)beta and Asp94(FG1)beta, a key feature of the quaternary-T hemoglobin structure. Also presented is a reanalysis of our previous crystallographic studies [Chan, N.-L., et al. (1998) Biochemistry 37, 16459-16464] of the interaction of NO with liganded hemoglobin in the quaternary-R2 structure. These studies showed additional electron density at Cys93(F9)beta that was consistent with an NO adduct. However, for reasons discussed in this paper, we now believe that this adduct may be the Hb-S-N.-O-H radical intermediate and not Hb-S-N=O as previously suggested.  相似文献   

18.
ON HEMOCHROMOGEN     
1. Every hemochromogen consists of the iron pyrrol complex, reduced heme, combined with some nitrogenous substance. 2. In every hemochromogen there is the equilibrium: Hemochromogen ⇄ Reduced heme + Nitrogenous substance. 3. Cyanide can form two distinct compounds with reduced heme, one of which is the typical hemochromogen, cyan-hemochromogen. 4. Reduced heme in alkaline solution has a great affinity for cyanide. 5. Cyan-hemochromogen probably contains one cyanide group per heme. 6. The hemochromogen prepared from hemoglobin is a compound of denatured globin and reduced heme. 7. The individual molecule of denatured globin, of hypothetical molecular weight 16,700, can convert at least 10 molecules of reduced heme into hemochromogen. 8. The hemochromogen-forming capacity of globin is, under given conditions, greater than that of edestin, which in turn, is greater than that of zein.  相似文献   

19.
The interaction of hemoglobin with phosphatidylserine vesicles at low ionic strength and pH conditions was studied. The fluorescence intensity of a lipid embedded probe was quenched by bound Hb but could not be reversed by an elevation of ionic strength and pH. The irreversibility of the fluorescence quenching is a time-dependent process associated with changes in the heme Soret and visible spectra. The rate of these changes was much faster for methemoglobin than for either cyanomethemoglobin or oxyhemoglobin. Elevation of ionic strength released out of the bound hemoglobin into the water phase most of the globin but only a small fraction of the heme. The data are interpreted as demonstrating the ability of phosphatidylserine vesicles to compete with globin for the heme group. When Hb binds to the liposome, heme is being transferred into the lipid phase and the rate-limiting step is the dissociation of the heme-globin complex. The fact that binding of heme to the lipid vesicles is very strong was demonstrated by the failure of hemin to interact with globin when the two were rapidly mixed in the presence of phosphatidylserine vesicles. A multi-step process is suggested to explain the results of Hb phosphatidylserine interaction.  相似文献   

20.
The reaction of *NO and NO2- with hemoglobin (Hb) is of pivotal importance to blood vessel function. Both species show at least two different reactions with Fe2+ Hb: one with deoxygenated Hb, in which the biological properties of *NO are preserved, and another with oxygenated hemoglobin (oxyHb), in which both species are oxidizes to NO3-. In this study we compared the oxidative reactions of *NO and NO2- and, in particular, the radical intermediates formed during transformation to NO3-. The reaction of NO2- with oxyHb was accelerated at high heme concentrations and produced stoichiometric amounts of NO3-. Direct EPR and spin trapping studies showed that NO2-, but not *NO, induced the formation of globin Tyr-, Trp-, and Cys-centered radicals. MS studies provided evidence of the formation of approximately 2% nitrotyrosine in both the alpha and beta subunits, suggesting that *NO2 diffuses in part away from the heme and reacts with Tyr radicals. No nitrotyrosines were detected in the reaction of *NO with oxyHb. Collectively, these results indicate that NO2- reaction with oxyHb causes an oxidative challenge not observed with *NO. The differences in oxidation mechanisms of *NO and NO2- are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号