首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The chloroplast to chromoplast transition during tomato (Lycopersicon esculentum Mill.) fruit ripening is characterized by a dramatic change in plastid structure and function. We have asked whether this process is mediated by an increase in the steady-state level of RNA for plastid targeted proteins. Assays for import of radiolabeled translation products into isolated pea (Pisum sativum L.) chloroplasts were used to monitor levels of chromoplast-targeted proteins at four stages of tomato fruit development. We have found striking increases during development in levels of translatable RNA for two such proteins. Additionally, the import of in vitro translation products was examined for seven individual cDNA clones known to encode RNA that increase during fruit ripening. Three of these clones produced in vitro translation products that were imported into pea chloroplasts. This implies that there is synthesis and import of new proteins during the transition from chloroplast to chromoplast and that the plastid conversion is an active developmental program rather than a simple decline in synthesis of the photosynthetic apparatus. Furthermore, our results demonstrate the utility of this method for identification of structural genes involved in plastid morphogenesis.  相似文献   

4.
5.
Plastid DNA was isolated from the chloroplasts of tomato (Lycopersicon esculentum var Traveler 76) leaves and the chromoplasts of ripe tomato fruit. Comparisons of the two DNAs were made by restriction endonuclease analysis using PvuII, HpaI, and Bg1I. No differences in the electrophoretic banding patterns of the restricted plastid DNAs were detected, indicating that no major rearrangements, losses, or gains of plastid DNA accompany the transition from chloroplast to chromoplast.  相似文献   

6.
7.
Changes in the molecular organization of membranes in pericarp cells of ripening tomato fruit were examined by fluorescence depolarization after labeling with fluorescent lipid-soluble probes. The fluorescent labels were partitioned into isolated protoplasts and purified plastids from fruit at various stages of senescence. Values for steady-state anisotropy (rss) of 1,6-diphenyl-1,3,5-hexatriene (DPH)-labeled protoplasts rose progressively during the early stages of ripening over a time frame that overlapped the climacteric rise in ethylene production. This can be interpreted as reflecting a decrease in the lipid fluidity of primarily plasma membrane. By contrast, there was no significant change during ripening in rss for plastid membranes labeled with DPH, 1-[4-trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), and cis- or trans-parinaric acid. Nor was there any change during ripening in the limiting fluorescence anisotropy (roo) and order parameter (S) for plastids labeled with DPH or TMA-DPH, parameters that are corrected for any differences in lifetime. Some degree of lifetime heterogeneity, possibly reflecting structurally distinct domains, was discerned in both young and senescent plastids that had been labeled with DPH or TMA-DPH, but this also did not change as ripening progressed. Thus membranes of the pericarp cells sustain different fates as the tomato fruit ripens, implying that there are distinguishable mechanisms of membrane deterioration in senescing tissues.  相似文献   

8.
During tomato fruit ripening, photosynthetically competent thylakoid membranes are broken down and replaced by membranous deposits of carotenoids. Few of the proteins involved in this transition have been identified. We have used chloroplast protein import assays as a means to identify two cDNAs that encode proteins destined for the developing chromoplast. One of the cDNAs had unexpected properties and its biological function has not been determined. However, the other cDNA encodes a plastid-localized low-MW heat shock protein (hsp). The steady-state level of RNA corresponding to this cDNA increased several-fold during tomato ripening, and the amount of RNA induced by heat stress increased dramatically during this process. These observations suggest a new role for this stress protein in protecting the plastid during the dismantling of the thylakoid membranes or during the buildup of carotenoids.  相似文献   

9.
The accumulation of RNA in the outer locule tissue of tomato fruits was measured during development and ripening. Labelling studies suggest two peaks of synthesis, the first during early development and the second just before the onset of ripening (colour change). During the second period of increased RNA labelling the amount of total RNA per fruit either remains constant or starts to decline. Synthesis of rRNA and soluble RNA occurred at all stages. Polydisperse RNA containing polyadenylic acid was isolated and shown to direct the synthesis of protein in vitro. No significant changes in the amount of polyadenylic acid, relative to total RNA were detectable during the ripening period.  相似文献   

10.
Phosphoenolpyruvate carboxykinase (PEPCK) is present in ripening tomato fruits. A cDNA encoding PEPCK was identified from a PCR-based screen of a cDNA library from ripe tomato fruit. The sequence of the tomato PEPCK cDNA and a cloned portion of the genomic DNA shows that the complete cDNA sequence contains an open reading frame encoding a peptide of 662 amino acid residues in length and predicts a polypeptide with a molecular mass of 73.5 kDa, which corresponds to that detected by western blotting. Only one PEPCK gene was identified in the tomato genome. PEPCK is shown to be present in the pericarp of ripening tomato fruits by activity measurements, western blotting and mRNA analysis. PEPCK abundance and activity both increased during fruit ripening, from an undetectable amount in immature green fruit to a high amount in ripening fruit. PEPCK mRNA, protein and activity were also detected in germinating seeds and, in lower amounts, in roots and stems of tomato. The possible role of PEPCK in the pericarp of tomato fruit during ripening is discussed.  相似文献   

11.
Ribosome development was followed by electron microscopy and gel electrophoresis of ribosomal (r)RNAs in the plastids of fully expanded fruits of Capsicum annuum L. during ripening. Chloroplasts from young Capsicum leaves were used as a structural and electrophoretic standard. Four stages were distinguished on the basis of colour changes during fruit ripening. Chloroplasts of the green fruit had a lower content of 16S and 23S rRNAs than leaf chloroplasts. They contained only a few ribosomes, some more discrete ribosomal particles, and the contrast of ribosomal structures was faint. From the outset of ripening, most of the ribosomal structures in the plastid stroma disappeared. A continuous decrease in plastid rRNAs occurred during ripening. Fully differentiated chromoplasts of the red fruit did not contain rRNAs or ribosomes. Throughout plastid development, DNA nucleoids were evident and there was only a small decrease in the DNA peak on electrophoretograms. The loss of ribosomes during the chloroplast-to-chromoplast conversion in Capsicum fruit is discussed in relation to the variations in pigments and enzymic systems in both plastid types.Abbreviations Developmental stages of leaves and fruits: A four-week-old green leaf - B green fruit - C brownish fruit - D orange fruit - E red fruit - ptRNA, DNA plastid RNA - DNA; rRNA ribosomal RNA  相似文献   

12.
A tomato fruit cDNA library was differentially screened to identify mRNAs present at higher levels in fruit of the tomato ripening mutant rin (ripening inhibitor). Complete sequencing of a unique clone ERT D1 revealed an open reading frame with homology to several glutamate decarboxylases. The deduced polypeptide sequence has 80% overall amino acid sequence similarity to a Petunia hybrida glutamate decarboxylase (petGAD) which carries a calmodulin-binding site at its carboxyl terminus and ERT D1 appears to have a similar domain. ERT D1 mRNA levels peaked at the first visible sign of fruit colour change during normal tomato ripening and then declined, whereas in fruit of the ripening impaired mutant, rin, accumulation of this mRNA continued until at least 14 days after the onset of ripening. This mRNA was present at much lower levels in other tissues, such as leaves, roots and stem, and was not increased by wounding. Possible roles for GAD, and its product -aminobutyric acid (GABA) in fruit, are discussed.  相似文献   

13.
Ishida BK 《The Plant cell》1991,3(3):219-223
To develop a system with which to study fruit ripening, in vitro ovary cultures were initiated from tomato flowers. As reported previously [Nitsch, J.P. (1951). Am. J. Bot. 38, 566-577], tomato fruit ripened after 6 to 7 weeks, but calyces swelled unexpectedly, lost their green color, and gradually became red and succulent. Investigations were conducted, therefore, to verify the occurrence of the ripening process in the calyx. Ethylene production increased in both ripening fruit and red calyx, as did tissue contents of its immediate precursor, 1-aminocyclopropane-1-carboxylic acid. In addition, an increase in the mRNA of polygalacturonase [poly(1,4-[alpha]-D-galacturonide) glucanohydrolase, EC 3.2.1.15], an enzyme that in tomato is present in large amounts only in ripening fruit, was established in both ripe fruit and red calyx by RNA gel blot analysis. Ultrastructural studies showed that the disruption of cell walls in red calyx was indistinguishable from that occurring in ripe tomato fruit. Thus, the developmental program of the calyx changed in several aspects to resemble that of tomato fruit.  相似文献   

14.
cDNA clones encoding homologues of expansins, a class of cell wall proteins involved in cell wall modification, were isolated from various stages of growing and ripening fruit of tomato (Lycopersicon esculentum). cDNAs derived from five unique expansin genes were obtained, termed tomato Exp3 to Exp7, in addition to the previously described ripening-specific tomato Exp1 (Rose et al. (1997) Proc Natl Acad Sci USA 94: 5955–5960). Deduced amino acid sequences of tomato Exp1, Exp4 and Exp6 were highly related, whereas Exp3, Exp5 and Exp7 were more divergent. Each of the five expansin genes showed a different and characteristic pattern of mRNA expression. mRNA of Exp3 was present throughout fruit growth and ripening, with highest accumulation in green expanding and maturing fruit, and lower, declining levels during ripening. Exp4 mRNA was present only in green expanding fruit, whereas Exp5 mRNA was present in expanding fruit but had highest levels in full-size maturing green fruit and declined during the early stages of ripening. mRNAs from each of these genes were also detected in leaves, stems and flowers but not in roots. Exp6 and Exp7 mRNAs were present at much lower levels than mRNAs of the other expansin genes, and were detected only in expanding or mature green fruit. The results indicate the presence of a large and complex expansin gene family in tomato, and suggest that while the expression of several expansin genes may contribute to green fruit development, only Exp1 mRNA is present at high levels during fruit ripening.  相似文献   

15.
The juice of unripe fruit from a wild species of tomato, Lycopersicon peruvianum (L.) Mill., LA 107, contains over 50% of its soluble proteins as the sum of two proteinase inhibitors. These are the highest levels of proteinase inhibitors and highest percentage of soluble proteins as proteinase inhibitors of any plant or animal tissue found to date. Fruit of the modern tomato, L. esculentum Mill., contains only negligible quantities of the two inhibitors. The two proteinase inhibitors in the fruit of L. peruvianum are members of the Inhibitor I and II families previously found in potato tubers and in leaves of wounded potato and tomato plants. The levels of the two inhibitors in the unripe fruit decrease significantly during ripening. Unripe fruit from other wild Lycopersicon species such as L. parviflorum Rick, Kesicki, Fobes et Holle, L. hirsutum Humb. et Bonpe., L. pimpinellifolium Mill., and other lines of L. peruvianum contain moderate levels of the inhibitors that also decrease during ripening. Another wild tomato species, L. pennellii Corr., is similar to L. esculentum in not containing the two proteinase inhibitors in either unripe or ripe fruit. The transient levels of the inhibitors in fruit of wild species indicate that they are present in unripe fruit as defensive chemicals against insects, birds or small mammals and their disappearance during ripening may render them edible to facilitate seed dispersal. High levels of mRNAs coding for Inhibitors I and II in unripe fruit of L. peruvianum, LA 107, indicate that strong promoters may regulate the developmentally expressed proteinase-inhibitor genes in tomato fruit that may have a substantial potential for use in genetic-engineering experiments to enhance the production of large quantities of proteinase inhibitors or other proteins in field tomatoes.Abbreviations poly(A)+ mRNA polyadenylated mRNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide electrophoresis Project 1791, College of Agriculture and Home Economics Research Center, Washington, State University  相似文献   

16.
17.
Changes in gene expression during foliar senescence and fruit ripening in tomato (Lycopersicon esculentum Mill.) were examined using in-vitro translation of isolated RNA and hybridization against cDNA clones.During the period of chlorophyll loss in leaves, changes occurred in mRNA in-vitro translation products, with some being reduced in prevalence, whilst others increased. Some of the translation products which changed in abundance had similar molecular weights to those known to increase during tomato fruit ripening. By testing RNA from senescing leaves against a tomato fruit ripening-related cDNA library, seven cDNA clones were identified for mRNAs whose prevalence increased during both ripening and leaf senescence. Using dot hybridization, the pattern of expression of the mRNAs corresponding to the seven clones was examined. Maximal expression of the majority of the mRNAs coincided with the time of greatest ethylene production, in both leaves and fruit. Treatment of mature green leaves or unripe fruit with the ethylene antagonist silver thiosulphate prevented the onset of senescence or ripening, and the expression of five of the seven ripening- and senescence-related genes.The results indicate that senescence and ripening in tomato involve the expression of related genes, and that ethylene may be an important factor in controlling their expression.Abbreviations cDNA copy-DNA - MW molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate  相似文献   

18.
19.
20.
The recently discovered 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of plastid isoprenoids (including carotenoids) is not fully elucidated yet despite its central importance for plant life. It is known, however, that the first reaction completely specific to the pathway is the conversion of 1-deoxy-D-xylulose 5-phosphate (DXP) into MEP by the enzyme DXP reductoisomerase (DXR). We have identified a tomato cDNA encoding a protein with homology to DXR and in vivo activity, and show that the levels of the corresponding DXR mRNA and encoded protein in fruit tissues are similar before and during the massive accumulation of carotenoids characteristic of fruit ripening. The results are consistent with a non-limiting role of DXR, and support previous work proposing DXP synthase (DXS) as the first regulatory enzyme for plastid isoprenoid biosynthesis in tomato fruit. Inhibition of DXR activity by fosmidomycin showed that plastid isoprenoid biosynthesis is required for tomato fruit carotenogenesis but not for other ripening processes. In addition, dormancy was reduced in seeds from fosmidomycin-treated fruit but not in seeds from the tomato yellow ripe mutant (defective in phytoene synthase-1, PSY1), suggesting that the isoform PSY2 might channel the production of carotenoids for abscisic acid biosynthesis. Furthermore, the complete arrest of tomato seedling development using fosmidomycin confirms a key role of the MEP pathway in plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号